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Abstract Differential Evolution (de) is a simple yet effective metaheuristic
specially suited for real-parameter optimization. The most advanced de vari-
ants take into account the feedback obtained in the self-optimization process
to modify their internal parameters and components dynamically. In recent
years, some controversies have arisen regarding the adaptive schemes that in-
corporate feedback from the search process to guide the adaptation of the
mutation scale factor. Some researchers have claimed that no significant ben-
efits are obtained with these kinds of schemes. However, other studies have
shown that they are highly effective. In this paper, we show that there is a re-
lationship between the effectiveness of these adaptive schemes and the balance
between exploration and exploitation induced by the trial vector generation
strategy considered. State-of-the-art adaptive schemes are not useful for the
trial vector generation strategies with the highest levels of exploration, which
in fact seems to be the reason behind the controversies of recent years.
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1 Introduction

Differential Evolution (de) [12] is a very popular metaheuristic specially suited
for real-parameter optimization. Its good performance and reliability has been
consistently demonstrated in several optimization contests and special issues [2,
3]. In addition, it has been successfully used to address a vast amount of op-
timization problems that arise in practical applications [2].

Since its inception, a large amount of research has been conducted around
DE. The correct parameterization of de has been one of the more active re-
search topics [2]. Initially, de was presented as a robust scheme with a low
number of easily tunable parameters [12]. However, subsequent studies showed
that de is very sensitive to the setting of the control parameters [17]. Further-
more, several de trial vector generation strategies have been proposed since
then [9], hampering its parameterization. Some de variants consider the use
of several de components and parameter values simultaneously to increase
robustness. For instance, in [14] three trial vector generation strategies were
simultaneously considered. Moreover, some adaptive schemes have been devel-
oped [5,15] that take into account the feedback obtained in the optimization
process to guide a dynamic de parameterization.

In the original de proposal, three parameters must be set by the user: the
mutation scale factor (f), the crossover rate (cr) and the population size (np).
In addition, the mutant vector generation strategy and the crossover operator
must also be specified. Most up-to-date adaptive de variants modify several
parameters and components simultaneously. These adaptive schemes are usu-
ally compared against de variants that do not consider any adaptation [1,15].
Thus, in most cases the benefits obtained by the adaptation of each parameter
or component is not studied individually.

In recent years, some controversies have appeared regarding the suitability
of considering feedback to set the value of f. The study in [16] reveals that
the adaptation of f does not provide significant benefits, at least with the
adaptation mechanisms devised until the appearance of such paper. Since its
appearance, however, several researchers have devised other adaptive schemes
that use feedback to adapt the value of f [15,5]. These novel schemes have
yielded significant improvements for several problems. Among them, jade [15]
has been shown to be a very effective scheme [13]. However, jade does not
only modify the way in which f is set; other important components of de
are also changed. Among the novel components, the trial vector generation
strategy has an important impact on performance. The strategy considers
the best individuals in the population with the aim of improving the overall
convergence speed. As a result, the diversity of the potential trials is reduced.
Our hypothesis is that since the behavior of this scheme is less explorative and
a low amount of randomness is considered, the adaptation process might be
facilitated, which might explain the controversies that have appeared in some
studies.

The aim of this research is to shed some light on this subject. Some of the
most popular mutation scale factor adaptation schemes are compared consid-
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ering several trial vector generation strategies that balance exploration and
exploitation to various degrees. Our study shows the existing relationship be-
tween the vector generation strategy selected and the success or failure of
mutation scale adaptation. Specifically, the adaptation fails in the most ex-
plorative schemes, which consequently generate trial vectors with a larger di-
versity. Since schemes that consider a large amount of diversity have been
shown to be very effective for several complex problems, an important conclu-
sion of this paper is that further research is required to successfully adapt the
mutation scale factor in these cases.

The rest of the paper is organized as follows. The fundamentals of de are
presented in Section 2. Section 3 is devoted to a discussion of the balance
between exploration and exploitation induced by differential trial vector gen-
eration strategies. A summary of the main mutation scale factor adaptation
schemes is given in Section 4. A computational study is presented in Section 5.
Finally, the main conclusions are given in Section 6.

