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Abstract

In this work we study the convergence of generic stochastic search al-
gorithms toward the Pareto set of continuous multi-objective optimization
problems. The focus is on obtaining a finite approximation that should
capture the entire solution set in a suitable sense, which will be defined
using the concept of e-dominance. Under mild assumptions about the pro-
cess to generate new candidate solutions, the limit approximation set will
be determined entirely by the archiving strategy. We investigate two dif-
ferent archiving strategies which lead to a different limit behavior of the
algorithms, yielding bounds on the obtained approximation quality as well
as on the cardinality of the resulting Pareto set approximation.

Key words: multi-objective optimization, convergence, e-dominance, stochas-
tic search algorithms.



1 Introduction

A common goal in multi-objective optimization is to identify the set of
Pareto-optimal solutions (the efficient set) and its image in objective space,
the Pareto front (the efficient frontier). Except for special cases, where the
Pareto set is finite or representable by a finite collection of line segments
(such as in multi-objective linear programming), it is in general not practi-
cable to determine the entire Pareto set. Instead, a suitable approximation
concept is needed.

Various approximation concepts based on e-efficiency are given in [3]. As
most of them deal with infinite sets, they are not practical for our purpose
of producing and maintaining a representative subset of finite size. Using
discrete e-approximations of the Pareto set was suggested simultaneously
by [1], [5], and [7]. The general idea is that each Pareto-optimal point is
approximately dominated by some point of the approximation set.

Despite the existence of suitable approximation concepts, investigations
on the convergence of particular algorithms towards such approximation
sets, that is, their ability to obtain a suitable Pareto set approximation in
the limit, have remained rare. Several studies, such as [2, 6], consider only
the convergence to the entire Pareto set, or to a certain subset without
considering the approximation quality.

In [4] the issue of convergence towards a finite-size Pareto set approxima-
tion was finally addressed for a general class of iterative search algorithms.
Two archiving algorithms were proposed that provably maintain a finite-
size approximation of all points ever generated during the search process.
This led to the claim that these archiving strategies will ensure convergence
to a Pareto set approximation of given quality for any iterative search algo-
rithm that fulfills certain mild assumptions about the process to generate
new search points. While this claim holds trivially in the case of discrete
(or discretized) search spaces, its extension to the continuous case is not
straightforward. Consideration of discretized models, however, can lead to
problems when, e.g., using memetic strategies (metaheuristic search algo-
rithms mixed with local search strategies which itself use step size control).

The goal of this paper is to establish convergence results with respect to
finite Pareto set approximations for stochastic multi-objective optimization
algorithms working in continuous domains. We start by considering the
first archiving strategy from [4] and prove convergence with probability
one to an e-approximate Pareto set in the limit. Then we propose a new
archiving strategy that additionally ensures that all elements of the limit
set are Pareto-optimal points itself. For both strategies we give bounds on
the approximation quality and on the cardinality of the limit solution set.



2 Background

In the following we consider continuous unconstrained multi-objective opti-
mization problems

min {F(2)}, (MOP)

where the function F' is defined as the vector of the objective functions
F:RnﬁRka F(m):(fl(m)vafk(m))v
and where each f; : R™ — R is continuous.

Definition 2.1 (a) Let v,w € RF. Then the vector v is less than w
(v <pw), if v; <w; for alli € {1,...,k}. The relation <, is defined
analogously.

(b) A vector y € R™ is dominated by a vector x € R™ (in short: © < y)
with respect to (MOP) if F(x) <, F(y) and F(z) # F(y) (i.e. there
exists a j € {1,...,k} such that f;j(x) < f;j(y)), else y is called non-
dominated by x.

(c) A point x € R™ is called Pareto optimal or o Pareto point if there is
no y € R™ which dominates z.

(d) A point x € R™ is weakly Pareto optimal if there does not exist an-
other point y € R™ such that F(y) <, F(x).

