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Abstract: 

 Due to the large objective space when handling many-objective optimization problems (MaOPs), it is 

a challenging work for multi-objective evolutionary algorithms (MOEAs) to balance convergence and 

diversity during the search process. Although a number of decomposition-based MOEAs have been 

designed for the above purpose, some difficulties are still encountered for tackling some difficult MaOPs. 

As inspired by the existing decomposition approaches, a new Hybridized Angle-Encouragement-based 

(HAE) decomposition approach is proposed in this paper, which is embedded into a general framework of 

decomposition-based MOEAs, called MOEA/D-HAE. Two classes of decomposition approaches, i.e., the 

angle-based decomposition and the proposed encouragement-based boundary intersection decomposition, 

are sequentially used in HAE. The first one selects appropriate solutions for association in the feasible 

region of each subproblem, which is expected to well maintain the diversity of associated solutions. The 

second one acts as a supplement for the angle-based one under the case that no solution is located in the 

feasible region of subproblem, which aims to ensure the convergence and explore the boundaries. By this 

way, HAE can effectively combine their advantages, which helps to appropriately balance convergence 

and diversity in evolutionary search. To study the effectiveness of HAE, two series of well-known test 

MaOPs (WFG and DTLZ) are used. The experimental results validate the advantages of HAE when 

compared to other classic decomposition approaches and also confirm the superiority of MOEA/D-HAE 

over seven recently proposed many-objective evolutionary algorithms. 

Keywords: Many-objective optimization problem; Angle-based decomposition; Encouragement-based 

decomposition 

 

1. Introduction

A many-objective optimization problem (MaOP) often contains more than three objectives to be 

optimized simultaneously, which is extended from the definition of multi-objective optimization problem 

(MOP). Generally, a MaOP can be formulated as follows. 

       1 2min( ( )) min( ( ), ( ),..., ( )), s.t.mF x f x f x f x x  ,      (1) 
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where x is a decision vector, m is the number of objectives,   indicates the decision space, and F(x) 

includes a set of optimization objectives as represented by ( )if x  (i =1, 2,…, m, and m>3). For MaOPs, 

there often exists a set of equally optimal solutions (termed Pareto-optimal set (PS)) when considering all 

the objectives, and the mapping of PS on the objective space is termed Pareto-optimal front (PF) [1].  

 During the last decades, multi-objective evolutionary algorithms (MOEAs) have become the popular 

and effective approaches when tackling MOPs [2-6]. According to the selection criteria for population 

update, most MOEAs can be categorized into three classes, i.e., Pareto-based MOEAs [7-8], 

indicator-based MOEAs [9] and decomposition-based MOEAs [10-11]. These MOEAs are validated to 

show the very promising performance on tackling various kinds of MOPs. However, due to the curse of 

dimensionality in MaOPs, their performance deteriorates significantly when the number of optimization 

objectives is increased [12-13]. Pareto-based MOEAs cannot provide sufficient pressure toward the true 

PF due to the existence of a large number of non-dominated solutions for MaOPs [14-15]. 

Decomposition-based MOEAs have to specify a large set of weight vectors for the high dimensional 

objective space in MaOPs [16]. Moreover, the match on the shapes of weight vectors and the true PF 

strongly affects their performance [17-18]. Indicator-based MOEAs often suffer a high computational cost, 

which makes them not so popular and efficient for solving MaOPs in practical applications [19-20].  

To solve the above challenges in MOEAs, some many-objective evolutionary algorithms (MaOEAs) 

are designed recently. Regarding Pareto-based MOEAs, the original Pareto-based dominance relation is 

modified to enhance the convergence pressure for solving MaOPs, such as fuzzy-dominance [21], corner 

sorting [22], reference point-based dominance [23], and generalized Pareto-optimality [24]. Another 

typical way is to strengthen the diversity management in Pareto-based MOEAs, like the shift-based 

density estimation in SPEA2-SDE [25] and the use of associated reference points for association in 

NSGA-III [26]. For indicator-based MOEAs, the hyper-volume (HV) indicator is re-calculated to be more 

efficient [27-29] and other performance indicators (e.g., R2 [30-31], the additive approximation [32], and 

the combination indicators [33]) are also designed for MaOPs. With respect to decomposition-based 

MOEAs, two adaptive generation methods for weight vectors [34-35] are presented for MaOPs, the 

Pareto-based dominance is combined with the decomposition approach for solving MaOPs in [16], and 

two external archives are used to respectively ensure convergence and diversity on tackling MaOPs [36]. 

Moreover, there are several new MaOEAs using the vector angles for population update (e.g., VaEA [37], 

MaOEA-DDFC [38], and MaOEA-CSS [39]) and other heuristic algorithms designed for MaOPs (e.g., 

preference-inspired co-evolutionary algorithm with goals (PICEA-g) [40] and many-objective particle 

swarm optimization algorithms [41-42]), which have also shown the promising performance. 

In this paper, we mainly focus on the decomposition approaches for MaOEAs. As pointed out in [17], 
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the performance of decomposition-based MOEAs strongly depends on the shapes of weight vectors and 

the true PF. In the case that decomposition-based MOEAs adopt the same set of weight vectors, the used 

decomposition approaches will also significantly affect the performance on tackling MaOPs, as revealed 

by [17]. Traditional decomposition methods, such as the weighted sum (WS) approach, the Tchebycheff 

(TCH) approach and the penalty-based boundary intersection (PBI) approach, have their own advantages 

in solving different kinds of MaOPs [17], which are further studied and enhanced in [43-45]. However, 

when tackling MaOPs, their performance is still not so promising, thus an invert PBI (iPBI) is designed in 

[46], a local weighted sum (LWS) decomposition approach is presented in MOEA/D-LWS [47] and an 

adaptive Pareto Front scalarizing (PaS) as well as an adaptive Pareto Front penalty-based boundary 

intersection (PaP) decomposition approach are proposed in [48] and [44], respectively, to match the true 

PFs. 

Following the work of these modified decomposition approaches [43, 47-48], this paper presents a 

hybridized angle-encouragement-based (HAE) decomposition method for MaOPs, which is embedded 

into a general decomposition-based MOEA, called MOEA/D-HAE. Two types of decomposition, i.e., an 

angle-based decomposition and an encouragement-based boundary intersection (EBI) decomposition, are 

sequentially used in HAE. At first, the angle-based one is used to guarantee the population diversity, by 

only associating solution to each subproblem from its feasible region. When the subproblem has no 

associated solution, it indicates that the diversity on this subproblem is weak and thus the convergence 

should be emphasized in turn. In this case, the encouragement-based one is used as a supplement for 

associating solution, aiming to ensure the convergence. By combining their advantages, HAE is more 

effective to solve MaOPs. The well-known test problems (i.e., WFG [49] and DTLZ [50] with 4, 6, 8, and 

10 objectives) are used to verify the effectiveness of HAE and the experiments show the advantages of 

HAE over some traditional decomposition methods. Moreover, the experiments also confirm the superior 

performance of MOEA/D-HAE over seven competitive MaOEAs (i.e., NSGA-III [26], MOEA/DD [16], 

SRA [33], MaOEA-R&D [51], VaEA [37], Two_Arch2 [52], and MaOEA-CSS [39]) when tackling most 

of the adopted test problems. Especially, four competitive decomposition approaches designed for MaOPs 

(iPBI, LWS, PaP and PaS) are also included to compare with HAE when they are all embedded into [53], 

which further confirms the superiority of HAE. 