2 Fundamentals of Differential Evolution

de is a direct search method specially suited for single-objective continuous
optimization problems [12] in which the variables governing the system to be
optimized are given by a vector X = [x1, x2, x3, ..., xD], where d is the number
of variables and each variable xi is a real number. The quality level of each
set of variables is given by the objective function f(x)(f : Ω ⊆ RD → R).
The aim of the optimization—consider a minimization problem—is to find a
vector x∗ ∈ Ω in which f(x∗) ≤ f(x) holds for all x ∈ Ω. In box-constrained
optimization problems, the region Ω is specified with lower (aj) and upper

(bj) bounds for each variable, i.e. Ω =
∏D

j=1[aj , bj ].
de operates as follows. Initially, it creates a random population (p) with

np individuals (P = [X1, ...,XNP ]). Each individual—also termed vector in
de—comprises d variables. The value of the variable j of the individual Xi is
denoted by Xi,j . Then, successive iterations are evolved. In each de iteration,
the following steps are executed. First, for each vector in the population—
called target vector (Xi)—a new mutant vector (Vi) is created using a mutant
vector generation strategy. Several mutant vector generation strategies have
been devised (see Section 3). Then, the mutant vector is combined with the
target vector to generate the trial vector (Ui) through a crossover operator.
The combination of the mutant vector generation strategy and the crossover
operator is usually referred to as the trial vector generation strategy. After
generating np trial vectors, each one is compared against its corresponding
target vector. The one that minimizes the objective function is selected to
survive. In case of a tie, the offspring survives in our implementation.

The most commonly applied operator for combining the target and mutant
vector—and the one considered herein—is the binomial (bin) crossover. The
crossover operation is controlled by means of the crossover rate (cr). In the
bin strategy, the trial vector is generated as shown in Eq. 1. A uniformly
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distributed random number in the range [0, 1] is given by randi,j , and jrand ∈
[1, 2, ..., D] is a randomly chosen index which ensures that at least one variable
is taken from the mutant vector. For the remaining cases, we see that the
probability of the variable being inherited from the mutant is cr. Otherwise,
the variable of the target vector is considered.

Ui,j =

{
Vi,j if (randi,j ≤ CR or j = jrand)
Xi,j otherwise

(1)

Finally, it is also important to note that the trial vector generation strategy,
as described above, might generate vectors outside the feasible region. Several
strategies for dealing with this scenario have been proposed [9]. A widely used
scheme is based on randomly reinitializing the offending values in the feasible
ranges. As this last approach is the most unbiased and has yielded promising
results, it is the one applied in this paper.

3 Exploration and Exploitation in Differential Evolution

Several trial vector generation strategies have been proposed [7,2]. In this sec-
tion, we present the strategies that are considered in our work and discuss
some of their main features in terms of how they balance exploration and ex-
ploitation. Most of the trial vector generation strategies comprise a mutant
vector generation strategy and a combination scheme. Regardless of the trial
vector generation strategy, the term base vector is used to refer to an initial
vector that is subsequently perturbed to generate the mutant vector. The per-
turbation is done by considering one or several differences among other vectors
in the population. In order to classify the trial vector generation variants, the
notation de/x/y/z was introduced in [12]. The term x specifies how to select
the base vector. The term y is the number of difference vectors used. Finally,
z denotes the crossover or combination scheme. Thus, x and y set up the
mutation strategy, and z the crossover scheme.

The most popular mutation strategy is probably the rand/1 scheme. In
this strategy, any vector in the population different from the target vector is
randomly selected as the base vector. Hence, the mutant vector Vi for target
vector Xi is created as per Eq. 2, where r1, r2, and r3 are mutually exclusive
integers chosen at random from the range [1, np]. In addition, they are all
different from the index i. Since the objective value is not considered when se-
lecting the individuals undergoing mutation, this scheme is highly explorative.

Vi = Xr3 + F × (Xr1 −Xr2) (2)

In recent years several strategies have been devised to promote intensi-
fication. The current-to-rand/1 strategy creates mutants using Eq. 3. As in
the previous case, r1, r2 and r3 are mutually exclusive integers different from
the index i, chosen at random from the range [1, np]. A new parameter (K)
is taken into account. However, in order to facilitate the parameterization,
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K = F is usually considered. In this scheme, the mutant vector is created
by considering the information of its own target vector. Since the target and
mutant vectors are then combined, this scheme is not as explorative as the
rand scheme.

