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Abstract

Classification is one of the most well-known tasks in supervised learning. A
vast number of algorithms for pattern classification have been proposed so far.
Among these, support vector machines (SVMs) are one of the most popular
approaches, due to the high performance reached by these methods in a wide
number of pattern recognition applications. Nevertheless, the effectiveness
of SVMs highly depends on their hyper-parameters. Besides the fine-tuning
of their hyper-parameters, the way in which the features are scaled as well
as the presence of non-relevant features could affect their generalization per-
formance. This paper introduces an approach for addressing model selection
for support vector machines used in classification tasks. In our formulation,
a model can be composed by feature selection and pre-processing methods
besides the SVM classifier. We formulate the model selection problem as
a multi-objective one, aiming to minimize simultaneously two components
that are closely related to the error of a model: bias and variance compo-
nents, which are estimated in an experimental fashion. A surrogate-assisted
evolutionary multi-objective optimization approach is adopted to explore the
hyper-parameters space. We adopted this approach due to the fact that esti-
mating the bias and variance could be computationally expensive. Therefore,
by using surrogate-assisted optimization, we expect to reduce of the number
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of solutions evaluated by the fitness functions so that the computational cost
would also be reduced. Experimental results conducted on benchmark data
sets widely used in the literature, indicate that highly competitive models
with a fewer number of fitness function evaluations are obtained by our pro-
posal when it is compared to state of the art model selection methods.

Keywords: Model selection, Multi-objective optimization, Support vector
machines, Surrogate-assisted optimization.

1. Introduction

Supervised classification is the task of learning a function from a labeled
data set. This function is a model that is used to predict the response of
future data points from the same problem by mapping a data point from
the feature space to a class label. To date, there are many machine learning
algorithms that can be used for constructing such model. Among these,
support vector machines (SVMs) [B], 12, 40] is one of the most powerful. The
popularity of SMVs relies on their theoretical background, high performance,
and scalability. In spite of this, the effectiveness of SVMs depends on the
fine-tuning of a set of parameters (usually called hyper-parameters), such
as the kernel type and its parameters. Furthermore, other factors that can
affect their performance are the way features are scaled, or the presence of
irrelevant /redundant features in a data set. Therefore, it can be beneficial for
the SVMs if the data are first pre-processed. This raises the issue of model
selection, which is a crucial step to obtain classifiers with a good performance.

The problem of choosing the hyper-parameters values for an SVM can
be seen as an optimization one, where a search engine is used to explore the
corresponding hyper-parameters space. A number of methods for tackling it
have been proposed for this sake, so far. Most of these methods address this
problem by fixing a priori a kernel type and they perform the selection of
the hyper-parameters values for that kernel. These methods could be mainly
differentiated in two aspects: by the criterion used and by the search strategy
adopted for this purpose. Regarding the first aspect, the studies can be
differentiated in those that consider a single-criterion and those that consider
multiple criteria for guiding the search. Single-criterion approaches [I} 3] 8]
9, 26] usually adopt the well-known k-fold cross validation to estimate the
performance of a given configuration of hyper-parameters. Multiple criteria
approaches typically consider an estimation of the model performance and a



measure of the model complexity (such as the number of support vectors) [2,
37]. Others have considered the number of features and an estimation of the
generalization error [22], estimates of the bias and variance of the model [33],
or the minimization of the errors in positive and negative classes [10, 25].

On the other hand, regarding the second aspect, the most commonly
adopted techniques are grid search [8] 38 [39], gradient-based methods [, [7,
33,9], and meta-heuristics such as evolutionary algorithms [10, 22| 25|, 26}, 37],
artificial immune systems [2], or particle swarm optimization [3].

Grid search is the simplest method for adjusting the values of the hyper-
parameters. This strategy requires to discretize the search space, which is
attained by the variation of each hyper-parameter with a step size through
a wide range of values and the performance of each combination is typically
assessed through a k-fold cross-validation technique. Such cross-validation
makes grid search a computationally expensive method which is suitable only
when few hyper-parameters need to be set. The way in which the search space
is discretized is another crucial issue in grid search.

Gradient-based methods are highly efficient and have been successfully
applied to hyper-parameter optimization for SVMs. In spite of this, they
still have some drawbacks. For instance, the objective function has to be
differentiable with respect to the hyper-parameters and the kernel, which
also needs to be differentiable. Moreover, the effectiveness of these methods
highly depends on the initial point chosen for the search, which causes that
they can be susceptible to getting trapped in a local optimal solution due to
the multimodality of the problem.