In the following we will define a weaker concept of dominance, so-called
(absolute) e-dominance, which will be used for our further studies.

Definition 2.2 Let € = (€1,...,€6;) € ]Ri and z,y € R™. z is said to
e-dominate y (in short: x <. y) with respect to (MOP) if

(i1) fi(z) —e€; < fi(y) for at least one j € {1,...,k}.

We have to emphasize that the e-dominance relation — unlike the ’classical’
one defined above — is not transitive, i.e., if x <, y and y <, z it does not
follow that = <. z, but it follows that x <3¢ 2. This fact will be used in
later considerations as well as the following: if x < y and y <. z it follows
that z <. 2.

Definition 2.3 Let e € ]Rff_.

(a) A set F, C R™ is called an e-approximate Pareto set of (MOP) if
every point x € R™ is e-dominated by at least one f € F,, i.e.

VeeR" : Af € F.: f<cx



(b) A set F¥ C R™ is called an e-Pareto set if F* is an e-approzimate
Pareto set and if every point f € F is a Pareto point of (MOP).

Further, let Bs(zo) := {z € R™ : ||z — zo|| < d} be the open ball with
center o € R™ and radius 6 € R.

Algorithm 1 gives a framework of a generic stochastic multi-objective
optimization algorithm, which will be considered in this work. Theorem 2.4
states a convergence result which is closely related to the present work, but
which leads in general to unbounded archive sizes.

Algorithm 1 Generic Stochastic Search Algorithm
1: Py C @ drawn at random
2: Ag = ArchiveUpdate(Py, ()
3: for j=0,1,2,...do
4: Pj 1 = Generate(FP;)
5: Ajy1 = ArchiveUpdate(Pjy1, Aj)
6: end for

Theorem 2.4 [8] Let an MOP F : R™ — R* be given, where F is contin-
uous, let ) C IR™ be compact. Further, let there be no weak Pareto point in
Q\Pg (where Py denotes the set of Pareto points of F|Q), and

Vz € Q and¥d > 0: PEIeEN : PNBs(z)NQ#P) =1 (1)

Then an application of Algorithm 1, where all non-dominated points are
kept, i.e., ArchiveUpdate(P,A) := {x € PUA : y £ xVy € PU A},
generates a sequence of archives {A;}ien, such that

lim d(F(Pg),F(A;)) =0 with probability one,
1—00

where d(-,-) denotes the Hausdorff distance.

3 The Algorithms

In the following we investigate two different strategies for the archiving of
the solutions found by the algorithm leading to different limit behaviors of
the sequence of archives (under certain additional conditions).

First, we assume that the entries of € € ]Rﬁ are ’small’; and thus that it
is sufficient to obtain an e-approximate Pareto set. For this, we consider the
archiving strategy proposed in [4], here given as Algorithm 2. It computes
the subsequent archive A of a given archive Ay, a population P, and an
€€ lR’jr. Using this strategy, the sequence of archives has a limit behavior
described in Theorem 3.2. To show this, we need first the following obvious
but crucial property of the archiving strategy.



Algorithm 2 A := ArchiveUpdatel, (P, Ag)
1: A:= A
2: for all p e P do
3 if Ja€ A: a <3 pthen
4 CONTINUE > do not execute lines 6 — 11
5 end if
6: for all a € A do
7
8
9

if p < a then

A= A\{a}
end if
10: end for
11: A:=AuU{p}
12: end for

Lemma 3.1 Let Ao, P C R" be finite sets, e € RY, and
A := ArchiveUpdatel , (P, Ag). Then the following holds:

Vee PUAp: Ja€A:a<3.