Vi = Xi +K × (Xr3 −Xi) + F × (Xr1 −Xr2) (3)

More intensification can be promoted by considering the current-to-best/1
strategy. The equation governing this strategy can be generated by simply
substituting r3 in Eq. 3 with the index of the best vector in the population.
The mutant vector considers the contents of the target vector and the contents
of the best individual. Hence, the diversity is highly reduced in comparison
with other schemes. In fact, the likelihood of stagnation and/or premature
convergence is higher in this last scheme [6].

Finally, the current-to-pbest/1 strategy is a compromise between the last
two schemes. In this case, a parameter p must be set. Then, the individual Xr3

in Eq. 3 is replaced with a random individual selected from the best p× 100%
individuals. Thus, the balance between exploration and exploitation can be
tuned with the value of p. In fact, the last scheme configured with p = 1 is
similar to current-to-rand/1. In contrast, when it is configured with p = 1

NP ,
it is similar to current-to-best/1.

4 Mutation Scale Factor Adaptation

Several schemes that consider a non-static F value have been proposed. In this
section, the schemes considered in this work are briefly described. The reader
is referred to [2,13] for an extensive review of the literature. These kinds of
methods can be separated into those schemes that take into account feedback
to set the value of F and those that do not.

Among the schemes that do not consider any feedback, the most popular
strategies set F by using a random distribution. Empirical studies have re-
vealed that the results are highly dependent on the distribution used, though
no single distribution has been shown to be superior to any other [11]. In any
case, it seems that distributions with long tails—like Cauchy—have yielded
promising results [8] when used with complex multimodal problems. In this
work, two different random distributions are considered. The first one is a
Gaussian distribution with mean 0.5 and standard deviation 0.3, which is the
one applied in SaDE [10]. In the rest of the paper it is denoted as N(0.5, 0.3).
The second one is the Cauchy distribution with location factor 0.5 and scale
parameter 0.1, which is the initial distribution considered in jade [15]. In the
rest of the paper it is denoted as C(0.5, 0.1).

Regarding the schemes that consider feedback to adapt the scale factor,
jde [1], jade [15] and a competitive de [13] (cde) are used. They are very rep-
resentative of the different adaptation mechanisms presented in the literature.
In jde, each individual has its own value for F . Each time a new individual
is created, a new random F value in the range [Fmin, Fmax] is used with ratio
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τ . Otherwise, the F value of the target vector is used. In jade, the F value
is generated based on a Cauchy distribution with location factor µF and scale
parameter 0.1. If the generated value is lower than 0, it is regenerated. If it is
higher than 1, it is truncated to 1. The location factor is initialized to 0.5 and
updated after each generation by considering the Lehmer mean of the success-
ful F values, the previous location factor and a parameter c, which represents
the location factor’s adaptation speed. Since a Lehmer mean is used, there is a
bias towards larger F values. Finally, in cde a set of values is considered to set
up a pool of candidates. The probability of using each value is proportional to
the number of times that it has been used successfully in previous stages, mod-
ified with a parameter n0 that prevents drastic changes in the probabilities.
To avoid degeneration of the search process, if any probability decreases below
some given limit δ, the memory of the scheme is erased, i.e. the probabilities
are reset to their initial values.

5 Experimental Study

Different trial vector generation strategies induce dissimilar balances between
exploration and exploitation. In this section, we present a set of experiments
whose aim is to demonstrate the relationship between this balance and the
effectiveness of the mechanisms for adapting the mutation scale factor. The
analyses were performed using the benchmark problems described in [4], which
are a set of 19 scalable continuous optimization problems to be minimized. The
parameter D allows setting the number of variables in the problems. In our
study, it was set to 50. In order to analyze the schemes, two sets of experiments
were carried out. In every case, each execution was repeated 1,000 times.

