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SUMMARY

In this paper, a concurrent design methodology to formulate the mechatronic design problem is
presented. The methology proposes to state the mechatronic design problem as a dynamic optimization
problem. In order to explain the methodology, the concurrent design of pinion-rack continuously
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behavior of both approaches are compared, based on quality and the computational time required by
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1. INTRODUCTION

Optimization arises by the need to design or to improve systems according to the requirement
under which systems operate. There are several criteria that can help to quantify the system
performance; however, these criteria are often in conflict with each other since frequently, the
structural objectives of design require hard conditions for the control system. Therefore, the
design problem is usually considered as a multiobjective design problem in order to obtain
better systems. However, the traditional approach for the design of mechatronic systems,
considers the mechanical behavior and the dynamic performance separately. Usually, the design
of the mechanical elements involves kinematic and static behaviors while the design of the
control system uses only the dynamic behavior; therefore, from a dynamic point of view, this
approach cannot produce an optimal system behavior [1], [2]. Recent research in the area
of mechatronic systems raises the need of a concurrent design methodology for mechatronic
systems. This methodology must integrate mechanical structure and the design of the control
in order to produce mechanical, electronical and control flexibility for the designed system [2],
[3].

In this paper, a concurrent design methodology to formulate the mechatronic design problem
is proposed. The methodology aims to state it within a dynamic optimization problem, because
the goal is to fulfill the dynamic and control behaviors of the mechatronic system, besides to
minimize some performance criteria [4]. This methodology allows us to obtain a set of optimal
mechanical structure and controller parameters in only one step, which can produce a simple
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system reconfiguration.

In order to explain the methodology, the concurrent design of a pinion-rack continuously
variable transmission (CVT) is carried out. This means that both the parametrical optimal
design and the proportional and integral (PI) controller gains of the CVT are obtained by
means of a multiobjective dynamic optimization problem (MDOP). In this case, both the
kinematic and dynamic models of the mechanical structure and the dynamic model of the

controller are jointly considered besides system performance criteria.

In the multiobjective optimization framework, a typical approach consists on transforming
the original problem into an equivalent single objective problem using a weighted sum of the
original objectives. In most of the cases, this single objective problem will be easier to solve
than the original multiobjective problem. However, the weakness of the weighted method is
that not all of the nondominated solutions can be found unless the problem is convex [5, 6].
A MDOP can be solved by converting it into a nonlinear programming (NLP) problem [7],
[8] and using the Goal Attainment method [9] for the resulting problem. Two transcription
methods exist for the MDOP: the sequential and the simultaneous methods [10]. In the
sequential method, only the control variables are discretized; this method is also known as the
control vector parameterization. In the simultaneous method the state and control variables
are discretized resulting in a large-scale NLP problem which usually requires special solution
strategies. However, these common methods need a point to initialize the optimization search,
and consequently the convergence of the algorithm depends on the chosen point. Moreover,

the nonlinear programming approach is able to produce only one possible solution.

Because of the above reasons, in this work we propose the use of an evolutionary-based
approach. The main advantage in solving the problem with an evolutionary algorithm (EA) is

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1-6

Prepared using nmeauth.cls
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that it always works with several initial starting points (called population) which are usually
generated at random. In this way, we can avoid the sensitivity of the approach to the initial
search point. Furthermore, we are able to discuss advantages and disadvantages of two different

approaches used to solve the problem.

We wanted to emphasize the lack of sensitivity of the optimization approach to the initial
conditions and also to use these initial solutions as reference to find promising areas of the
search space. Thus, we selected an EA which makes special emphasis in finding new search
directions based on the distribution of the current solutions. These search directions are mostly
random at the beginning and, once the process advances, they are based on the best solutions
found so far. Differential Evolution (DE) was adopted as our search engine, because it fulfills

the previously stated requirements.

DE is a population-based evolutionary algorithm with an special recombination operator
that performs a linear combination of a number of individuals (normally three) and one parent
(which is subject to be replaced) to create one child. The selection is deterministic between the
parent and the child. The best of them remain in the next population. DE shares similarities
with traditional EAs. However it does not use binary encoding as a simple genetic algorithm
[11] and it does not use a probability density function to self-adapt its parameters as an
Evolution Strategy [12]. Furthermore, DE has been successfully applied to mechanical design
optimization tasks [13], [14]. However, in these previous works, the mechanical design problem

is stated as a static optimization problem.

This paper is organized as follows: The concurrent design methodology is presented in
Section 2. The application of a mathematical programming method to solve the problem
is given in Section 3. The new evolutionary algorithm proposed in this work is explained in
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Section 4. The discussion of results is provided in Section 5 and finally, some conclusions are

drawn in Section 6.