Several studies have adopted evolutionary algorithms to alleviate the
above mentioned shortcomings, since they are more robust to local opti-
mal solutions than gradient-based methods. Although these methods can be
computationally cheaper than grid search methods, they can still be compu-
tationally expensive.

An alternative approach consists of tackling the model selection problem
as a supervised learning task through meta-learning [36]. In meta-learning,
a number of problems (datasets) are described by a set of features (meta-
features) in conjunction with the information about the performance ob-
tained from a set of candidate models; these constitute a meta-dataset. A
meta-learner is constructed from the meta-dataset. Given a new problem,
the meta-learner is used to predict a model based on its meta-features. Even
when meta-learning approaches are more efficient than those based on search
techniques, they have some drawbacks. The most important one is that



meta-learning depends on the quality of the meta-samples, as well as on
the number of problems used for generating a meta-dataset, which could be
limited. Recent studies that combine meta-learning with a search strategy
have been proposed [I8|, 28, 29, 31]. The main idea behind these methods is
to use meta-learning for obtaining an initial suggestion of potential models,
which is then used to provide initial search points in the optimization step.
Nonetheless, convergence in the optimization stage could be affected if the
suggestions given by meta-learning are not good enough.

In spite of the considerable number of studies currently available on SVMs
model selection, to the authors’ best knowledge, little effort has been devoted
to considering the selection of both the pre-processing method and the fea-
ture selection method in combination with defining the parameters of the
SVM. In this paper, we describe a novel approach for SVM model selection
through the use of multi-objective optimization. In this case, the preprocess-
ing stage, feature selection, and the hyper-parameters tuning for a SVM are
all taken into consideration in the model selection formulation. Estimates
of bias and variance of a model are defined as the objectives in our multi-
objective formulation. Inspired on the ideas of meta-learning, we address the
optimization stage through a surrogate-assisted multi-objective optimization
approach. Unlike meta-learning approaches, in which a meta-learner is con-
structed to obtain an initial suggestion of models, under this formulation, a
surrogate is constructed aiming to approximate the objective functions. The
main contribution of this paper is a novel method for performing a SVM
model selection (i.e., besides hyper-parameters selection for SVMs, we aim
to choose both pre-processing and feature selection methods). We assessed
the performance of our proposal with a suite of benchmark data sets, widely
used in the specialized literature. Our experimental results show that our
proposal obtains highly competitive models in terms of generalization per-
formance with a lower number of fitness function evaluations.

The remainder of this paper is organized as follows. In Section [2 we
present the bias and variance definitions proposed for classification tasks.
Section [3| describes our proposal for tackling the model selection problem for
SVMs in classification problems. Next, Section [4f shows the experimental
settings and experimental results that show the viability of our proposal.
Finally, the main conclusions and some possible paths for future work are
presented in Section [5]



2. Bias and Variance Decomposition in Classification Problems

From a statistical point of view, the expected error over a sample z € R"”
can be decomposed into two components: the squared bias and the vari-
ance. The bias-variance decomposition was borrowed from the field of re-
gression, using squared-loss loss function. Based on that definition, several
bias-variance decompositions have been proposed in the field of classifica-
tion using the 0-1 loss function, which is commonly adopted in classification
tasks. Roughly speaking, square bias is a measure of the contribution to the
error of the central tendency (i.e., the class with the most votes across the
multiple predictions) when a model is trained with different data sets. The
variance is a measure of the deviations of the central tendency when a model
is trained with different data sets [41].

In order to obtain a better generalization error, both components should
be minimized. Nevertheless, reducing one of them causes an increment in
the other one. This is known as the bias-variance dilemma [4], 17, 20]. It
is said that a model with low bias is too flexible and has a low training
error rate, but its generalization capability is poor; this is known as the
overfitting problem. In contrast, a model with low variance is too simple,
has low complexity and does not have the ability to learn the training set and
its generalization performance is also poor; this is known as the underfitting
problem. Therefore, a good model is the one which provides a good trade-off
between these two components. So, here we face the model selection task as a
multi-objective optimization problem. We used as objectives the estimates of
bias and variance, with the aim of selecting the model with the best trade-off
between both components.