Since stochastic algorithms were considered, comparisons were carried out
by applying the following statistical analysis, assuming a significance level of
5%. First, a Shapiro-Wilk test was performed to check whether or not the
values of the results followed a Gaussian distribution. If so, the Levene test
was used to check the homogeneity of the variances. If the samples had equal
variance, an anova test was done; if not, a Welch test was performed. For non-
Gaussian distributions, the non-parametric Kruskal-Wallis test was used. In
this work, the sentence “algorithm A is better than algorithm B” means that
the differences between them are statistically significant, and that the mean
and median obtained by A are lower—one of the metrics might be equal—than
the mean and median achieved by B.

5.1 First Experiment: Exploitative Schemes

Since jade is one of the most promising adaptive schemes, the objective of
the first study was to analyze whether the mutation scale factor mechanism
included in jade is helpful—note that in the original paper the benefits of
each single modification are not analyzed. Thus, its trial vector generation
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Table 1 Statistical comparison of different F adaptive variants with the Current-to-
pbest/1/bin strategy in 250,000 function evaluations

Strategy ↑ ↓ Strategy ↑ ↓
jade 60 3 cDE 14 51

Cauchy(0.5, 0.1) 45 16 jDE 6 69
Normal(0.5, 0.3) 36 28 - - -

strategy (current-to-pbest/1/bin) was considered. Following the recommenda-
tions given in [15], intensification was promoted by considering a low p value
(p = 0.05). In addition to the adaptation proposed in jade, the ones pro-
posed in jde, cde, as well as the random distributions N(0.5, 0.3) and C(0.5,
0.1), were also tested. The adaptive schemes were parameterized considering
the recommendations given by their corresponding authors. In jade, the c
parameter was set to 0.1. In jde, Fmin, Fmax and τ were set to 0.1, 0.9 and
0.1, respectively. Finally, in cde, the pool comprised ten values equidistributed
between 0.1 and 1, n0 was set to 2 and δ was set to 0.02. In every case, the cr
value was adapted with the mechanism proposed by jade, and np was set to
100. Some preliminary experiments were carried out to select the proper value
for np. Finally, the stopping criterion was set to 250,000 function evaluations.

In order to obtain an overall ranking of the different approaches tested,
pairwise statistical comparisons between the five schemes tested were carried
out. Since the benchmark set comprised 19 problems, 76 statistical tests were
done for each scheme. Table 1 shows the number of tests where each model
was better (↑) or worse (↓) than the other schemes considering the statistical
approach discussed above. The jade scheme was clearly superior to the rest
of the schemes. In fact, it was only outperformed in 3 cases. An inspection of
the trend of µF reveals that, at the end of the executions, its mean value was
larger than 0.5 in every problem. The bias towards large F values introduced
by the scheme is very beneficial because large F values might allow individuals
to escape from non-optimal attraction basins. Thus, the combination of bias
and feedback is quite convenient. It is also interesting to note that the two
random distributions tested yielded better results than cde and jde.

5.2 Second Experiment: Increasing the Balance Towards Exploration

Since our hypothesis is that the F adaptation mechanisms fail with the ex-
plorative schemes, in this second experiment more explorative de variants are
considered. In DE/current-to-pbest/bin, exploration can be promoted by in-
creasing the p value. Thus, experiments with different p values were carried
out. Specifically, the jade and C(0.5, 0.1) schemes were executed with ten p
values equidistributed between 0.1 and 1. In addition, the values 0.01 and 0.05
were also considered. Figure 1 shows, for each case, the number of problems
where jade was better than C(0.5, 0.1), as well as the number of problems
where the opposite was true. As exploration was promoted, the advantages
of jade diminished. In fact, considering feedback for large p values was not
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Fig. 1 Statistical comparison between JADE and C(0.5, 0.1) with current-to-pbest

Table 2 Statistical comparison of different F adaptive variants with the rand/1/bin strategy
in 250,000 function evaluations

Strategy ↑ ↓ Strategy ↑ ↓
Cauchy(0.5, 0.1) 31 10 cDE 14 28
Normal(0.5, 0.3) 28 11 jade 11 35

jDE 20 20 - - -

helpful. First, since the scheme is more explorative, the bias towards large F
values introduced by jade is not required. Additionally, the higher degree of
randomness hampers the use of adaptive schemes.