2. CONCURRENT OPTIMAL DESIGN

As it was discussed in Section 1, the mechatronic design problem must be stated on a concurrent

way. Therefore we propose the following general problem:

min &(z, p, t) = [®1, By, ..., ,]" (1)

ty
®, = / Li(z,p,t)dt 1i=1,2,...,n

to

under p and subject to:

i = flz,pt) (2)

g(z,p,t) < 0 ®3)

h(z,p,t) = 0 (4)
2(0) = =

In the problem stated by (1) to (4): pis a vector of the design variables which belongs to the
mechanical and control structure, x is the vector of the state variables and ¢ is the time variable.
On the other hand, some performance criteria L must be selected for the mechatronic system.
The dynamic model (2) describes the state vector z at time ¢. Also, the design constraints of the
mechatronic system must be developed and proposed, respectively. Therefore, the parameter
vector p which is a solution of the previous problem will be an optimal set of structure and
controller parameters which minimize the performance criteria selected for the mechatronic
system and subject to the constraints imposed by the dynamic model and the design.
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2.1. Dynamic model of the CVT

Current research efforts in the field of power transmission of rotational propulsion systems, are
dedicated to obtain low energy consumption with high mechanical efficiency. An alternative
solution to this problem is the so called continuously variable transmission (CVT), whose
transmission ratio can be continuously changed inside an established range. There are many
CVTs configurations built in industrial systems, especially in the automotive industry due to
the requirements to increase the fuel economy without decreasing the system performance.
The mechanical development of CVTs is well known and there is little to modify regarding its
basic operation principles. However, research efforts continue with the controller design and
the CVT instrumentation side. A pinion-rack CVT which is a traction-drive mechanism is
presented in [15]. This CVT is built-in with conventional mechanical elements such as a gear
pinion, one cam and two pairs of racks. The conventional CVT manufacture is an advantage

over other existing CVTs.

The pinion-rack CVT, changes its transmission ratio when the distance between the input
and output rotation axes is changed. This distance is called “offset” and will be denoted by
“e”. Inside the CVT an offset mechanism is integrated. This mechanism is built-in with a lead
screw attached by a nut to the vertical transport cam. Fig. 1 depicts the main mechanical

CVT components.

The dynamic model of a pinion-rack CVT is presented in [16]. Ordinary differential equations
(5), (6) and (7) describe the CVT dynamic behavior. In equation (5): Ty, is the input torque,
J1 is the mass moment of inertia of the gear pinion, b; is the input shaft coefficient viscous
damping, r is the gear pinion pitch circle radius, n is the mechanical CVT efficiency, T}, is
the CVT load torque, Jz is the mass moment of inertia of the rotor, R is the planetary gear
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Gear pinion
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Figure 1. Main CVT mechanical components

pitch circle radius, by is the output shaft coefficient viscous damping and 6 is the angular
displacement of the rotor. In equations (6) and (7): L, Ry, Kp, Ky and n represent the
armature circuit inductance, the circuit resistance, the back electro-motive force constant, the
motor torque constant and the gearbox gear ratio of the DC motor, respectively. Parameters
Tp, As, b and b; denote the pitch radius, the lead angle, the viscous damping coeflicient of
the lead screw and the viscous damping coefficient of the offset mechanism, respectively. The
control signal u (t) is the input voltage to the DC motor. Jeq = Joo + M 7“12, + n?J, is the
equivalent mass moment of inertia, where J.; is the mass moment of inertia of the DC motor
shaft, J.o is the mass moment of inertia of the DC motor gearbox and d = r,tan A, is a lead
screw function. Moreover, 0g (t) = %arctan [ta.n (297& - %)] is the rack angle meshing and
R

> =14 £cosfp is the CVT transmission ratio. The combined mass to be translated inside
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the rotor by the offset mechanism is denoted by M and P = 1;—’: tan ¢ cos g is the loading on

the gear pinion teeth, where ¢ is the pressure angle.

(E) nTm - TL =
r

2
Jo + Jin (?) ] 6 — [Jln (i—%) gsinOR] 62
2

bs + b1n (E)

T

di . nK] .
nkKy] . Jeg | .. b .
s _pPp=|M+ ¢
[ g ]z [ +d2]e+[bl+rpd]e (7

2.2. Performance criteria and objective functions.

The performance of a system is measured by several criteria. One of the most used criteria is
the system efficiency because it reflects the energy loss. In this work, the mechanical efficiency
criterion of the gear systems is used in the concurrent design methodology. This is because the
racks and the gear pinion are the principal CVT mechanical elements.