The rest of this paper is organized as follows. Section 2 introduces the related work about the existing 

decomposition approaches. The details of MOEA/D-HAE are given in Section 3, while the experimental 

results are provided in Section 4. At last, the conclusions and future work are presented in Section 5. 

 

2. Traditional Decomposition Approaches 
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 The commonly used traditional decomposition approaches include the WS [11], TCH [45] and PBI 

[11] methods, which are respectively introduced below. Please note that 1 2( , ,..., )T
mw w w w  is a weight 

vector used in these methods with 0 iw   and 1 1m
ii w  , where m is the number of objectives. 

 The WS approach is defined by 

1 ( )arg min(g ( | )) arg min( )ws m

x x
i i if x wx w 

 
  ,      (2) 

where   is a solution set. As pointed out in [43], this WS approach shows poor performance when 

solving the MOPs with concave true PFs, mainly due to its poor ability to maintain diversity for each 

subproblem. 

 The TCH approach is formulated by 

* *| ( ) z | /arg min(g ( | )) arg min(max( ))tch

x x
i i if x wx w,z

 
 ,     (3) 

where 1 2
* * * *( , ,..., )mz z z z  is an ideal point in objective space and 1,...,i m . This TCH method is 

mostly used in many MOEAs [53-58], since it can properly balance convergence and diversity. 

The PBI approach is introduced by 

1 2

1 2 1 and
( ( ) )

( ) ( )

*argmin(g ( | )) argmin( )

where  0,

x x

x x x
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F x - z
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x w,z +

+

d d

d = d = d|| ||









 ,   (4) 

where 1
xd  is the distance of the ideal point z* and the foot point from F(x) to the weight vector w, 2

xd  is 

the distance of F(x) and the weight vector w [11], and   is a pre-set parameter to control the impact of 

2
xd . Please note that 1

xd  is used to reflect the convergence of x, while 2
xd  is a kind of measurement to 

show the diversity of x for its subproblem. By summarizing the values of 1
xd  and 2

xd , this PBI method 

gives a composite measure for convergence and diversity [16], while the bias to convergence or diversity 

can be adjusted by the parameter  . 

 To further show the difference of WS, TCH and PBI, Fig. 1 gives a schematic illustration to explain 

their preferences when solving a minimal optimization problem with two objectives, in which the solution 

marked with the red color is better than the one identified by the yellow color according to the preference. 

In fact, any solution in the gray-color region is better than the solution marked with yellow color. 

 As observed from Fig. 1 (a) and (b), the WS and TCH approaches may associate the far-away 

solution to the subproblem, in which a little promotion of the convergence may cause the relatively 

significant loss of the diversity. In Fig. 1 (c), the replacement of the PBI approach may cause the loss of 

the convergence and the improvement of the diversity, while another case plotted in Fig. 1(d) shows an 
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opposed effect to that of Fig. 1(c). It can be summarized that it is always a difficult work to achieve the 

balance of convergence and diversity in MaOPs.  
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Fig. 1 An illustration to show the preferences of (a) WS, (b) TCH, (c) PBI, (d) PBI. 

 

 As studied in [17], the performance of decomposition-based MOEAs strongly depends on the shapes 

of weight vectors and the true PF. When the same weight vectors are used to construct the subproblems, 

their performance will also highly rely on the used decomposition approaches. As defined in Eqs. (2)-(4), 

their candidate solutions associated to the subproblems are selected from the solution set  . However, in 

most decomposition-based MOEAs [53-58],   is generally composed by the neighboring solutions of 

one subproblem or the entire population. On some cases, the solution associated to the subproblem may 

be substituted by a far-away solution, as visually shown in Fig. 1(a) for WS and Fig. 1(b) for TCH. 

Regarding PBI, it may not always perform well when the population is crowded and some subproblems 

may not find any solution in their vicinities, especially in the early evolutionary stage. For example, in 

Fig. 2(a) with convex PF and Fig. 2(b) with concave PF, the lengths of the dashed lines indicate the 

distances from the solutions to the true PFs. In these two cases, PBI always prefers the far-away solutions, 

as the diversity estimations in these cases are ineffective, which result in a degenerate convergence. It is 
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actually meaningless for PBI to consider diversity under these two cases as the associated solutions are 

already far away from the subproblem. 
 

  

    (a)                         (b)                             

Fig. 2 An illustration of solution association using PBI with 1   
 

 In order to avoid the above cases in Figs. 1-2, we design a hybridized angle-encouragement-based 

decomposition approach in this paper and embed it into a general framework of decomposition-based 

MOEA [54, 58] to validate the advantages. First, the current population and all the offspring are 

combined and the diversity for each subproblem is considered first when selecting the next population. 

For the cases that the subproblems can find the solutions around their vicinities in the objective space, the 

angle-based decomposition approach is used to select the associated solutions, so as to maintain the 

diversity, as a subproblem only links to one of its nearest solutions under this case. Second, regarding the 

case that the subproblem has no solution in its feasible region, the EBI decomposition approach is used to 

choose the solution from the union population, aiming to ensure the convergence without considering 

diversity and to search some extreme regions of PFs.  
 

3. The Proposed MOEA/D-HAE 

3.1 Angle-based Decomposition Approach (AD) 

It is difficult to balance convergence and diversity when solving MaOPs. When the convergence is 

always emphasized, the algorithm may easily fall into local optimal and induce a premature convergence. 

However, if the diversity is always preferred, the convergence speed may be significantly affected. In our 

approach, the angle-based decomposition approach is used to guarantee the diversity first, which selects 

one solution from the feasible region of each subproblem in the objective space. This angle-based 

decomposition model is defined by  
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*arg min(g( | ))
x

k

k
wx ,z


,         (5) 

where *z  is the ideal point and k  is the feasible region for each subproblem with kw , as defined by 
*){ arg min (angle( ( ) ) }kk

w W
,w, wx | F x =z


  ,       (6) 

where * )angle( ( ),w,F x z  returns the angle of F(x) and the weight vector w  from the starting point *z , 

as defined by 
 

       * * 22

1 1 1( ) / ( )angle( ( ) ) arccos* m m mk k
i i i i i ii i if x z w f x z wF x ,w,z          .  (7) 

With Eqs. (5-7), k  will include all the solutions that are closest to kth subproblem when considering all 

the angles of the solution and the used weight vectors. Assume that the population size is N and the 

weight vectors are 1 2{ }N, ,...,W w w w . Apparently, Eq. (5) can be considered as an extension of Eqs. 