Proof: Roughly speaking, the statement follows since points a are only
discarded from the archive if in turn another point p with p < a is inserted
(this ’replacement’ is given in lines 7, 8 and 11 in Algorithm 2). To be
more precise, let P = {p1,p2,...,m},1 € N. Without loss of generality we
assume that all points p; are considered in this ordering (i.e., in the for-loop
in line 2 of Algorithm 2). There are two cases we have to distinguish.
Case A: z € Ay. Define pj := 2 and

i if p; ‘replaces’ p! ,
po={ P dpTeplacesply
p;_; else

It holds that p; € A and either p) = z or p; < « (due to the transitivity of
<). In both cases it is p; <¢/3 2.

Case B: x € P. Let x = p;,j € {1,...,1}. After the j-th iteration of the
outer for-loop in Algorithm 2 there exists an element a; € A with a; <./3 p;
(line 3 resp. line 11 of Algorithm 2). Define p; := a; and pj, i = j+1,...,1,
as above. It follows that p; € A and p] <3 = as claimed.

Theorem 3.2 Let an MOP F : R™ — R¥ be given, where F is continuous,
let @ CR™ be a compact set and € € R . Further let

Vz e Q andVd>0: PEAIleN: PNBs(z)NQ#P) =1 (2)

Then an application of Algorithm 1, where ArchiveUpdatel. is used to up-
date the archive, leads to a sequence of archives A;,l € N, where the follow-
ing holds:

(a) There exists with probability one a lg € N such that A; is an e-
approximate Pareto set for all 1 > lg.



(b) Assume there exists alo € N such that Aj, is an e-approrimate Pareto
set. Then
Ay =4, VIi>l.

Proof:

(a) Since @ is compact and F is continuous it follows that F' | ols uniformly
continuous. Hence for €/3 € Rk there exists a § > 0 such that

T <3y Vr,y € Q with ||z —y|| <. (3)
Define
G:= |J Bs(p)
PEPQ

G is an open cover of Py. Since Py is compact it follows — due to the
theorem of Heine-Borel — that there exists a finite subcover

S::UB"(pi)DPQa pi € Pg,i=1,...,s.

i=1

By (2) it follows that there exist with probability one s numbers
li,...,ls € N such that each Bs(p;) N Q,i=1,...,s, gets ’visited’ by
Generate after l; iteration steps. That is, Fj,,¢ = 1,...,s, contains
with probability one a point b; € Bs(p;) N @, and thus, A;, contains
with probability one a vector d; with d; <./3 b;. By construction
of ArchiveUpdatel, there exists for all | > [; with probability one a
d. € A; such that d} <./3 b; (see Lemma 1). Set lo := max{ly,...,I,}.

Now let z € Q. For z there exists a p € Py such that F(p) <, F(z)
and since S is a cover of Py there exists an ¢ € {1,...,s} with p €
Bs(p;)- Let lg, b;, and di. be as described above and let [ > Iy. Since b;
and p are inside B;(p;) it follows by (3) that b; </3 p; and p; <¢/3 .
Hence we have with probability one:

di '<e/3 bi '<e/3 Di '<e/3 b, I>1;.
Thus, we have that d. <. z, | > lp, with probability one as desired.

(b) This follows immediately by the construction of ArchiveUpdatel. (to
be more precise, by lines 3 — 5 of Algorithm 2).

Remarks 3.3 (a) Assumption (2) is the crucial part to obtain the con-
vergence. For general € and general F it is certainly not possible to
postulate less. Given a fized € € lRfc|r it would in principle be sufficient
to require condition (2) only for the & which is given in the proof above
as well as for finitely many vectors x € Q. However, this is nearly
impossible to check in practise.



(b) Here we have used the absolute e-dominance. If 0 & fi(Pg),i =
1,...,k, alternatively the relative e-dominance as in [4] can be used
yielding similar results.

(c) We have restricted the domain to a compact subset of the R"™. The
following (academic) example shows that we can run into trouble if Q
is not compact: consider the MOP

F:R; - R?
1
F(z) = (~o,—)

In this case, the Pareto set is given by P = R,. Since F(P) is not
bounded below it can mnot be represented by a finite archive using e-
dominance. However, this changes if Q = [a,b], a < b, a,b > 0 is
chosen as the domain.