In classification tasks, different ways to estimate the bias and the variance
have been proposed [15], 17, 21, 23, 24, 41]. The definition proposed by Kong
and Dietterich [24] measures the bias directly from the error with respect to
the central tendency{'| and the variance is defined as the difference between
the error and the bias. Nonetheless, this definition applies to the noise-
free cases, and it could lead to negative values for the variance. Kohavi
and Wolpert define [23] the bias and variance as a quadratic function of the
difference between the probabilities that a sample belongs to a class and that
the model is able to predict such class. The advantage is that this definition is
applicable to multi-class cases. Nevertheless, it does not measure the extent

!The central tendency is the class with the most votes.



to which each of these contributes to the error. Friedman’s definition [I7] is
the closest to that defined for regression tasks, but it applies only for binary
classification problems. Domingos [I5] proposed a unified definition of the
bias and variance decomposition for an arbitrary loss function. A similar
approach was proposed by James [21], who extended the notion of bias and
variance for general loss functions. Finally, in the definition proposed by
Webb [41]], the bias measures the extent of the contribution to the central
tendency of the error, and the variance measures the deviation with respect
to the central tendency. The different definitions have some benefits and
limitations. In spite of this, all of them have proven to give insights of the
bias and variance contribution to the model error, each one at least in the
context that were introduced. In our study, we adopted Webb’s definition [41]
to compute the bias and variance for a given model with respect to the pre-
processing, feature selection methods, kernel and its hyper-parameters.

Bias and variance definitions make use of knowledge of the distribution of
the target function, which is usually unknown. Typically, the only knowledge
that one has about this distribution is a data set of training samples. Thus,
in practical situations, the true values of bias and variance terms have to
be exchanged for estimates. One way of doing so is by splitting the data
set into disjoint parts: training and test parts. This can be attained by
using k-fold cross validation, bootstrapping, or another sampling strategy.
In consequence, N models are trained with different partitions of a data set.
Then, the N models are tested using the samples that were not used during
the training phase. The predictions are recorded and finally an estimation
of bias and variance is computed based on a previous given definition.

3. Multi-Objective Support Vector Machines Model Selection

The final goal of our proposed method is to select a classification model
that has a good generalization performance. To tackle this task, we formu-
late the model selection problem as a multi-objective optimization one. We
used a surrogate-assisted multi-objective evolutionary algorithm for explor-
ing the hyper-parameters space. The method takes into consideration two
fitness functions for optimization. The first is the bias and the second one is
the variance. In the proposed method, for computing the bias and variance,
we used the well-known n x k-fold cross validation. Hence, the aim of adopt-
ing a surrogate-assisted optimization approach is to approximate the fitness
functions through surrogates and to reduce the computational cost in the



optimization step. Figure [1] shows the general architecture of our proposal.
Our method starts by dividing the training set into two disjoint sets, called
learning set and validation set. The learning set is used to fit the parameters
of the model during the search phase. At the end of the search, a set of
solutions that satisfies the best trade-off between the bias and variance is
obtained. The next step is to choose one solution from that set. In order
to avoid the selection of an underfitted or overfitted (see Figure [2)) solution,
the validation set is used to test each model in the Pareto optimal set. We
select the solution with the lowest error rate in the validation set. Finally,
the model is trained using both, the learning set and the validation set. The
selected model is tested over a new data set to evaluate its performance.

Data Set p Lesting Set

\T‘rain;ng Set|
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Validation Set]

-' . . A
Pareto | Building .HI” dol
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Evalu t}tE_ Fitness Performance
CLOP Assesment

Figure 1: General architecture of the proposed model selection approach.

For the machine learning algorithms, we used the Challenge Learning
Object Packet (CLOP) [34]. This Matlab toolbox contains several methods
for pre-processing and feature selection, as well as several machine learning
algorithms. Table [I| shows some methods available in in CLOP, which were
used in our study.

In the rest of this section, we explain the proposed multi-objective formu-
lation for approaching the SVM model selection. First, we provide a short
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introduction to evolutionary multi-objective optimization and explain the
adopted approach. Next, we describe the proposed technique.

3.1. Fvolutionary Multi-Objective Optimization

A general multi-objective optimization problem (MOOP) can be stated
as follows [111, 13| 27]:

minimize f (x) = [f1 (x),..., fi (x)]" (1)
subject to x € X
where x = [xl,...,xn]T € R” is a decision variables vector, f;(x), i =
1,...,1, are the [-objective functions, and X is the set of feasible solutions.
In the case that the objectives in a MOOP are conflicting, usually there
is not a single solution that would be the best for all these. Consequently,
the notion of optimum in MOOPs differs from that in single-objective opti-
mization. In MOOPs, the focus is on finding solutions that satisfy a good
trade-off among the objectives. Pareto optimality provides a framework to
determine such trade-off, which allows to deal with such cases. We say that
solution x' dominates a solution x* (x! < x?) if and only if x! is better than

x? at least in one objective and it is not worse in the rest, i.e.,

- %1 gh f\iﬁgriamze
verfitting
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Figure 2: Models with high bias or variance in the resulting set of solutions.