(2)-(4), which defines the feasible region k  for kth subproblem. To further clarify this approach, the 

pseudo-code of angle-based decomposition approach is provided in Algorithm 1 with the input Q (i.e., a 

solution set formed by the current population and their offspring), where R is used to preserve the weight 

vectors (i.e., subproblems) that are not associated to any solution and S is adopted to store the solutions 

associated to the weight vectors. In line 1 of Algorithm 1, R and S are all set as an empty set. For each 

subproblem in line 2, if its feasible region can find any solution, the one with the best aggregated value 

using Eq. (5) will be added into S in line 4. Otherwise, the weight vectors will be added into R in line 6. 

At last, these two sets (R and S) are returned in line 9. 

 

Algorithm 1: AD(Q)  

1 R=  , S= ; 

2 for i=1 to N 
3 if i    // these sets are obtained by Eq. (5) 

4 S=S∪ *(g( | ))arg min ix w ,z ; //
ix  

5 Else 
6 R=R∪ i

w ; 
7 end if 
8 end for 
9 return [R, S]; 

  

To visually show the angle-based decomposition approach, Fig. 3 gives a schematic illustration to 

show its running to associate the solutions for the subproblems, in which the feasible space for each 

subproblem is encompassed by two closest dash lines, such as the region with blue background. 

According to Eq. (5), the solutions marked with the red color are selected for association. Obviously, the 
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population S will include the solutions with good diversity and convergence for all the subproblems. It is 

also observed that the number of solutions in the population S may be less than the number of weight 

vectors, as no solution is located in the feasible regions of w3 and w4. Thus, to associate the solutions to 

w3 and w4 under this case, the EBI approach is used, as introduced in Section 3.2. 
 

z* f2

w6

w5

w4

w3

w2
w1

f1

s1

s2

s5
s6

w7
s7

the selection region of w5

 

Fig. 3 An illustration to show the running of using the angle-based decomposition 

 

3.2 The EBI Decomposition Approach 

When some subproblems are not associated with solutions using the angle-based decomposition, the 

EBI decomposition is further used to select the solutions from the current population and their offspring, 

only considering convergence and ignoring diversity. Using this approach, the solutions in boundary are 

preferred to extend the entire true PF. This EBI approach is defined by  

*
1 2

1 2 1

( ( ) )
( ) ( )

argmin(g ( | )) argmin( )

where and 0,+

ebi x x

xx

*
x x * x

|| ||

|| F x - ||
F x -

|| ||

x w,z d d

z w w
d d z d

w w
= =|| ||








 .    (8) 

The definitions of 1
xd  and 2

xd  are the same to that in PBI (i.e., Eq. (4)). However, different from the 

original PBI approach, the EBI approach in Eq. (8) changes the sign of   and re-defines the solution set 

  which consists of the current population and their offspring. To show the selection preference of the 

EBI approach, Fig. 4 is provided by using the EBI approach with different   values. As observed from 

Fig. 4, the EBI approach with 1   is able to find the solutions in the boundaries of current population. 

However, when 0 1  , the exploration for the boundaries is weakened, whereas the ability for 
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speeding up convergence is enhanced. It can be observed from Fig. 4(b) that the WS approach selects the 

solution plotted by the black circle, while the EBI approach prefers the one marked by the red circle that 

is a suboptimal solution for the WS approach. Therefore, the HAE approach with 0 1   is more 

effective to balance convergence and diversity in this case. 

 
(a)             (b)  

Fig. 4 An illustration of the EBI approach with (a) 1   and (b) 0 1   
 

As introduced in Section 3.1, this EBI approach is employed for the subproblems that are not 

associated with any solution in their feasible regions. Under this case, the EBI approach aims to 

accelerate the convergence speed and to explore the boundary area of current population. To further 

clarify the running of EBI, its pseudo-code is given in Algorithm 2, with the input Q (a solution set) and 

R (a set of weight vectors that are not associated to solutions returned by Algorithm 1). Algorithm 2 is 

only run as a supplement for Algorithm 1, as it is difficult for the angle-based decomposition approach to 

always work well in the whole evolutionary process (i.e., some subproblems are often not associated in 

the early evolutionary stage due to the crowded population). In this case, the EBI approach can be used 

for solution association, so as to speed up the convergence and explore the boundaries of current 

population. In line 1 of Algorithm 2, S is initialized as an empty set. For each subproblem in line 2, the 

ith subproblem is selected from R in line 3 and then Eq. (8) is used to select a solution from Q to 

associate with this subproblem, which is added into S and removed from Q in line 4. At last, return the set 

S with the associated solutions for R in line 6. 
 

Algorithm 2: EBI(Q, R)   

1 S=  ; 

2 for i=1 to |R| 
3 Select the ith subproblem from R; 
4 Use Eq. (8) to select a solution from Q to associate with the 

subproblem, which is added into S and removed from Q; 
5 end for 
6 return S; 
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3.3 The Proposed HAE Approach and MOEA/D-HAE  

The proposed HAE approach coordinates the running of the above angle-based decomposition 

approach in Section 3.1 and the EBI decomposition approach in Section 3.2. The angle-based one is first 

used to associate the solutions in the feasible region of each subproblem, which aims to maintain diversity. 

For the case that the subproblem has no solution in its feasible region, the EBI decomposition approach is 

further used to select the solutions from the union population, which ensures convergence and helps to 

search the boundary regions of current population. Here, the flow chart of MOEA/D-HAE is provided in 

Fig. 5 to have a clear understanding of its running. At the start of MOEA/D-HAE, the target problem and 

its parameters are inputted, and then MOEA/D-HAE is initialized by setting the related parameters. Then, 

the algorithm will go through the evolution to generate N offspring, where N denotes the population size. 

After that, all the offspring and parents are collected to do the selection using AD and EBI. At the end of 

each generation, the population will be outputted if the termination condition is satisfied. Otherwise, the 

above evolutionary and selection process will be run again. 

 

Initialization

Evolution

AD Selection

EBI selection

Termination?

Output

yes

no

 
Fig. 5 The flow chart of MOEA/D-HAE 

 

To show the actual running of HAE approach, Fig. 6 is given to show the solution association of 

HAE. The angle-based decomposition is first used to associate w1, w2, w5, w6, w7, as shown in Fig. 3. 

Then, s3 will be selected to associate w3 according to the EBI method. Although s3 and s5 are the same in 

Fig. 6, they show the promising ability to accelerate the convergence speed. Similarly, s4 is selected for 

the weight vector w4 according to the EBI method. Even s1 and s4 are the same in Fig. 6, they are close to 

the boundaries of the population and help to extend the approximate PF. Therefore, using the proposed 

HAE approach, the solutions marked by the red circle are associated to the corresponding subproblems. 
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Fig. 6 An illustration of the HAE approach with 0 1  . 