In [16] the mechanical CVT efficiency is given by (8) where p, N1 r and e represent the
coefficient of sliding friction, the gear pinion teeth number, the pitch pinion radius and the

offset, respectively.

_ T 1
n(t)—l—yl<1+m> (8)
T

In order to maximize the mechanical CVT efficiency, F'(-) given by (9) must be minimized.
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F() = Nil (1 + ﬁ) 9)

Equation (9) can be written as (10) which is used to state the design problem objective
function.

®:1(-)

1 (2r+ecos€R) (10)

- Fl r+ecosfp
On the other hand, in order to obtain the minimal controller energy, the design problem

objective function given by (11) is used.

() =

¢

1

5 —Kp(Tref — 1) — KI/(a:Tef —x)| dt (11)
0

2.8. Constraint functions.

The design constraints for the concurrent design of the CVT are proposed according to
geometric and strength conditions for the gear pinion of the CVT.

To prevent the fracture of the annular portion between the axe bore and the teeth root
on the gear pinion, the pitch circle diameter of the pinion gear must be greater than the
bore diameter by at least 2.5 times the module [17]. Then, in order to avoid the fracture, the
constraint g; must be imposed. To achieve a load uniform distribution on the teeth, the face
width must be 6 to 12 times the value of the module [1]; this is ensured with constraints g,
and gs. To maintain the CVT transmission ratio in the range [2r, 5r], constraints g4, g5 are
imposed. Constraint g ensures a teeth number of the gear pinion equal or greater than 12 [1].
A practical constraint requires that the gear pinion face width must be equal or greater than
20mm, in order to ensure that constraint g7 is imposed. To constrain the distance between
the corner edge in the rotor and the edge rotor, constraint gs is imposed. Finally, to ensure
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10 PORTILLA-FLORES E. MEZURA-MONTES E. ET AL.

a practical design for the pinion gear, the pitch circle radius must be equal or greater than
25.4mm, which is what go imposes.

On the other hand, it can be observed that J;, J> are parameters which are a function of
the CVT geometry. For these mechanical elements, the mass moments of inertia are defined
by (12), where p, m, N, h, €mnaz, 7. and 7, are the material density, the module, the teeth
number of the gear pinion, the face width, the highest offset distance between axes, the rotor
radius and the bearing radius, respectively.

1 1 1
Ji = —prm* (N +2)> N2h; Jy = ph %wr‘ci _16 (€maz +mN)* — Zm“: (12)

32 6

2.4. Design variables.

One of the most important facts in the methodology proposed in this work is the vector of
the design variables selected, since these must belong to the mechanical and the controller
structure. Therefore, for the concurrent design of the CVT, design variables of the mechanical
structure related with the standard nomenclature for a gear tooth are used. That is because,
the rotor size of the CVT will not improve only the internal mechanical elements.

Equation (13) states a parameter called module m for metric gears, where d,, is the pitch

diameter and N is the teeth number.

_dp_

The face width h, which is the distance measured along the axis of the gear and the highest
offset distance between axes e,,4, are parameters which define the CVT size. The above design
variables belong to the mechanical structure.
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On the other hand, the controller gains Kp and K belong to the dynamic CVT behavior.
Therefore, the vector p! which considers mechanical and dynamic design variables is proposed

in order to carry out the concurrent design of the CVT.

pi = [piapgapgapi:pé:pé]T = [N;m;h;emaz;KPaKI]T (14)

2.5. Optimization problem.

In order to obtain the mechanical CVT parameter optimal values, we propose a multiobjective
dynamic optimization problem given by equations (15) to (23). The dynamic model of the
pinion-rack CVT with the state variables z; = 9, T2 = 4, 3 = e, £4 = € and the control
signal u(t) is given by (16). As the objective functions must be normalized to the same scale
[5], the corresponding factors W = [0.4397,563.3585]7 were obtained using the algorithm from

Section 3 by minimizing each objective function subject to constraints given by equations (16)

to (23).
. . T
min (z,p,t) = [®1, ®2] (15)
where
10 o
1 1 T3 CoS
(1)1:_/_ pip2 +3c080R\ | o,
Wi p1 \ B2 +23co80R
0
10
1
By = — [ u3dt
2T W, /
0
subject to
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AT, + I:JIAPZTZEQ_ sinGR] :C% -Ty