Table 1: Available methods in the CLOP toolbox

Object No. Pars. Description
Pre-Processing
standardize 1 Standardization of feat.
mormalize 1 Normalization of samples.
Shift-scale 2 Data are shifted and scaled.
pcextract 1 Principal Components A.
Feature Selection

S2n 2 Signal to noise ratio.
relief 3 Relief feature ranking.

2

2

ZFilter Statistical filter.

AUC fs AUC criterion.
Learning Algorithm
SVM 4 A Support Vector Machine Classifier.
Vi: f; (X1> <fi (Xz) = (Xl) < fi (XQ) (2)

A solution x* is Pareto optimal if there is not another solution x' € X
such that x’ < x*. The set of all Pareto optimal solutions is called the Pareto
optimal set, and the image of this set in the objective space is referred to as
the Pareto Front.

Evolutionary algorithms are stochastic search techniques inspired in Dar-
win’s evolutionary theory. These algorithms have been successfully used for
solving MOOPs, and offer several advantages with respect to mathematical
programming techniques. For example, multi-objective evolutionary algo-
rithms (MOEAS) can generate several elements of the Pareto optimal set in
a single run (instead of generating only one solution at a time, as normally
happens with mathematical programming techniques) and are less suscepti-
ble than mathematical programming techniques to the shape and continuity
of the Pareto front |11 [13].

Since the seminal work of Schaffer [35] in the mid-1980s, an important
number of MOEAs have been proposed. For instance, SPEA2 [44], NSGA-
IT [14], and MOEA/D [43] are some of the MOEAs currently available in
the specialized literature. A comprehensive review of MOEAs can be found
in [T, 13].

MOEASs have been widely used to approximate the Pareto front. Never-



theless, most of them require performing a relatively high number of fitness
function evaluations to generate a reasonably good approximation. In the
problem that we face, this could be a shortcoming insomuch as the computa-
tion of the bias and variance is done by performing n x k-fold cross validation,
which implies that a model has to be trained and tested several times to es-
timate such terms. To overcome this handicap, in this paper, we adopted
a surrogate-assisted optimization approach. In this context, a surrogate is
a cheaper approximation of the fitness function. To this extent, we expect
to reduce the number of required (fitness functions) evaluations without de-
grading, in a significant manner, the quality of the obtained solutions. The
Surrogate-Assisted Multi-Objective Evolutionary Algorithm (SAMOEA) [32]
is taken up to this aim. SAMOEA is described in Algorithm [I} This algo-
rithm keeps two external populations: the first one stores the non-dominated
solutions found so far during the search, whilst the second one stores the so-
lutions that were evaluated with the fitness function in order to be used for
constructing the surrogates. SAMOEA starts by creating an initial popu-
lation using a Latin hyper-cubes technique, so that the initial points are
uniformly distributed on the domain search (step 1 in Algorithm . The
initial points are evaluated with the fitness functions and they are stored in
the second external archive, whilst the non-dominated solutions are stored in
the first external archive (steps 2-4). After that, the solutions in the second
external archive are used to construct the surrogates, which are an approx-
imation to the fitness functions (step 5). Next, an offspring population is
created by applying evolutionary operators over a parent population (step
7). The offspring population is evaluated with the surrogates, and the non-
dominated solutions are selected to be evaluated with the fitness functions
(steps 8-10). Both the external archives and the surrogates are updated based
on the knowledge of the landscape obtained (steps 11-12). Finally, steps 7
to 12 are repeated until a stopping criterion is not reached. A detailed de-
scription of SAMOEA is out of scope of this paper, but interested readers
are referred to [32].

We should highlight that each member in the evolutionary algorithm’s
population represents, in our case, a potential model for a given classification
task. The surrogates are used to evaluate such potential models and those
that are the most promising to be optimal are selected to be evaluated with
the fitness functions. Thus, the required number of trained and tested models
is reduced. In this manner, we aim to reduce the computational cost. Next,
we explain the application of SAMOEA for addressing the model selection
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Algorithm 1 SAMOEA

Require: f: objective functions vector,
N: population size,
G: maximum number of generations,
m: size of external archive B,
n: number of models in the ensemble.
Ensure: A set of non-dominated solutions
Create an initial population, Py, using latin-hypercubes sampling
Evaluate initial population’s members using the real fitness functions
Store the non-dominated solutions in external archive A
Store the population’s members in external archive B
Construct surrogates from solution in external archive B.
while A stopping criterion is not satisfied do
Apply evolutionary operators (selection, crossover and mutation) over the
parents and archive A populations to create an offspring population
Evaluate offspring’s members using the surrogates
9:  Determinate the non-dominated solutions from offspring population
10:  Evaluate the non-dominated solutions using the real fitness functions
11:  Update external archives.
12:  Update surrogates from solution in external archive B.
13: end while

*®
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problem.