The proposed HAE approach is embedded into a general framework of MOEA/D [11], forming the 

so-called MOEA/D-HAE. To clarify the running of MOEA/D-HAE, its pseudo code is given in 

Algorithm 3, where FEs and maxFEs respectively indicate the counter for current function evaluation 

and the number of maximal function evaluation, T is the number of neighbors for subproblems, G and 

maxG are respectively the current generation and the maximal generation. 
 

Algorithm 3: MOEA/D-HAE     

1 Initialize the weight vectors and population P, evaluate each individual and update z*; 
2 while FEs<maxFEs  
3 T=max(|P|×(1-G/maxG), 3) and Q =  ;  
4 for i=1 to N  
5 Select one solution from the T neighboring solutions;  
6 Generate one offspring by the solution associated to ith subproblem and its 

neighbors using SBX and PM; 
7 Evaluate each offspring, add it into Q, and update z*; 
8 end for 
9 Q=P∪Q; 
10 [R, P]=AD(Q); // Algorithm 1 
11 if |P|<N 
12 P=P∪EBI(Q, R); // Algorithm 2 
13 end if 
14 end while 
15 output P; 

 

In line 1 of Algorithm 3, all the used weight vectors are initialized, the evolutionary population P is 

randomly generated, and all the individuals are evaluated to update the ideal point z*. In line 2, if FEs is 

smaller than maxFEs, the following evolutionary process is executed. In line 3, the T value is decreased 

with the increasing number of generations, which is set to the maximal value of |P|×(1-G/maxG) and 3 

(please note that this constraint is to ensure the minimal number of neighbors). The offspring set Q is 

initialized as an empty set. In lines 4-8, all the individuals are evolved using the simulated binary 

crossover (SBX) [59] and polynomial mutation (PM) [59]. Please note the mating pool in MOEA/D-HAE 

is only composed of the T neighboring solutions. The new offspring are preserved in Q and evaluated to 
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update the ideal point z*. In line 9, the parent population P and the offspring population Q are combined 

into Q. Then, the angle-based decomposition approach is adopted in line 10 to associate solution for each 

subproblem and R is the set of weight vectors that have not any solution in their feasible regions. The 

running of AD (Algorithm 1) has been introduced in Section 3.1. When |P|<N in line 11, R is not empty 

as the angle-based decomposition approach only selects one solution for each subproblem. In line 12, the 

EBI approach (Algorithm 2) is further used to select appropriate solutions for the un-associated 

subproblems to ensure convergence. The above evolutionary process will be repeated until maxFEs is 

reached. At last, the solutions in P are outputted as the final approximation set. 
 

4. Experimental Studies 

In this section, the performance of MOEA/D-HAE is studied when tackling the WFG [49] and 

DTLZ1-DTLZ4 [50] test problems. In the following subsections, some related information about the 

experiments is provided, including the used test problems, the performance indicators, and the parameters 

settings of the compared algorithms (NSGA-III [26], MOEA/DD [16], SRA [33], MaOEA-R&D [51], 

VaEA [37], Two_Arch2 [52], and MaOEA-CSS [39]). Then, the experimental results of the compared 

algorithms are given to validate the performance of MOEA/D-HAE. Especially, HAE as a decomposition 

approach is compared to some competitive decomposition approaches proposed recently (iPBI [46], LWS 

[47], PaP [44] and PaS [48]), which shows the advantages of HAE. Finally, the effects of the parameter 

  in HAE are analyzed. 
 

4.1 The Used Test Problems 

The WFG and DTLZ test suites are widely used in many experimental studies for performance 

comparisons among different MaOEAs [16, 26, 33]. In this study, thirteen frequently-used test MaOPs 

without any constraint, including WFG1-WFG9 and DTLZ1-DTLZ4, are used to validate the 

performance of MOEA/D-HAE in solving different MaOPs with 4, 6, 8, and 10 objectives. Please note 

that the number of decision variables in DTLZ is m+k-1, where m is the number of objectives and k is set 

to 5. For the WFG test problems, their decision variables include k position-related variables and l 

distance-related variables, where k is set to 2(m-1) and l is set to 20 as recommended in [16, 33, 37, 64]. 

4.2 Performance Indicators 

The main purposes of solving MaOPs include two aspects, i.e., convergence and diversity. More 

specifically, a set of solutions is preferred to closely approximate the true PFs and to evenly cover the 

true PFs. Thus, the widely used performance metric (i.e., HV [8]) is used in our experiments to evaluate 

the comprehensive performance of all the compared algorithms in terms of both convergence and 
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diversity. This HV metric is not required to know the true PFs in advance, which can reflect the 

convergence and the diversity by computing the high dimensional volumes between the non-dominated 

solutions and a reference point *z , as defined by  

* *HV( , ) ( ( , ))
x PF

PF z volume v x z


  ,       (7) 

where *( , )v x z  is the hypercube created with x and *z . Any individual that is dominated by *z  does not 

contribute to the computation of HV. The HV value is calculated by using a reference point as 

21.1 ( ( ), ( ),..., ( ))max max max
m1f x f x f x  ( ( )max

if x  is the maximal value of the ith problems in MaOPs and i = 1, 

2,…, m), as suggested in [33]. Please note that, the computation consumption of HV is expensive for 

MaOPs. Thus, we use the Monte Carlo simulation [19] to compute the HV value with 105 sample points. 

A large value for HV indicates that the approximate solution set has good convergence and diversity. 
Table 1 

Parameters settings in test problems with various dimensions in objective space 

The number of objectives H values Population size Maximal function evaluations 

4 8, 0 165 82500 

6 5, 0 252 126000 

8 4, 0 330 165000 

10 3, 2 275 192500 
 

4.3. Comparison Experiments with Different MaOPs 

In this study, MOEA/D-HAE is compared with seven competitive MaOEAs, including NSGA-III 

[21], MOEA/DD [11], SRA [28], MaOEA-R&D [46], VaEA [32], Two_Arch2 [47], and MaOEA-CSS 

[34]. All the parameters sets of the compared algorithms are the same to that in their original references 

except for the weight vectors and the used evolutionary operators. All the compared algorithms use SBX 

[59] and PM [59] to generate the offspring for a fair comparison. The crossover probability of SBX and 

the mutation probability of PM are set as 1.0 and 1/n, respectively, where n is the number of decision 

variables. The distribution indexes of SBX and PM are respectively set to 30 and 20. MOEA/D-HAE, 

MOEA/DD and NSGA-III are run in jMetal [60] due to its fast running, while the rest compared 

algorithms are executed in PlatEMO [61]. MOEA/D-HAE and MOEA/DD use the same weight vectors in 

the source code of MOEA/D-ACD [10] from http://www.cs.cityu.edu.hk/~qzhang/publications.html. The 

H values to calculate the number of weight vectors [27] are shown in Table 1 for NSGA-III. Moreover, 

Table 1 also shows the population size [36, 46, 62-64] and the number of maximal function evaluations. 