Next, we assume that the entries of € are relatively large. This can be
the case when the decision maker prefers to obtain few, widespread solutions
of the MOP, or in order to be able to ’capture’ the entire Pareto set with
a limited archive, in particular when considering more than two objectives.
Hence, convergence of the entries of the sequence of archives toward the
Pareto set is desired. For this, we propose to use the archiving strategy
which is described in Algorithm 3. In the following we will discuss the limit
behavior of this approach.

Algorithm 3 A := ArchiveUpdate2, (P, Ag)
1: A:= AO
2: for all p € P do
if Aa€ A: a<./3pthen
A:=AU{p}
end if
for all a € A do
if p < a then
A:= AU {p}\{a}
end if
10: end for
11: end for

Lemma 3.4 Let Ay, P C R" be finite sets, e € Rk, and
A := ArchiveUpdate2, (P, Ag). Then the following holds:

Ve PUAy: Ja€A:a<.sz.

Proof:  Analogue to the proof of Lemma 3.1.



Theorem 3.5 Let (MOP) be given and Q C R™ be compact, and let there
be no weak Pareto points in Q\Pg. Further, let F' be injective and

VZ€Qand¥6>0: P@AIeEN: BNBs(@)NQ#0) =1 (4)

Then an application of Algorithm 1, where ArchiveUpdate2. is used to up-
date the archive, leads to a sequence of archives A;,l € N, where the follow-
ing holds:

(a) There exists with probability one a lo € N such that A; is an e-

approximate Pareto set for all 1 > lg.

(b) There exists with probability one a l; € N such that

|[Aip1] =4, VI>1.

(c) The limit archive

Aoo = lim Al
l—o0

is an e-Pareto set with probability one.

Proof:

(a)
(b)

Analogue to the proof of Theorem 3.2 (a).

By (a) it follows that there exists with probability one a Iy € N such
that A;, is an e-approximate Pareto set. Assume that this number [,
is given. |A;,| is certainly finite. Further let [ > ly. By construction of
ArchiveUpdate2. the archive A; is also an e-approximate Pareto set.
That is, further points are only inserted to the archive if in turn at
least one dominated solution is deleted (line 8 of Algorithm 3). Thus
it holds that
[Avr]| < A V> Do

Since on the other hand |4;| > 1 VI € N, the sequence {|4;|};en of
the magnitudes of the archives is bounded below and monotonically
decreasing and converges thus to an element N4 € N. Further, since
|A;| € N, € N, there exists a l; € N such that |4;| = N4, VI > [5.

By (b) it follows that there exists with probability one a l; € N such
that |41 = |4i|, VI > l;. Assume that this number [; is given.
Consider an element ay € A; with | > ;. If ap € Pp it follows that
ao € Aj4m, Ym € IN, and thus also ag € Ax. Assume that ag ¢ Pg.
Define

M:Q—-R
— in (fi(z) — f, (5)
M(z) = max min (fi(z) = fi(p))
Under the assumptions made above it holds that

M(x)>0Vze@ and M(z)=0& 2z € Py.
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Let po € Pg be the argument of the maximum of M(ap). Since
ao ¢ Pg and qq is no weak Pareto point it follows that M (ag) > 0 and
F(po) <p F(ap). Since F is continuous there exists a neigborhood Uy,
of pg such that

F(y) <, F(po) + M -(1,...,1) VyeU,,

and thus, that F(y) <, F(ag), Yy € Up,. By (4) it follows that
Generate generates with probability one after finitely many steps a
point b € U,, N Q. Now there are two cases: (1) b is added to the
archive (in this case set a1 := b), and (2), ag has already been replaced
by an element @ € R™ such that b and @ are mutually non-dominating

(in this case set a; := a@). In both cases there exists a j € {1,...,k}
such that M(ao)
a
fila1) < fi(po) + TO.