3.2. Surrogate for Addressing the Model Selection

Approaches that combine meta-learning with a search strategy typically
address the problem by using meta-learning to obtain an initial suggestion
of possible search points, which are the used in the search step. Therefore,
meta-learning should give suggestions of potential models for the problem at
hand. This is attained by constructing a model (called meta-learner), which
predicts what the expected performance of a model would be, based on the
features of a dataset. In consequence, the meta-learner receives as input a
dataset described by a set of features and its output is the expected per-
formance. In this paper, we address this issue in a different way by using
surrogate-assisted optimization. As we previously stated, the surrogates are
used to approximate the fitness values. However, these surrogates should be
first constructed to make such approximation. To achieve this, instead of de-
scribing a dataset by a set of features (which could be an issue since making
such a description depends on the set of features adopted), a surrogate re-
ceives as its input a potential model, which is described by its configuration,
and the output is the expected value of a measure if such model is used with
the problem at hand.

Summarizing, the differences between meta-learning plus search and our
proposed approach are the following;:

e In meta-learning plus search, meta-learning is performed first in order
to predict potential models, which are then used in the search step
as initial search points. During the search, the merit of each model
is assessed by the objective function (i.e., the fitness function). In
our proposed approach, the surrogate is used in conjunction with the
search, such that, based on some criterion, the merit of some models
is assessed by the fitness function and the merit of the others by the
surrogate; i.e., the surrogate and the fitness function interact during
the search.

e In meta-learning plus search, the learning of a meta-learned requires
a meta-dataset. The construction of such meta-dataset requires to de-
scribe a number of datasets (preferably from different domains) by a
set of meta-features. This makes that the quality of the initial sugges-
tion depends on the meta-features and on a similar dataset that had
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been previously learned. In our proposed approach, the meta-data set
is constructed with the configurations of models and the response of
such model for a given dataset (the problem at hand). This is attained
by evaluating a set of models, which would be representative from the
search space, with the dataset of interest. Besides, the interaction with
the fitness function would allow to update the knowledge of the surro-
gate.

3.3. Representation

Evolutionary algorithms work with a population of solutions. In our prob-
lem, each solution represents a potential model to be used in the classification
task. Therefore, under the adopted approach, we need to represent each po-
tential model as an individual for being used by SAMOEA. Each model is
encoded in a 12-dimensional vector as follows:

X' = [ T Ty Th s - - T | (3)
where 2!, controls if a pre-processing and/or feature selection methods are
applied and the order in which they are applied, x;,p is a pre-processing

method, x;s is a feature selection method, [xﬁlpl, e ,x}lps] represents the
hyper-parameter for the feature selection method, [xﬁmu e 75’{;@5] the hyper-
parameters for the pre-processing method, and [x}%, e ,x}lpg] the hyper-

parameters for the SVM.

3.4. Evolutionary Operators

In general, evolutionary algorithms are population-based search tech-
niques. The main idea behind these methods is to evolve a population of
solutions. Evolutionary operators are the components that are in charge of
performing the evolution of a current population. The two main evolutionary
operators are crossover and mutation.

In the literature, a number of evolutionary operators have been proposed
to deal with a particular type of encoding. One should note that in the encod-
ing adopted in this work we have both discrete values and real-number val-
ues. Standard evolutionary operators are applied for each type of variables.
For the discrete encoding, we used uniform crossover [42] and for the real-
numbers encoding, we adopted binary simulated crossover (SBX) [13, [42].
For mutation, we generate a random value within the allowable range for the
discrete encoding. For the real-numbers encoding, polynomial-based muta-
tion [13, 42] is used.
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Regarding the selection operator, which chooses the parents to be re-
combined, we adopted a binary tournament scheme [13, 42]. This operator
randomly chooses two individuals from the population and the one with the
best score is the winner of the tournament.