Other population sizes can be used for all the compared algorithms, which won’t significantly affect the 

final comparison results according to our preliminary experiments. The HAE approach with 0.1   and 

the angle-based TCH approach are respectively used for Algorithm 2 and Algorithm 1 in 

MOEA/D-HAE. The hardware configurations for running these experiments are Intel i5 8600K@4.7Ghz  
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Table 2 
The HV comparison results of MOEA/D-HAE and seven competitors on all the WFG test problems 

Problem m  NSGA-III MOEA/DD Two_Arch2 SRA VaEA MaOEA-R&D MaOEA-CSS MOEA/D-HAE 

WFG1 

4 Mean 3.71E-1 － 4.45E-1 － 7.52E-1 + 5.82E-1 － 4.97E-1 － 5.18E-1 － 7.22E-1 = 7.22E-1 
Std 3.48E-2 3.10E-2 2.84E-2 4.39E-2 3.86E-2 6.36E-2 4.04E-2 2.89E-2 

6 Mean 3.98E-1 － 4.96E-1 － 6.90E-1 + 5.85E-1 － 3.80E-1 － 3.54E-1 － 6.38E-1 － 6.51E-1 
Std 3.68E-2 2.49E-2 3.36E-2 3.41E-2 3.84E-2 5.51E-2 4.07E-2 5.42E-2 

8 Mean 5.28E-1 － 6.80E-1 + 6.71E-1 + 5.43E-1 － 3.07E-1 － 2.94E-1 － 6.45E-1 + 5.69E-1 
Std 4.33E-2 2.84E-2 3.59E-2 4.09E-2 2.20E-2 5.98E-2 3.30E-2 8.40E-2 

10 Mean 6.56E-1 － 3.83E-1 － 7.83E-1 + 5.67E-1 － 2.92E-1 － 2.36E-1 － 8.09E-1 + 7.70E-1 
Std 3.10E-2 3.57E-2 5.61E-2 4.49E-2 2.05E-2 3.52E-2 6.02E-2 7.20E-2 

WFG2 

4 Mean 9.34E-1 － 9.22E-1 － 9.28E-1 － 9.36E-1 － 9.36E-1 － 9.02E-1 － 8.89E-1 － 9.64E-1 
Std 6.56E-2 6.40E-2 7.95E-2 5.58E-2 6.19E-2 7.26E-2 6.09E-2 2.85E-2 

6 Mean 9.52E-1 － 9.30E-1 － 9.57E-1 － 9.63E-1 － 9.70E-1 － 9.21E-1 － 9.41E-1 － 9.89E-1 
Std 5.95E-2 4.89E-2 6.66E-2 4.33E-2 5.33E-3 2.74E-2 4.14E-2 3.31E-2 

8 Mean 9.68E-1 － 9.41E-1 － 9.76E-1 － 9.79E-1 － 9.68E-1 － 9.31E-1 － 9.60E-1 － 9.95E-1 
Std 4.38E-2 9.50E-3 4.45E-2 3.13E-3 3.18E-2 3.19E-2 3.19E-2 2.58E-3 

10 Mean 9.66E-1 － 9.32E-1 － 9.85E-1 － 9.80E-1 － 9.68E-1 － 9.45E-1 － 9.62E-1 － 9.88E-1 
Std 5.27E-2 9.35E-3 3.22E-2 3.42E-3 4.36E-2 1.66E-2 3.16E-2 4.19E-3 

WFG3 

4 Mean 7.85E-1 － 7.71E-1 － 8.06E-1 + 7.68E-1 － 7.82E-1 － 1.03E-1 － 6.99E-1 － 8.05E-1 
Std 6.04E-3 6.02E-3 1.95E-3 7.37E-3 4.59E-3 4.50E-3 1.32E-2 3.64E-3 

6 Mean 7.77E-1 － 7.47E-1 － 7.97E-1 － 7.45E-1 － 7.73E-1 － 2.59E-1 － 6.47E-1 － 8.01E-1 
Std 5.93E-3 8.23E-3 2.47E-3 9.72E-3 5.92E-3 1.88E-1 7.90E-3 4.51E-3 

8 Mean 7.24E-1 － 6.85E-1 － 7.73E-1 + 7.17E-1 － 7.50E-1 － 5.48E-1 － 5.63E-1 － 7.61E-1 
Std 5.78E-3 8.38E-3 4.73E-3 1.19E-2 8.31E-3 1.18E-1 3.63E-3 4.75E-3 

10 Mean 7.69E-1 － 7.08E-1 － 7.92E-1 + 7.45E-1 － 7.84E-1 + 5.56E-1 － 6.18E-1 － 7.71E-1 
Std 1.30E-2 8.34E-3 5.22E-3 1.20E-2 5.92E-3 1.39E-1 3.07E-3 5.00E-3 

WFG4 

4 Mean 6.72E-1 － 6.71E-1 － 6.74E-1 － 6.49E-1 － 6.62E-1 － 5.15E-1 － 5.19E-1 － 6.91E-1 
Std 6.14E-3 4.78E-3 2.88E-3 4.26E-3 4.70E-3 1.39E-2 2.08E-2 5.61E-3 

6 Mean 7.93E-1 － 7.98E-1 － 7.57E-1 － 7.55E-1 － 7.69E-1 － 5.01E-1 － 5.14E-1 － 8.40E-1 
Std 9.09E-3 9.18E-3 5.45E-3 6.48E-3 6.65E-3 2.38E-2 2.31E-2 8.22E-3 

8 Mean 8.45E-1 － 8.29E-1 － 7.65E-1 － 7.97E-1 － 8.15E-1 － 5.02E-1 － 4.86E-1 － 9.05E-1 
Std 9.18E-3 1.13E-2 8.54E-3 1.13E-2 7.16E-3 4.40E-2 1.77E-2 1.31E-2 

10 Mean 8.54E-1 + 7.23E-1 － 7.46E-1 － 8.00E-1 － 8.42E-1 + 4.74E-1 － 4.14E-1 － 8.17E-1 
Std 1.18E-2 2.75E-2 9.19E-3 1.43E-2 7.92E-3 8.32E-2 2.83E-2 7.25E-2 

WFG5 

4 Mean 6.44E-1 － 6.31E-1 － 6.31E-1 － 6.14E-1 － 6.39E-1 － 5.04E-1 － 5.18E-1 － 6.49E-1 
Std 5.50E-3 5.54E-3 3.25E-3 3.75E-3 3.01E-3 1.05E-2 1.57E-2 4.67E-3 

6 Mean 7.78E-1 － 7.52E-1 － 7.21E-1 － 7.24E-1 － 7.51E-1 － 4.80E-1 － 5.31E-1 － 7.96E-1 
Std 7.91E-3 5.91E-3 4.09E-3 6.57E-3 5.32E-3 2.01E-2 2.65E-2 8.77E-3 

8 Mean 8.33E-1 － 7.68E-1 － 7.31E-1 － 7.65E-1 － 7.88E-1 － 4.36E-1 － 5.30E-1 － 8.50E-1 
Std 7.83E-3 1.12E-2 6.44E-3 7.35E-3 6.58E-3 1.88E-2 2.08E-2 6.95E-3 