— [bz + b A% + JlAlfl””If2 COSGR] T1

o= Jo + J1 A2
u(t) — (2822, — Rz
L
T3 = T4
) (%)mg — (b + Tb:d):c4 - % tan ¢ cos g
T4 = 7.
M+ 3
t
w(t) = —ps(@re; — 1) — po /(xmf p—— (17)
0
_ 1 4 2 2
Ji = 550mp; (p1 +2)" pips (18)
32
Jo = % 37rr§ -3 (p4 +p1p2)4 - 777“51 (19)
A = 14+ == cosbr (20)
D1Pp2
d = rptan); (21)
1 ™
Or = 3 arctan [tan (Qxlt — 5)] (22)
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g1 = 001—po(p1—2.5)<0

b3

= 6—-=X<0
92 p2
g5 = 2 _12<0
D2
g1 = pip2—pa <0
5

95 = Pa= PP <0 (23)
g = 12-p <0
gr = 0.020—p3 <0
gs = 0.020— [rc - V2(ps +p1p2)] <0
go = 0.0254 —pip2 < 0

3. MATHEMATICAL PROGRAMMING METHOD

The resulting problem stated by (15)-(23) is solved using the goal attainment method. The
resulting problem is stated in equations (24) and (25) subject to equations (2) to (4), where
w = [wy, ws]? is the scattering vector [5], ®¢ = [1,1]T are the desired goals for each objective

function and ®1(p) and ®»(p) are the evaluated function.

min G (p, \) £ A (24)
DA

subject to:
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glp) < 0
9a(p) = @1 (p) —wiA—®f <0 (25)
ga2(p) = @3 (p) —wod — B4 <0

A vector p* which contains the current parameter values is proposed and the NLP problem
given by equations (26) and (27) is obtained, where B; is the Broyden—Fletcher-Goldfarb—
Shanno updated (BGFS) positive definite approximation of the Hessian matrix, and the
gradient calculation is obtained using sensitivity equations. Hence, if v solves the subproblem
given by (26) and (27) and y = 0, then the parameter vector p’ is an original problem optimal
solution. Otherwise, we set p'*! = p’ 4+ v and with this new vector the process is repeated

again.

min QP(p') = G (p*) + VGT (p') v + %WTBW (26)

’yERj‘H

subject to

g +Vgr (p)y < 0
9 (P") + VgL )y < 0 (27)
9a2(P") + VgL, )y < 0

The NLP approach requires the gradient calculation, therefore the sensitivity equations
must be solved in order to obtain the necessary information to establish a subproblem. The
number of sensitivity equations is the product between the number of state variables and the
number of the design variables of the design vector. In this case, the number of sensitivity
equations are twenty four. Additionally, it is necessary to solve six gradient equations and two
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other equations in order to obtain the values of the objective functions. Additionally, fifty four
gradient equations of the constraints must be calculated.

The gradient calculation (28) is obtained using the sensitivity equations stated by (29).

8‘1’,' /tf <6Li ox 8L,>

= —(t) + dt 28
Op; to \ 0% apj( ) op; 28)
ot of Ox of
ot _ Of oz  Of 29
Op;j Oz Op;  Op; (29)

3.1. NLP results

The system parameters used in the optimization procedure were: by = 1.1Nms/rad, by =
0.05Nms/rad, r = 0.0254m, T,,, = 8.789Nm, T, = ONm, A, = 5.4271, ¢ = 20, M = 10K g,
r, = 4.188E — 03m, K; = 63.92E — 03Nm/A, K; = 63.92E — 03Vs/rad, R = 10Q,
L = 0.01061H, b; = 0.0156Ns/m, b, = 0.025Nms/rad and n = ((22 x 40 = 33)/(9 * 8 x 9)).
The initial conditions vector was [z1(0),22(0),23(0),z4(0)]T = [7.5,0,0,0]T and the output
reference was considered to be z,.y = 3.2.

The goal attainment method requires the goal for each one of the objective functions. The
goal for ®; was obtained by minimizing this function subject to equations (16)-(23). The
optimal solution vector p' is shown in Table I. The goal for ®; was obtained by minimizing
this function subject to equations (16)-(23). The optimal solution vector p? for this problem
is also shown in Table 1.

Varying the scattering vector can produce different nondominated solutions. In Table I, two
cases are presented: p% is obtained with w = [0.5,0.5], p% is obtained with w = [0.4,0.6]7.

We performed 10 independent runs, all of them by using a PC with a 2.8 GHz Pentium IV
processor with 1 GB of Memory.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1-6
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[N*,m*,h*,e*

mamz?