3.5. Fitness Function

The fitness function determines how good a solution is with respect to
others. In our model, the selection task is treated as a multi-objective op-
timization problem, where the bias and variance are the objectives to be
minimized. We used Webb’s definition [41] of bias and variance, but other
definitions can also be applied. Both objectives would correspond to f; (x)
and f, (x) from equation , respectively. In our case, bias and variance are
estimated in the following way:

f1(x) = Pxy)p (fo(x) # f(x) A fp(z) = Csp (7))
f2(x) = Pxyy.p (fp (x) # f(2) A fp (x) # Cyp (7))

where fp (x) is the predicted output with the model trained with data set
D, f (z) is the desired output and C/ p is the central tendency.

One should recall that we just have a limited number of samples and,
therefore, the estimation is done by performing n x k-fold cross validation,
which is expected to be approximations of those components. We adopted
this sampling technique because it has the advantage that every sample is
used for training and testing, and each of them is evaluated n times.

f1(x) and f (x) are the functions to be approximated by the surrogates.
In consequence, given a new individual, the surrogates give an approximation
of the bias and variance component of the models. The best individuals,
according to the values given by the surrogates, are selected to perform the
n X k-fold cross validation to compute such components.

Hence, the goal of our proposal is to explore the hyper-parameters space
looking for models that offer the best possible trade-off between the bias and
variance. At the end, a set of non-dominated solutions is obtained, from
which a single one is chosen. The remainder of this section explains this in
more detail.

(4)

3.6. Constructing a Final Classification Model for a Classification Task

As a result of the multi-objective optimization step, a set of non-dominated
solutions is obtained, which is expected to be an approximation to the true
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Pareto optimal set. In a mathematical sense and in the absence of knowledge
about any user’s preference, each of these solutions are equally acceptable
solutions to the problem at hand. In our case, each solution represents a
potential model to be used in the classification task. Therefore, for prac-
tical reasons, it is desirable to choose a single solution from the obtained
non-dominated set.

We face the issue of selecting a single solution by a simple strategy. One
could think to use all solutions that belong to the non-dominated set and to
construct and ensemble from these. This could seem reasonable, since each of
these different solutions satisfies a different trade-off between the objectives
and, therefore, the diversity among them could help to improve the accuracy
performance. Notwithstanding, both highly biased models and models with
a high variance would also be part of that ensemble, which could affect the
generalization performance.

The main goal of model selection is to choose, among a set of candidate
models, the one that has the best generalization performance. In this case,
the set of non-dominated solutions is the set of candidate models. Hence,
we address the selection of a single model in a straightforward fashion, by
evaluating the performance of each model with a validation set. Then, we
choose as the outcome of our method the one with the lowest error on the
validation set. By proceeding in this manner, we expect to avoid overfitting
to some extent. In the next section we evaluate our proposed method with
a suite of benchmark data sets in order to asses its effectiveness.

4. Experiments and Results

This section describes the experimental study performed to evaluate the
feasibility of our proposed method for addressing the model selection for a
SVM. It also shows comparisons with state of the art methods for model
selection. A statistical analysis is also presented.

4.1. Ezxperimental Settings

For our experiments, we used the IDAP| benchmark data sets introduced
by [30]. This benchmark has been extensively used in several related studies
(e.g. [3, 7, 33]). This benchmark contains 13 binary classification data sets.

2 Available in http://www.raetschlab.org/Members/raetsch/benchmark
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Table 2: Details of the data sets used in our experiments.

ID Data set Feat. Training Testing Replications

Sam- Sam-

ples ples
1 Banana 2 400 4900 100
2 Breast Cancer 9 200 77 100
3 Diabetes 8 468 300 100
4 Flare Solar 9 666 400 100
5  German 20 700 300 100
6  Heart 13 170 100 100
7 Image 20 1300 1010 20
8  Ringnorm 20 400 7000 100
9  Splice 60 1000 2175 20
10 Thyroid 5 140 75 100
11 Titanic 3 150 2051 100
12 Twonorm 20 400 7000 100
13 Waveform 21 400 4600 100

Table 2] shows some characteristics of these data sets. These data sets were
previously pre-processed by [30], in which each data set was divided into 100
partitions for training and test (20 in the cases of image and splice data sets).
The typical experimental setup for these data sets was introduced by [30],
which consist of performing hyper-parameter selection for the first five parti-
tion of each data set. After that, the median values of the hyper-parameters
are taken and they are used to evaluate the performance of the model for
a data set. This is usually known as the median protocol. Nonetheless, the
median protocol could introduce an optimistic bias in performance estima-
tion [6]. An alternative protocol consist of performing the model selection
independently for each partition of each data set; this is known as the internal
protocol.