10 Mean 8.44E-1 － 6.63E-1 － 7.03E-1 － 7.72E-1 － 8.14E-1 － 3.57E-1 － 4.71E-1 － 8.52E-1 
Std 4.04E-2 1.64E-2 6.65E-3 1.07E-2 6.07E-3 3.21E-2 2.58E-2 7.47E-3 

WFG6 

4 Mean 6.45E-1 － 6.41E-1 － 6.40E-1 － 6.16E-1 － 6.43E-1 － 5.27E-1 － 5.29E-1 － 6.51E-1 
Std 6.72E-3 8.97E-3 5.41E-3 9.02E-3 5.68E-3 2.21E-2 3.13E-2 1.02E-2 

6 Mean 7.85E-1 － 7.72E-1 7.25E-1 － 7.18E-1 － 7.58E-1 － 4.43E-1 － 5.42E-1 － 7.95E-1 
Std 7.60E-3 1.02E-2 7.50E-3 1.16E-2 8.61E-3 2.79E-2 4.13E-2 1.08E-2 

8 Mean 8.47E-1 － 8.18E-1 － 7.34E-1 － 7.54E-1 － 8.05E-1 － 3.64E-1 － 5.08E-1 － 8.54E-1 
Std 9.60E-3 1.30E-2 7.81E-3 1.07E-2 9.20E-3 2.38E-2 3.02E-2 1.03E-2 

10 Mean 8.77E-1 － 7.47E-1 － 7.03E-1 － 7.59E-1 － 8.54E-1 － 2.84E-1 － 4.30E-1 － 8.87E-1 
Std 1.18E-2 2.38E-2 6.65E-3 1.46E-2 6.90E-3 3.76E-2 4.02E-2 1.38E-2 

WFG7 

4 Mean 6.92E-1 = 6.84E-1 － 6.91E-1 － 6.64E-1 － 6.90E-1 － 5.20E-1 － 4.87E-1 － 6.92E-1 
Std 4.09E-3 6.80E-3 2.81E-3 5.92E-3 5.38E-3 1.60E-2 2.92E-2 5.72E-3 

6 Mean 8.33E-1 － 8.21E-1 － 7.93E-1 － 7.85E-1 － 8.19E-1 － 5.02E-1 － 4.63E-1 － 8.45E-1 
Std 9.01E-3 8.79E-3 4.61E-3 6.57E-3 4.96E-3 2.67E-2 3.08E-2 6.28E-3 

8 Mean 8.93E-1 － 8.75E-1 － 8.06E-1 － 8.40E-1 － 8.73E-1 － 4.10E-1 － 4.22E-1 － 9.20E-1 
Std 8.25E-3 1.02E-2 7.72E-3 1.44E-2 4.13E-3 3.86E-2 3.66E-2 8.65E-3 

10 Mean 9.13E-1 － 8.14E-1 － 7.83E-1 － 8.47E-1 － 9.14E-1 － 2.83E-1 － 3.47E-1 － 9.42E-1 
Std 9.12E-3 1.60E-2 8.06E-3 1.50E-2 4.82E-3 4.53E-2 3.59E-2 1.09E-2 

WFG8 

4 Mean 5.85E-1 － 5.79E-1 － 5.83E-1 － 5.52E-1 － 5.70E-1 － 4.70E-1 － 3.49E-1 － 6.03E-1 
Std 6.02E-3 6.27E-3 3.74E-3 8.16E-3 6.35E-3 2.14E-2 3.61E-2 4.52E-3 

6 Mean 6.92E-1 － 7.01E-1 － 6.25E-1 － 6.43E-1 － 6.47E-1 － 4.01E-1 － 2.70E-1 － 7.37E-1 
Std 9.87E-3 1.65E-2 9.09E-3 1.01E-2 1.16E-2 5.69E-2 2.85E-2 6.72E-3 

8 Mean 7.38E-1 － 7.53E-1 － 5.88E-1 － 6.90E-1 － 6.76E-1 － 2.91E-1 － 2.32E-1 － 8.05E-1 
Std 1.52E-2 2.76E-2 1.45E-2 1.05E-2 1.05E-2 7.95E-2 5.44E-2 1.25E-2 

10 Mean 7.65E-1 － 6.71E-1 － 5.28E-1 － 6.87E-1 － 7.30E-1 － 3.53E-1 － 1.07E-1 － 8.13E-1 
Std 1.46E-2 4.55E-2 1.78E-2 1.43E-2 1.57E-2 9.65E-2 3.99E-2 2.00E-2 

WFG9 

4 Mean 5.86E-1 + 5.80E-1 = 5.88E-1 + 5.98E-1 + 5.78E-1 － 4.89E-1 － 5.55E-1 － 5.80E-1 
Std 1.36E-2 1.70E-2 2.33E-2 2.27E-2 3.81E-3 1.93E-2 2.16E-2 4.62E-3 

6 Mean 6.84E-1 － 6.82E-1 － 6.62E-1 － 7.00E-1 + 6.74E-1 － 4.34E-1 － 6.29E-1 － 6.92E-1 
Std 2.86E-2 1.90E-2 2.26E-2 2.28E-2 8.25E-3 2.24E-2 1.27E-2 6.32E-3 

8 Mean 7.32E-1 = 6.92E-1 － 6.76E-1 － 7.33E-1 = 7.11E-1 － 3.98E-1 － 6.49E-1 － 7.33E-1 
Std 2.18E-2 1.90E-2 2.19E-2 1.97E-2 8.23E-3 3.50E-2 1.65E-2 8.55E-3 

10 Mean 7.26E-1 － 5.64E-1 － 6.28E-1 － 7.32E-1 － 7.14E-1 － 3.45E-1 － 6.39E-1 － 7.36E-1 
Std 2.14E-2 3.78E-2 2.30E-2 1.56E-2 9.31E-3 4.89E-2 2.35E-2 8.60E-3 

“－”, “+”, and “=” indicate that the results of the algorithm are worse than, better than, and similar to that of 
MOEA/D-HAE using Wilcoxon’s rank sum test with 0.05  , respectively 
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(CPU) and 2*16GB DDR4 2666 (RAM).  
For each test problem, all the compared algorithms are executed 30 times to get the mean value 

(Mean) and standard deviation (Std) regarding HV for performance comparisons. Please note that the best 

result in each test problem is marked with gray background and bold font in the comparison tables. 

Moreover, to make sure the statistical significance of the differences between the results obtained by 

MOEA/D-HAE and those obtained by the compared algorithms, Wilcoxon’s rank sum test is run with a 

significance level  =0.05, as suggested in [33, 37, 52]. The symbols “－”, “+”, and “=” in each 

comparison table indicate that the result of the algorithm is worse than, better than, and similar to that of 

MOEA/D-HAE, respectively. Please note that when the best result is obtained by MOEA/D-HAE and 

another compared can get the statistically similar result, all their results are marked by gray background 

and bold font in the comparison table. 