In order to confirm the trend discovered in the previous analysis, a more
explorative scheme (rand/1/bin) was considered. It was tested with the same
adaptive schemes as in the first set of experiments. In this case, np was set to
50 to avoid an excessive bias towards exploration. Table 2 shows the results
of the pairwise statistical comparisons. In this case, the C(0.5, 0.1) distribu-
tion obtained the best overall results, demonstrating the poor performance of
schemes that consider feedback to set the mutation scale factor.

Finally, it is also interesting to compare the results obtained with current-
to-pbest and rand. Table 3 shows the mean and median of the errors obtained
by the best schemes for each case. In the problems where differences were
statistically significant, boldface is used. The overall results obtained with
the rand scheme—even with a random distribution to set the F values—were
superior. The current-to-pbest scheme yielded better results in only three prob-
lems. In the case of the f8 function, it can be easily solved using only local
search [3], so the intensification promoted by current-to-pbest is adequate. f3
and f13 are the “banana” function and one of its variants. In these cases,
there is a large flat, curved valley that can keep us from finding the opti-
mum. In the current-to-pbest scheme with a large population size, this region
is approached from many directions, increasing the probability of entering the
region through a zone close to the optimum. Finally, in f4, the model consid-
ering the rand strategy obtained the optimum in every execution except one.
Since this execution achieved a poor quality solution, it had a better median
but worse mean than current-to-pbest. In any case, the overall superiority of
rand is clear.
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Table 3 Comparison of errors obtained with different trial vector generation strategies and
their corresponding best F adaptive schemes in 250,000 evaluations

current-to-pbest/1/bin — jade rand/1/bin — Cauchy(0.5, 0.1)
Median Mean Median Mean

F1 0 0 0 0
F2 9.75 1.00 · 101 3.07 · 10−2 5.97 · 10−1

F3 3.73 5.32 8.34 · 101 7.85 · 101

F4 1.60 · 10−11 2.03 · 10−11 0 1.98 · 10−2

F5 0 9.48 · 10−4 0 0
F6 5.68 · 10−14 3.51 · 10−3 5.68 · 10−14 5.68 · 10−14

F7 0 0 0 0
F8 1.57 · 10−9 3.69 · 10−9 1.05 · 104 9.74 · 103

F9 4.89 · 10−2 7.84 · 10−2 0 0
F10 1.04 1.12 0 0
F11 6.24 · 10−2 9.09 · 10−2 0 0
F12 1.11 · 10−10 6.30 · 10−10 2.82 · 10−17 2.53 · 10−17

F13 3.21 · 101 2.58 · 101 3.24 · 101 3.39 · 101

F14 1.18 · 10−3 1.24 · 10−3 2.05 · 10−17 9.94 · 10−4

F15 0 3.83 · 10−3 0 0
F16 1.37 · 10−5 3.01 · 10−5 1.85 · 10−12 1.97 · 10−12

F17 8.69 9.33 1.57 2.78
F18 2.50 · 10−1 2.52 · 10−1 9.11 · 10−10 9.38 · 10−10

F19 0 2.05 · 10−1 0 0

6 Conclusions

Adaptive schemes have gained considerable popularity in recent years in the
field of Evolutionary Computation. In the case of de, several schemes have
been proposed that consider the feedback obtained during the optimization
process to guide the setting of the mutation scale factor. In most cases, not only
is the mutation scale factor adapted, but other components are also changed.
However, comparisons do not usually measure the benefits obtained by every
single adaptation. This has led to some controversy in the field. While many
schemes for adapting the mutation scale factor have been proposed, other
researchers have not obtained benefits when considering adaptive schemes.

In this paper we demonstrate that there is a relationship between the
diversity introduced by the trial vector generation strategies and the success
or failure of adaptive schemes. Specifically, only when the current-to-pbest
strategy with a low p value is considered does the use of feedback provide
significant benefits. In this case, jade intelligently combines feedback with the
well-known recommendation to use large f values occasionally in this strategy.
However, as the balance is moved towards exploration, the advantages given
by the use of feedback gradually disappear. In fact, with the most explorative
trial vector generation strategies, setting the mutation scale factor by using
random distributions with long tails provides the best results. Since the most
explorative schemes are more robust, an important open challenge is to develop
adaptive schemes that can profit from the feedback gained in the optimization
process and can be applied with these strategies.
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