The performance of the proposed model selection method is assessed by
means of the error rate attained on each data set. We compare our exper-
imental results obtained by our proposed method with some evolutionary
methods proposed to this aim.

Regarding the parameter configuration used in our experiments, we fixed
the crossover probability to 1, the mutation probability was set to 0.10.
The distribution index for the crossover (SBX) and for polynomial-based
mutation were both set to 20. The number of individuals was fixed to 20 and
the number of generations was fixed to 100. The stopping criterion was to
reach the maximum number of generations. The size of the validation set was
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defined to be 20% of the training set size. The n x k-fold cross validation
for estimating bias and variance components were fixed to n equals to 10
and k to 3. Next, the results obtained from the performed experiments are
presented.

4.2. Ezxperimental Results

In this section, we present the experimental results obtained by our pro-
posed method. We adopted the internal protocol for our experiments; there-
fore, a total of 1140 executions of our proposal were performed. Table
shows the error rate attained by our proposal (SAMOMS, surrogate-assisted
multi-objective model selection) and some reference methods. We compare
our results with those obtained by PSMS [16] and SUMO [19], two evolu-
tionary approaches for model selection. As a baseline, Table [3] also shows the
results obtained by the SVM, when it is trained with the default parameters.ﬂ
The reported results are the average and standard error over the 100 or 20
replications of each data set.

PSMS [16] is a single-objective model selection method, which uses a
particle swarm optimizer (PSO) as the optimization strategy and the fitness
function is defined as minimizing the error estimated via k-fold cross valida-
tion. On the other hand, SUMO [19] adopts a genetic algorithm to explore
the hyper-parameters space. In SUMO, the fitness function can be defined
as minimizing some measure obtained via some evaluation strategy; in our
experiments, the measure was fixed to be the error rate and the evaluation
strategy to be the k-fold cross validation. In both cases, we used the default
parameter for k.

From Table 3] one could note that the SVM trained with the default pa-
rameters (i.e., model selection is not performed) is not able to reach the best
performance when it is compared with others that perform a model selection
step. Both SVM and PSMS perform better than the other approaches in
1 out of 13 data sets. SUMO toolbox performs better in 7 out of 13 data
sets, whilst SAMOMS performs better in 4 out 13 data sets. In spite of this,
SAMOMS reaches the lowest averaged error rate and SUMO is the second
best. In order to assess if there exists a statistical significance difference we
conducted two types of tests. The first one aims to test the statistical differ-
ence per each data set and the second one aims to test the difference among

3In the LibSVM package, the default parameters correspond to an SVM trained with
a RBF kernel with a gamma value equals to 1/No.-features.
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Table 3: Results obtained by our proposed method (SAMOMS) and those obtained by
other evolutionary and non-evolutionary approaches. The reported results are the average
and standard error over 100 or 20 replications. The best result for each case is shown in
boldface.

Data Set SVM PSMS [16]  SUMO [19] SAMOMS

Banana 11.17+£0.071 11.08+0.083 10.88+0.074 10.65+ 0.054
Breast Cancer ~ 34.23+0.466 33.01 +0.658 26.27 +0.448  28.22 + 0.506
Diabetis 32.314£0.223 27.06+0.259 23.49+0.177 2446+ 0.212
Flare Solar 36.29+0.180 34.814+0.173  38.47+0.573 33.04+0.236
German 28.33+£0.258 30.104+0.720 23.83+0.213 2455+ 0.230
Heart 22.95+0.364 20.694+0.634 17.67+0.355 16.19 +0.373
Image 29940123 290+0.112 24540126  3.73+0.117
Ringnorm 20240020 7.98+0.660 17240071  1.81+0.035
Splice 10.80 +0.162 14.63+£0.324  10.94+0.146 8.31+0.114
Thyroid 48440221 43240235  485+0224  5.09+0.240
Titanic 2240 +0.101 24.18+0.193 349940523 23.194+0.217
Twonorm 34040047 3.094+0.127 25540022 258+ 0.034
Waveform 114340071 12.80+0.325 9.78+£0.060 10.56 & 0.108
Average 171743538 174343204 1599 +3.466 14.80 - 2.980

the methods over multiple data sets. In the first case we used an ANOVA
test with a 95% of confidence. This test is suitable to compare more than two
methods. Moreover, insomuch as our goal is to compare the performance of
SAMOMS with respect to the reference results, we performed the Dunnett’s
test as the post-hoc test. We summarize the results of these tests as follows:

e SAMOMS significantly outperformed to a SVM in 10 out 13 data sets
(in the ringnorm and the thyroid data sets, the SVM was not outper-
formed).