Table 2 gives all the HV comparison results on WFG test problems. As observed from Table 2, it is 

clear that MOEA/D-HAE outperforms other compared algorithms on most WFG test problems. On 

WFG1, we observe that the obtained solutions in early evolutionary stage of MOEA/D-HAE are with a 

good diversity, but this also causes the poor convergence. As WFG1 is a test problem that demands strong 

convergence, while MOEA/D-HAE prefers to maintain the diversity due to the use of AD (Algorithm 1), 

its superiority for solving WFG1 is not clear. Even so, MOEA/D-HAE is still competitive on WFG1. For 

WFG1 with 4 objectives, MOEA/D-HAE performs worse than Two_Arch2, similarly to MaOEA-CSS, 

and better than the rest competitors. The result of MOEA/D-HAE is only worse than that of Two_Arch2 

and better than those of the rest competitors on WFG1 with 6 objectives. To WFG1 with 8 objectives, 

MOEA/D-HAE performs worse than the three algorithms and is better than the other four competitors. 

When the number of objectives is increased to 10 objectives for WFG1, Two-Arch2 and MaOEA-CSS 

have better performances than MOEA/D-HAE. Thus, it is reasonable to summarize that MOEA/D-HAE 

shows a median performance on WFG1 as this test problem demands a strong convergence while the 

diversity is considered first in MOEA/D-HAE. Regarding WFG2 with all the objectives, MOEA/D-HAE 

shows the best performance. On WFG3 with 4, 8 and 10 objectives, MOEA/D-HAE is worse than 

Two_Arch2 and is better than Two_Arch2 on the 6 objectives, and outperforms other competitors. For the 

rest test problems (from WFG4 to WFG9, except for WFG4 with 10 objectives and WFG9 with 4 

objectives), it is obvious that MOEA/D-HAE gets the best performance comprehensively. Those 

comparison results demonstrate that MOEA/D-HAE has the superior performance on solving most of the 

WFG test problems. 

 Moreover, some final solution sets of MOEA/D-HAE and the competitors (i.e., MOEA/DD, 

Two_Arch2, SRA and VaEA) are provided to observe the final convergence. In Figs. 7-10, the final 
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solution sets and the true PFs on four representative test problems (WFG2, WFG4, WFG6 and WFG8 

with 10 objectives) are plotted to show the convergence. From these figures, it is observed that the final 

solutions of MOEA/D-HAE can well approximate to the true PFs for all these test problems, while other 

four algorithms cannot well converge to the PF of WFG2. Moreover, MOEA/DD and SRA also cannot 

well converge to the PFs of WFG4, WFG6 and WFG8 by observing their differences to the true PFs. 

 

  

    

Fig. 7 The final solution sets of all the tested algorithms and PF on WFG2 with 10 objectives 

 

Fig. 8 The final solution sets of all the tested algorithms and PF on WFG4 with 10 objectives 
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Fig. 9 The final solution sets of all the tested algorithms and PF on WFG6 with 10 objectives 

 
Fig. 10 The final solution sets of all the tested algorithms and PF on WFG8 with 10 objectives 

 

Table 3 gives all the HV comparison results on DTLZ test problems. As observed from the HV results 

in Table 3, MOEA/D-HAE performs very competitively on tackling DTLZ1-DTLZ4, as it performs best 

on most cases. Only for DTZL3 with 6 objectives, MOEA/D-HAE performs worse than MOEA/DD, 

NSGA-III, and SRA. Regarding the rest test problems of DTLZ1-DTLZ4, MOEA/D-HAE always obtains 

the best results. For all the test problems, MOEA/DD and NSGA-III are main competitors to 
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MOEA/D-HAE. Seeing DTLZ2-DTLZ4, the performance of NSGA-III is worse than that of MOEA/DD 

and MOEA/D-HAE. On DLTZ1, MOEA/D-HAE performs similarly to MOEA/DD and NSGA-III on 4, 6, 

8 objectives and better than them on 10 objectives. Clearly, MOEA/D-HAE outperforms NSGA-III and 

MOEA/DD on DTLZ2 and DTLZ4 with 10 objectives. SRA only gets the best results on the three test 

problems. Two_Arch2, VaEA, MaOEA-R&D and MaOEA-CSS are not good at tackling DTLZ1-DTLZ4 

in our experiments. As pointed out in [17], the uniform weight vectors in these decomposition-based 

MOEAs (like MOEA/DD) can solve DTLZ1-DTLZ4 quite well, as the used weight vectors perfectly 

match the shapes of PFs for DTLZ1-DTLZ4. Moreover, the Wilcoxon’s rank sum test shows that 

MOEA/D-HAE and MOEA/DD perform similarly on most DTLZ1-DTLZ4 with 4, 6, 8, and 10 

objectives. 
Table 3 

The HV comparison results of MOEA/D-HAE and seven competitors on the DTLZ1- DTLZ4 test problems 

Problem m  NSGA-III MOEA/DD Two_Arch2 SRA VaEA MaOEA-R&D MaOEA-CSS MOEA/D-HAE 

DTLZ1 

4 Mean 9.44E-1 = 9.44E-1 = 9.41E-1 － 9.38E-1 － 8.74E-1 － 9.35E-1 － 9.02E-1 － 9.44E-1 
Std 5.26E-3 7.02E-3 1.06E-3 1.35E-3 4.79E-2 1.76E-3 8.28E-3 4.40E-3 

6 Mean 9.92E-1 = 9.93E-1 = 9.89E-1 － 9.91E-1 － 9.01E-1 － 9.58E-1 － 9.57E-1 － 9.93E-1 
Std 4.48E-3 3.68E-3 5.77E-4 5.77E-4 5.18E-2 7.20E-3 5.84E-3 4.29E-3 

8 Mean 9.99E-1 = 9.99E-1 = 9.96E-1 － 9.98E-1 － 9.33E-1 － 8.89E-1 － 9.76E-1 － 9.99E-1 
Std 3.44E-3 1.02E-3 3.31E-4 1.79E-4 3.94E-2 5.62E-2 3.72E-3 3.06E-3 

10 Mean 9.99E-1 － 9.99E-1 － 9.96E-1 － 9.99E-1 － 9.48E-1 － 7.66E-1 － 9.79E-1 － 1.00E+0 
Std 2.59E-3 2.55E-3 3.48E-4 1.90E-4 7.52E-2 1.14E-1 3.43E-3 2.63E-3 

DTLZ2 

4 Mean 7.13E-1 － 7.15E-1 = 6.97E-1 － 7.15E-1 = 7.09E-1 － 6.64E-1 － 7.02E-1 － 7.16E-1 
Std 4.90E-3 4.25E-3 2.34E-3 1.33E-3 1.75E-3 6.10E-3 3.74E-3 5.68E-3 