Kp, Kjl

oy (o) = [21(e), P2(e)]

2(0) = [P1(e), Pa(e)]

p! = [38,0.0017, 0.02, 0.0636, 10.000, 1.00] & (p') = [1.0000, 4.7938]

@(pl) = [0.4397, 2700.6279]

p2 = [13.4459, 0.0019, 0.02, 0.0826, 5.000, 0.01] | & (p2) = [2.8017, 1.0000]

o(p?) = [1.2319, 563.3585]

p% = [26.7805,0.0017, 0.02, 0.0826, 5.000, 0.01] @ (ph) = [1.4696, 1.4696]

®(p%) = [0.6461, 827.9116]

pp = [29.0171,0.0017, 0.02, 0.0789, 5.000, 0.01] PN (py) = [1.3646, 1.5469]

®(pk) = [0.6000, 871.4592]

Table I. MDOP solutions

Run Time required Initial search point Scattering vector
1 23.78 Min. [13.4459, 0.0019, 0.02, 0.0826, 5.000, 0.01] [0.5,0.5]
2 Diverged. [38, 0.0017, 0.02, 0.0636, 10.000, 1.00] [0.5,0.5]
3 Diverged. [38, 0.0017, 0.02, 0.0636, 10.000, 1.00] [0.4,0.6]
4 Diverged. [38, 0.0017, 0.02, 0.0636, 10.000, 1.00] [0.6,0.4]
5 Diverged. [28.8432, 0.0017, 0.02, 0.0550, 5.024, 0.017] [0.5,0.5]
6 48.5 Min. [13.4459, 0.0019, 0.02, 0.0826, 5.000, 0.01] [0.4,0.6]
7 Diverged. [28.8432, 0.0017, 0.02, 0.0550, 5.024, 0.017] [0.4,0.6]
8 Diverged. [28.8432, 0.0017, 0.02, 0.0550, 5.024, 0.017] [0.6,0.4]
9 Diverged. [30.77, 0.0017, 0.02, 0.0694, 5.121, 0.010] [0.5,0.5]
10 Diverged. [30.77, 0.0017, 0.02, 0.0694, 5.121, 0.010] [0.4,0.6]

Average 36.365 Min

Table II. Time required by each run of the Goal attainment approach. Note that only two runs could

converge to a solution. The remaining 8 runs could not provide any result.

As it can be seen in the results in Table II, 80% of the runs diverged. This behavior shows a
high sensitivity of the goal attainment method to the starting point because it must be carefully
chosen in order to allow the approach to reach a good solution. The information about the

time required by the goal attainment approach per independent run is also summarized in

Table II.

In the mechanical CVT efficiency equation, it can be observed that a higher efficiency is

Copyright © 2000 John Wiley & Sons, Ltd.

Prepared using nmeauth.cls

Int. J. Numer. Meth. Engng 2000; 00:1-6




STRUCTURE AND CONTROL USING AN EA: AN APPLICATION TO THE OCD OF A CVT 17

produced when a bigger gear pinion teeth number is used. From the nondominated solution it
can be observed that, when the teeth number is increased (p}) and their sizes are decreased
(p3), a higher CVT mechanical efficiency is obtained. On the other hand, a more compact CVT
size is obtained since (p%) is decreased. Furthermore, a minimal controller energy is obtained
when the controller gains (pf) and (p}) are decreased. Despite the sensitivity of the NLP

method, the optimal solutions obtained are good from the mechanical and controller point of

view.

4. Evolutionary Optimization

Based on the considerable sensitivity of the goal attainment approach to its initial search
point, which we argue that may lead the search to a local optimum solution, we decided to
experiment with an evolutionary approach to solve the optimization problem of our interest.
The main advantage that we observed in solving the problem with an evolutionary algorithm
(EA) is that it always works with several initial starting points (called population) usually
generated at random. In this way, we expected to avoid the sensitivity of the approach to
the initial point provided. Furthermore, by using and EA in addition to the Goal Attainment
method, we are able to discuss advantages and disadvantages of using each of them in our
problem.

We use the standard version of the differential evolution algorithm called DE/rand/1/bin
[18] and its algorithm [18] is presented in Figure 2.

The “CR” parameter controls the influence of the parent in the generation of the offspring.
Higher values mean less influence of the parent. The “F” parameter scales the influence of two
of the three individuals selected at random to generate the offspring.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1-6
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18 PORTILLA-FLORES E. MEZURA-MONTES E. ET AL.

Begin

G=0
Create a random initial population a?’G Vi,i=1,...,NP
Evaluate f(a?’G) Vi,i=1,...,NP

For G=1 to MAX_GENERATIONS Do
For i=1 to NP Do
Select randomly 71 # ro # r3 :
Jrand = randint(1, D)

For j=1 to D Do

If (rand;[0,1) < CR or j = jp.qna) Then

i _ .73 vy _ T
vjar1 = e T F(e; 6 — ;%)

Else
u5,G4+1 = %5,
End If
End For
If (f(ﬁG+1) < f(ilc)) Then
g1 = U641
Else
Tg41 =G
End If
End For
G=G+1

End For

End

Figure 2. DE algorithm. randint(min,max) is a function that returns an integer number between min
and max. rand[0,1) is a function that returns a real number between 0 and 1. Both are based on

a uniform probability distribution. “NP”, “MAX_GENERATIONS”, “CR” and “F” are user-defined

We propose a novel DE-based approach to solve our multiobjective optimization problem.