Proceeding in an analogous way we obtain a sequence {a; }ien of dom-
inating points. Since the sequence {F'(a;)};en is below bounded and
F is injective it follows that a; — a* € @ for i — oc.

It remains to show that a* € FPg. For this, assume that a* ¢ Pg.
Define p* as the argument of the maximum of M (a*). Since a* ¢ Pg
and a* is no weak Pareto point it follows that F(p*) <, F(a*) and
M(a*) > 0. Proceeding further as above we obtain a point a** and
an element j € {1,...,k} such that

@) < ot +

_ 500 + fi(a)
2

fila*) = f;(p")
2

< fi(p*) +
< fi(a®)

This is a contradiction to the assumption of the convergence of the
sequence, and thus it must be that a* € PgNA. Sinceag € A;,1 > 1y,

was chosen arbitrarily it follows that A is a e-Pareto set and the proof
is complete.

Bounds on the Archive Sizes

In the following we give bounds on the magnitude of the limit archives A,
with respect to e € R and the chosen archiving strategy.

For this, we have to introduce some notations: denote by m; and M; the
minimal resp. maximal value of objective f;, i = 1,...,k, inside @ (these
values exist since F' is continuous and () is compact). Further, we need
k-dimensional boxes, which can be represented by a center ¢ € R* and a
radius r € R%:

B=B(er)={z R : |z; —c;| < Vi=1,...,k}.



In the following we assume that |[Py| = 1, and thus also |4g| = 1. The
lower bound of |A| for both archiving strategies is obviously given by 1.
For this, consider e.g. fi = fo = ... = fr to be a convex function which
takes its (unique) minimum inside (). The upper bounds for the different
archiving strategies are derived separately in the following.

Theorem 4.1 Let m; = min,eq fi(z) and M; = max,cq fi(z),1 <i <k,
and |Ag| = 1. Then, when using ArchiveUpdatel ., the archive size main-
tained in Algorithm 1 for all | € N is bounded as

[4;] < p Z ﬁ(Mz’j—mij) ; (6)

where €, := min .
i=1,...,k
Proof: Consider a sequence pi,pe, ... of points which are all accepted

by ArchiveUpdatel, in this order (i.e., starting with A9 = {p;}). Con-
sider the i-th step and let A; = {a1,...,a;} with [ < i. Define B; :=
B(F(aj) — €/6,€/6), j = 1,...,1. Using inductive arguments we see that
(a) all elements in A; are mutually non-dominating, and that (b) the inte-
riors of all the boxes B;, j =1,...,l, are mutually non-intersecting. Since
the points a; are the upper right corners of the boxes B; and since the
interiors of these boxes are mutually non-intersecting the minimal distance
between two points aj, and aj,,j1 # j2, is given by €, (see Figure 1). Thus
we are able to bound the number of entries in the archives if we can bound
the number of such boxes which can be placed in the image space.

Let us first consider a bi-objective model (i.e., k = 2), since in this case the
proof is geometrically descriptive and already captures the basic idea. Since
all points a; are mutually non-dominating, the images of these points are
all located on a (virtual) continuously differentiable curve

C: [ml,Ml] - Rz
w > (u, f(u))

where f : [my, M1] = [ma, Ms] is a strictly monotonically decreasing (but
not necessarily surjective) function. The length of this curve can be bounded
as follows:

M, My
Lo = [ Ie@ldu= [ P+ IFPd

(7)

: /:M et /li () ldu = /li 1du - /li O

< (My —my) + (My —my)

€m

Thus, for k = 2 we see that |4;| < [(Ml_m1)+(M2_m2)-‘ , 1 € N, as claimed
above.