e SAMOMS performs statistically better that PSMS in 11 out of 13 data
sets (the statistical tests do not show a statistical difference in the
titanic data set) and it was statistically outperformed by PSMS in the
thyroid data set.

e With respect to SUMO, SAMOMS significantly outperforms it on 3
data sets (flare solar, splice, and titanic), but it was also significantly
outperformed in 3 data sets (diabetis, image, and waveform).
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There is no clear advantage between SUMO and SAMOMS; therefore,
we conducted a test for the second case (i.e., comparing both methods over
multiple data sets). Moreover, we also conducted this kind of test on PSMS so
as to compare our proposal with two state of the art model selection methods.
To this, we used a Friedman test with a 95% of confidence and a Bonferroni-
Dunn test as a post-hoc test. According to these tests, there is a statistical
significant difference between PSMS and SAMOMS, but between SUMO and
SAMOMS the tests do not show a statistical significance difference.

One should recall that the motivation of approaching the problem using
surrogate-assisted optimization is to reduce the number of required fitness
functions. Table |4 shows the number of fitness function evaluations per-
formed by each method. One should note that both PSMS and SUMO per-
form the same number of fitness function evaluations for all cases. SAMOMS,
on the other hand, performs a lower number of evaluations. This is due to
the fact that the fitness values of some solutions are approximated so as to
determine the solutions with the highest potential, which are then evaluated
using the corresponding fitness functions. The evaluation of the fitness func-
tions implies to perform a n x k-fold cross validation to estimate the bias and
variance components. Therefore, by reducing the number of solutions to be
evaluated with such a function, the computational cost should get reduced
as well. Table (4] also shows the required time to perform a model selection of
each data set and the number of fitness function evaluations performed. The
results are the average over all replication of each data set. The time is re-
ported in minutes. We report these values for PSMS, SUMO, and SAMOMS.
From this table, one can note that, on average, SAMOMS required a lower
time than the other methods. For some data sets, SUMO required less time
than SAMOMS (breast cancer, flare solar, heart, thyroid, and titanic). This
is due to the fact that SUMO performs an automatic selection of data points,
requiring for some data sets a lower number of points, which makes faster the
training step. PSMS also required less time than SAMOMS on the thyroid
data set. SAMOMS performed faster than the other approaches in the two
largest data sets considered in our experiments (image and splice).

Overall, the performance of both SUMO and SAMOMS is quite similar
in terms of the generalization performance of the models. Neither SUMO
nor SAMOMS are statistically superior to the other one. Notwithstanding,
SAMOMS was found to require less time than SUMO for most of the data
sets, and it also required a lower number of fitness function evaluations. This
is an interesting result, since SAMOMS is able to construct classification
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models without significantly overfitting with a lower number of evaluations
than SUMO. Evidently, this could translate in important computational time
savings when model selection is performed on large-scale data sets.

5. Conclusions and Future Work

In this paper, we introduced SAMOMS, a surrogate-assisted multi-objective
model selection method for support vector machines. In our proposed method,
the model selection problem is formulated as a multi-objective one, taking
into account to components that are closely related to the generalization
error: bias and variance.

This paper has made the following contributions: (i) the definition of
bias and variance for addressing the model selection can be applicable to
any other learning algorithm, which allows to generalize our proposal and,
to make it applicable to the full model selection problem; (ii) the use of
surrogate-assisted optimization as an alternative allows to reduce the number
of evaluations performed, which can be translated into important computa-
tional time savings; (iii) a resulting non-dominated front with models having
different bias/variance trade-offs could be useful to an expert for performing
an analysis of the behavior of such model, given a certain data set.

Experimental results showed that our proposed approach is able to choose
models having a highly competitive performance, while requiring a lower
number of fitness function evaluations and a lower computational time. This
is because, with our proposed approach, a lower number of models needs
to be trained.Statistical tests showed that, for most of the data sets, the
generated models do not significantly degrade their performance when they
are compared to those resulting from other state of the art model selection
methods. Based on this, we can conclude that SAMOMS can be seen as a
viable tool for dealing with the problem of model selection in classification
tasks.

As part of our future work, we would like to extend the proposed method
to other algorithms. We are also interested in studying the feasibility of our
proposed approach for the full model selection problem. Additionally, we are
interested in developing new strategies for choosing a subset of solutions for
ensemble construction.
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