Therefore, we added to the original DE specific mechanisms required to solve the current

problem:

1. The selection criterion was modified in order to handle a multiobjective problem.

Copyright © 2000 John Wiley & Sons, Ltd.
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2. A mechanism was added to handle the constraints of the problem.

4.1. Multiobjective optimization

The criterion to select the fittest solution between parent and offspring in traditional DE is
based on the value of the objective function. However, in multiobjective optimization we are
looking for trade-off solutions. Therefore, we propose to use, as in other evolutionary algorithms
for multiobjective optimization [19], Pareto dominance as a selection criterion between parent
and offspring. In this way, nondominated solutions will remain in the current population. We
understand the nondominance criterion as follows:

A vector @ = (uy,...,u) is said to dominate @ = (vy,...,v;) (denoted by @ < ¥) if and
only if @ is partially less than 7, i.e. Vi € {1,...,k}, u; <v; AT € {1,...,k} : u; < wv;. If we
denote the feasible region of the search space as F, the evolutionary multiobjective algorithm

will look for the Pareto optimal set (P*) defined as:

-

P :i={zeF|-32' €F f(a) =< f(x)} (30)

In our case, k = 2 as we are optimizing two objectives.

Additionally, we also added an external memory [20] (a data structure in the implementation
of the approach), in order to store all the nondominated solutions found during the evolutionary
process. The external memory is implemented as follows: At each generation, all the
nondominated solutions in the current population are inserted in the external memory. Then,
nondominance checking is performed per each solution and those individuals nondominated in
this external memory will remain and the dominated solutions will be eliminated. At the end
of the process, our approach reports the nondominated solutions that remain in the external
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storage.

4.2. Constraint handling

The mechanism to deal with constraints are three simple selection criteria which guide the

algorithm to the feasible region of the search space:

e Between 2 feasible solutions, the one which dominates the other wins.
e If one solution is feasible and the other one is infeasible, the feasible solution wins.
e If both solutions are infeasible, the one with the lowest sum of constraint violation is

preferred.

These criteria are applied when the child is compared against the parent subject to be replaced.
The idea of using selection criteria based on feasibility to deal with constraints in genetic
algorithms was originally proposed by Deb [21] and was extended to other evolutionary
algorithms in other approaches [22, 23, 24], which have been mainly used to solve global
optimization problems.

The algorithm of our modified DE (MDE) is presented in Figure 3:

4.3. MDEFE Results

We performed 10 independent runs with the same set of parameters for the MDE approach:
Population number NP = 200, MAX _ GENERATIONS = 100; parameters F' and C'R were
randomly generated. The parameter F' was generated per generation in the range [0.3,0.9] and
CR was generated per run in the range [0.8,1]. These values were empirically derived. We
observed that adopting higher values for the “CR” parameter (i.e. the offspring will inherit
more features from the random solutions selected from the population than those inherited
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Begin
G=0
Initialize the external memory EMgy = 0
Create a random initial population 516‘ Vi,i=1,...,NP
Evaluate each a':’G in each objective function and in each constraint Vi, i =1,..., NP
For G=1 to MAX_GENERATIONS Do
For i=1 to NP Do
Select randomly 71 # 79 # 73 :
Jrand = randint(1, D)
For j=1 to D Do
If (rand;[0,1) < CR or j = jpqna) Then
a1 =25 T @)l — 25%)
Else
ujG+1 = %56
End If
End For
Evaluate ﬁz';_H in each objective function and in each constraint
= If (1'13"G+1is better than a‘:"G (based on the three selection criteria)) Then
Toq1 =G4
Else

i

- _ ai
Ta+1 = %q

End If
End For
G=G+1
= Find the nondominated solutions NDg from the current population: o‘c‘b Vi,i=1,...,NP
== Update EMqg with NDg by performing nondominance checking
End For
End

Figure 3. MDE algorithm. The modified steps are marked with an arrow. randint(min,max) is a
function that returns an integer number between min and max. rand[0, 1) is a function that returns
a real number between 0 and 1. Both are based on a uniform probability distribution. “NP”,

“MAX_GENERATIONS”, “CR” and “F” are user-defined parameters

from its parent) provided a better performance for the MDE. Furthermore, we observed that,
allowing the “F” parameter to vary within all its allowable interval except for the extreme
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Run Nondominated solutions found Time required
1 17 18.53 Hrs.
2 15 20.54 Hrs.
3 25 18.52 Hrs.
4 16 18.63 Hrs.
5 17 18.55 Hrs.
6 19 17.57 Hrs.
7 18 18.15 Hrs.
8 24 18.47 Hrs.
9 16 18.67 Hrs.
10 18 20.24 Hrs.