Now we turn our attention to the general case, i.e. let k& > 2 be
given. Define K := [my, M1] x ... [mg_1, My_1], K@ = [mq, My] x ... x
[mi_l, Mi—l] X [mi+1, Mz’—l—l] X...X [mk_l, Mk—l]; and U(i) = (ul, ey Ui,
Uit1,---,Uk_1), 4 = 1,...,k — 1. In analogy to the bi-objective case, the
images of the elements of the archives are located in the graph of a map ®
which is characterized as follows:

d: K — R

(I)(’LL,', .. .,uk,l) = (ul, .. .,uk,l,f(ul, e ,uk,l)),

)

where f : K — [my, My] is a sufficiently smooth function satisfying the
monotonicity conditions g—fiu <0, Vue KandVi=1,...,k—1. Then,
the (k—1)-dimensional volume of ® with parameter range K can be bounded
as follows:

Vol(@):/K\/Wdu:/K\/<§—i)2+...+( of >2+1du

Oug—1
S/ of du+...+/ of
K K

_— Bup du+/K1du
S (0
i Kuy \Jmi

8u1
| du; i 1
Bu, du > dU()> —I—/K du (10)
M;
/ —/ ﬁdui duyy +/ ldu
K m; Ou; K

k k-1

Z H(Mz'j —mg;)

i15eip_1=1 j=1
1> >k

IA

This bound of the volume leads directly to the bound of the cardinality of
the archives as stated above which concludes the proof.

Theorem 4.2 Let m; = min,eg fi(z) and M; = maxgeq fi(z),1 <i <k,
and |Ag| = 1. Then, when using ArchiveUpdate?2 , the archive size main-
tained in Algorithm 1 is bounded for alll € N as

k
M; —m;
4 < [T [sH ] (11)
i=1 ?

Proof: ~ We can consider the process of including solutions into the archive
over time as a process for constructing a directed graph G. Starting with
an empty graph, we add a new node for each new solution p that is added
to the archive A in line 4 or line 8 of the algorithm. If p is added in line 8
(meaning the condition in line 7 is true), we add arcs (p,a) from p to each
solution a that is discarded in line 8 due to p < a. Let V; := [, <, 4; be



M3

Figure 1: The entries a; of each archive lie on a (virtual) curve ¢. Since the
boxes B; (with upper right corners F'(a;)) are mutually non-intersecting, it
follows that the minimal distance of two entries is given by €,.

the union of all archives up to iteration ¢ and V' C V; the subset of those
archive members that have been added in line 4. Thus, the node set of G;
after iteration ¢ is V4, and Gy itself is a forest whose roots are the current
archive members A; and whose leafs are the elemets of V;/. Obviously, the
number of roots must be smaller than the number of leafs, so |A:| < |V}].
To bound |V}/|, the number of elements that ever entered the archive in
line 4, we again consider the boxes B, := B(F(v) — ¢/6,€/6) for all v € V.
Due to line 3, a solution p generated in iteration ¢’ < ¢ cannot be accepted
in line 4 if F(p) lies inside the box B, of any previously accepted element of
v € V/, otherwise a <3 p for some current archive member a € A; as there
exists a € A; with F(a) < F(v) and v <3 p. If p was accepted in line 4,
then F'(p) cannot lie inside the box B, of any subsequently accepted element
of v € V/ neither, as this would entail p < v. Hence, the interiors of the
boxes B, must be mutually non-intersecting. The maximum number of non-
intersecting boxes with side length €¢/3 and centers ¢ with m; < ¢; < M; is
Hle [3(M; — m;)/e;], thus the claimed bound on the archive size follows.

5 Conclusion and Future Work

We have proposed generic stochastic search algorithms for obtaining e-
approximate Pareto sets as well as e-Pareto sets of a continuous multi-
objective optimization problem in the limit. We have presented a conver-
gence result for these algorithms, and have given bounds on the cardinality
of the corresponding archives.

For future work, there are a lot of interesting topics which can be addressed
to advance the present work. One could e.g. consider the speed of the con-
vergence, in particular when the methods presented above are hybridized



with local search strategies. Further, we intend to apply this theoretical
framework in search for the development of fast and reliable multi-objective
optimization algorithms.
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