Average 18.5 solutions 18.78 Hrs

Table III. Number of nondominated solutions found at each independent run by the MDE and the

time required by each one of them.

values, led to better results. As the experiments performed with the Goal Attainment method,
all tests took place in the same platform where the mathematical programming method was

tested.

The number of nondominated solutions at each run and the time required to obtain them

by the MDE are presented in Table III.

It is worth reminding that, unlike the mathematical programming method, MDE always
starts with a set of solutions generated at random using a uniform distribution. The system
parameters used in the MDE are exactly the same used in the previous experiments performed
with the goal attainment approach. Based on the 10 outputs of each run (i.e. our set of trade-off
solutions), we merged all of them and we obtained the global set of nondominated solutions.

The Pareto front obtained is presented in Figure 4.

As we can observe in the set of nondominated solutions obtained, solutions in the middle
of the Pareto front present a good performance both from a mechanical and from a controller

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1-6

Prepared using nmeauth.cls



STRUCTURE AND CONTROL USING AN EA: AN APPLICATION TO THE OCD OF A CVT 23

* % P %
[N*,m™, h™, el 0ns

Kp, Kil

[®1(e), P2(e)]

[32.949617, 0.001780, 0.020413, 0.063497, 5.131464, 0.022851]

[0.534496, 1033.243548]

[25.022005, 0.001699, 0.020103, 0.052385, 5.087026, 0.024991]

[0.687214, 837.167059]

[24.764331, 0.001723, 0.020662, 0.048119, 5.104801, 0.011072]

[0.694969, 828.856396]

[32.203853, 0.001793, 0.021356, 0.066703, 5.033164, 0.012833]

[0.547385, 984.149814]

[30.774167, 0.001710, 0.020092, 0.069459, 5.129618, 0.010260]

[0.568131, 950.480089]

[34.231339, 0.001756, 0.020974, 0.065426, 5.104461, 0.023469]

[0.515604, 1042.009590]

[31.072336, 0.001760, 0.020295, 0.072332, 5.018621, 0.024963]

[0.564775, 964.310541]

[27.647589, 0.001685, 0.020151, 0.069264, 5.001687, 0.031805]

[0.627021, 877.670407]

[27.548056, 0.001696, 0.020083, 0.067970, 5.006868, 0.017859]

[0.629913, 864.206663]

[30.866972, 0.001735, 0.020305, 0.058766, 5.002777, 0.032694]

[0.567519, 960.120458]

[28.913492, 0.001747, 0.020478, 0.058322, 5.021887, 0.027174]

[0.603222, 923.771423]

[28.843277, 0.001764, 0.020282, 0.055027, 5.024443, 0.017157]

[0.605340, 915.753294]

[30.185435, 0.001700, 0.020075, 0.059569, 5.133269, 0.019914]

[0.577733, 949.842309]

[29.448640, 0.001755, 0.020601, 0.063276, 5.019318, 0.033931]

[0.593085, 944.906551]

[20.002905, 0.001697, 0.020098, 0.053235, 5.114809, 0.018447]

[0.844657, 715.605541]

[26.373053, 0.001718, 0.020176, 0.068410, 5.031773, 0.014986]

[0.656264, 849.215816]

[32.227085, 0.001764, 0.020567, 0.070369, 5.178989, 0.026127]

[0.544721, 1030.722785]

[23.476167, 0.001731, 0.020618, 0.057264, 5.050345, 0.010533]

[0.730990, 790.412654]

[23.853314, 0.001696, 0.020054, 0.063646, 5.097374, 0.040464]

[0.717403, 827.978369]

[23.936736, 0.001767, 0.020179, 0.054081, 5.026456, 0.013965]

[0.719347, 810.685134]

[18.094865, 0.001754, 0.020097, 0.033930, 5.263513, 0.012051]

[0.926890, 700.251032]

[15.287561, 0.001836, 0.020539, 0.065247, 5.001634, 0.077960]

[1.086582, 648.563140]

[20.410186, 0.001689, 0.020082, 0.067889, 5.0055020.046545]

[0.828891, 729.481066]

[29.319668, 0.001754, 0.020557, 0.057790, 5.140154, 0.012875]

[0.595073, 944.511281]

[28.165197, 0.001722, 0.020449, 0.069922, 5.035457, 0.013965]

[0.617721, 886.468167]

[34.733111, 0.001738, 0.020849, 0.064827, 5.470063, 0.078838]

[0.504179, 1230.655492]

[18.028162, 0.001753, 0.021026, 0.075356, 5.185506, 0.027797]

[0.930299, 697.362827]

[21.642511, 0.001694, 0.020196, 0.061009, 5.040619, 0.029378]

[0.785859, 752.464167]

Table IV. Details of the trade-off solutions found by the MDE. All solutions are feasible.
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Final Pareto front obtalned by the ML
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Figure 4. Final set of solutions obtained by the MDE in 10 independent runs

point of view. With these nondominated solutions we have a higher mechanical efficiency since
the teeth number (p}) was increased beyond 25 and its size (p}) was decreased. It can be
noted that in all nondominated solutions, a more compact CVT size was obtained since (p3)
has a value closer to 0.02. On the other hand, with the gain controllers obtained, a minimal

controller energy can be implemented.

As a final experiment, we decided to use one of the nondominated solutions found by the
MDE as an initial point for the goal attainment method and to evaluate its performance to
improve this solution. However, the NLP method was unable to generate a better solution in
all cases. We tried with five different solutions from the Pareto front taken from both extremes
of the front and also solutions located in the middle of it.
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5. Discussion of results

For the NLP approach, the whole system equation was simultaneously solved to establish the
subproblem until the stop criteria of the subproblem were satisfied. The initial point to search
the optimum is p? for both scattering vectors. This initial point was selected because the
optimal solutions p% and pj were only reached when the search started from this point. The
number of evaluations of the whole system equation were 6 and 12 for each scattering vector,

respectively.

On the other hand, the MDE approach only uses the evaluated functions, which are obtained
by solving the four differential equations of the dynamic system and the two objective function

equations.

Based on the performance obtained by both optimization techniques used to solve the

problem, we highlight the following issues:

e The goal attainment method was very sensitive to the initial point. In fact, to get an
adequate initial point for this method, a global optimization technique was required
in order to optimize each objective separately, and from both solutions obtained (one
per objective), one of them was selected as a starting point for the method. On the
other hand, as indicated before, the MDE always started the search from purely random
solutions.

e Despite using random solutions at the beginning, the MDE was able to converge in all
the 10 independent runs performed to a feasible Pareto front.

e The average number of points obtained by the MDE per run was: 18.5.

e The solutions obtained with the goal attainment method are also part of the Pareto front
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found by the MDE (they are nondominated with respect to each other). Therefore, the
quality of solutions obtained by both approaches can be considered similar. However,
based on the mechanical efficiency objective values, the solutions found by the MDE are
preferred.

e The average time required by the goal attainment method is clearly lower than the
average time used by the MDE to get competitive results. However, as the MDE obtains
an average of 18.5 solutions in an average of 18.7 Hrs, it approximately obtained one
solution per hour. On the other hand, the goal attainment method obtains one solution
in about half an hour. Then, we can conclude that the MDE requires twice the time used
by the goal attainment method to obtain a solution.

e The goal attainment method was unable to provide a better solution than MDE, even

when the starting point was chosen from the Pareto set obtained by the MDE.

All these issues lead us to conclude that the MDE approach is clearly a better option than
the Goal Attainment method, assumming that enough time is available to find an optimal set

of solutions.

6. Conclusions

In this paper, we have presented a suitable parametric optimal design methodology for a
mechatronic system. The advantage of this methodology is that the parametric optimal design
can be stated as a MDOP where kinematic and dynamic behaviors are considered besides two
performance criteria. The design methodology fulfills the concurrent design concept, since the
control-structure optimization are integrated and solved in only one stage.
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The problem was initially solved by using a mathematical programming method for
multiobjective optimization. However, the results were not as good as expected. Therefore,
an evolutionary approach called Differential Evolution was used to address the problem. Some
simple modifications were made to the original Differential Evolution Algorithm in order to
solve a multiobjective optimization problem. The performance of the evolutionary approach
was, by far much better than that provided by the goal attainment approach and it was not
sensitive to the initial set of solutions. However, the computational cost associated with the

evolutionary approach was much higher than the mathematical programming approach.

7. Future work

As future paths of research, we plan to propose new design constraints. These constraints must
consider stress conditions and bounding of the state variables. On the other hand, another
objective function of the pinion-rack CVT overall mechanical efficiency, including the offset
mechanism and lead screw constraints could be considered in the parametric optimal design.
Finally, new design variables could be considered. These design variables would be related to

the lead screw of the offset mechanism.
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