6 Mean 8.73E-1 = 8.73E-1 = 8.11E-1 － 8.71E-1 － 8.58E-1 － 7.68E-1 － 8.55E-1 － 8.74E-1 
Std 5.87E-3 5.35E-3 8.57E-3 1.27E-3 2.78E-3 1.33E-2 3.87E-3 7.22E-3 

8 Mean 9.44E-1 = 9.45E-1 = 8.42E-1 － 9.35E-1 － 9.26E-1 － 7.56E-1 － 9.16E-1 － 9.45E-1 
Std 1.27E-2 8.81E-3 1.20E-2 1.48E-3 2.03E-3 1.88E-2 3.50E-3 8.26E-3 

10 Mean 9.51E-1 － 9.72E-1 － 7.94E-1 － 9.51E-1 － 9.51E-1 － 6.53E-1 － 9.33E-1 － 9.74E-1 
Std 3.57E-2 6.86E-3 1.57E-2 1.82E-3 2.22E-3 4.34E-2 4.27E-3 6.62E-3 

DTLZ3 

4 Mean 7.08E-1 － 7.14E-1 = 6.90E-1 － 7.12E-1 － 6.47E-1 － 6.84E-1 － 6.92E-1 － 7.14E-1 
Std 1.61E-2 9.38E-4 1.12E-2 3.87E-3 5.01E-2 6.90E-3 6.49E-3 4.27E-3 

6 Mean 8.70E-1 + 8.75E-1 + 8.09E-1 － 8.70E-1 + 6.67E-1 － 7.94E-1 － 8.38E-1 － 8.64E-1 
Std 5.18E-3 5.93E-3 1.36E-2 2.96E-3 7.54E-2 1.08E-2 9.34E-3 7.33E-3 

8 Mean 9.42E-1 － 9.44E-1 = 8.70E-1 － 9.36E-1 － 7.58E-1 － 7.06E-1 － 9.10E-1 － 9.44E-1 
Std 6.90E-3 8.02E-3 1.05E-2 2.38E-3 4.62E-2 5.56E-2 7.92E-3 1.38E-2 

10 Mean 9.13E-1 － 9.69E-1 = 8.60E-1 － 9.53E-1 － 8.08E-1 － 4.49E-1 － 9.30E-1 － 9.69E-1 
Std 6.40E-2 5.20E-3 1.15E-2 2.58E-3 1.57E-1 1.55E-1 5.87E-3 5.98E-3 

DTLZ4 

4 Mean 7.13E-1 － 7.14E-1 － 6.94E-1 － 7.17E-1 = 7.07E-1 － 6.80E-1 － 7.09E-1 － 7.17E-1 
Std 3.42E-3 4.08E-3 3.00E-3 1.05E-3 2.12E-3 3.48E-3 2.35E-3 3.94E-3 

6 Mean 8.75E-1 － 8.75E-1 － 7.90E-1 － 8.77E-1 = 8.57E-1 － 8.15E-1 － 8.66E-1 － 8.77E-1 
Std 6.08E-3 5.96E-3 1.20E-2 1.02E-3 2.27E-3 1.31E-2 2.41E-3 5.55E-3 

8 Mean 9.46E-1 = 9.46E-1 = 8.09E-1 － 9.44E-1 － 9.25E-1 － 8.44E-1 － 9.33E-1 － 9.46E-1 
Std 7.15E-3 7.05E-3 6.47E-3 9.98E-4 2.51E-3 1.74E-2 2.14E-3 8.00E-3 

10 Mean 9.60E-1 － 9.68E-1 － 7.89E-1 － 9.64E-1 － 9.51E-1 － 7.58E-1 － 9.54E-1 － 9.72E-1 
Std 2.39E-2 7.94E-3 1.47E-2 1.09E-3 2.92E-3 4.00E-2 3.14E-3 7.34E-3 

“－”, “+”, and “=” indicate that the results of the algorithm are worse than, better than, and similar to that of 
MOEA/D-HAE using Wilcoxon’s rank sum test with 0.05  , respectively 

 

In Fig. 11, the HV convergence processes of all the compared algorithms are plotted on solving each 

of WFG2, WFG4, WFG6, WFG8, DTLZ2 and DTLZ4 with 4 objectives. As observed from Fig. 11, when the 

number of evaluations surpasses 15000, MOEA/D-HAE has shown the superiority over other compared 

algorithms on the WFG problems. For the DTLZ cases, most of the compared algorithms perform very 

well and MOEA/D-HAE still gets the best results at the later stage of evolution. Moreover, all the 

comparison results based on the HV metric are summarized in Table 4 for all the DTLZ and WFG test  
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Fig. 11 The HV convergence processes on (a) WFG2, (b) WFG4, (c) WFG6, (d) WFG8, (e) DTLZ2 and (f) DTLZ4 
with 4 objectives 

 

problems, in which the terms “better/similar/worse” indicate that MOEA/D-HAE respectively performs 

better than, similarly to, and worse than that of the compared algorithms using Wilcoxon’s rank sum test 

with 0.05   on the WFG and DTLZ1-DTLZ4. The terms “best/all” in the last row indicates the 

proportion that the corresponding algorithm achieves the best results among all the compared algorithms 
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when solving all the 52 cases (i.e., 9 WFG and 4 DTLZ test problems with 4, 6, 8, and 10 objectives). 

The summarized results in Table 4 show that NSGA-III and MOEA/DD obtain the very promising 

performance when solving DTLZ1-DTLZ4. However, they perform poorly on most of WFG test 

problems. Obviously, MOEA/D-HAE outperforms other seven recently proposed MaOEAs on most cases 

and can well solve the WFG and DTLZ1-DTLZ4 test problems simultaneously. Please note that 

MOEA/D-HAE gets the best results on 41 out of 52 cases in these comparisons. 
 

Table 4 
The comparison summary of MOEA/D-HAE and seven competitors on the WFG and the DTLZ test problems 

 NSGA-III MOEA/DD Two_Arch2 SRA VaEA MaOEA-R&D MaOEA-CSS MOEA/D-HAE 
better/similar/worse(WFG) 32/2/2 34/1/1 28/0/8 33/1/2 34/0/2 36/0/0 33/1/2  
better/similar/worse(DTLZ) 9/6/1 5/10/1 16/0/0 14/3/1 16/0/0 16/0/0 16/0/0  

best/all 10/52 12/52 5/52 6/52 0/52 0/52 1/52 41/52 
 

4.4. The Performance of HAE as Decomposition Approach 

 In this subsection, HAE as a decomposition approach is embedded into the MOEA/D framework [53], 

which is used to compare with iPBI, LWS, PaP and PaS in tackling the WFG and DTLZ1-DTLZ4 test 

problems. It is noted that all the compared algorithms with different decomposition approaches are 

implemented under the same MOEA/D framework in order to have a fair comparison. The performance 

indicator in Section 4.2 and the setting for population sizes in Table 1 are used. Other parameters in the 

MOEA/D framework are clarified in Table 5, where T means the neighbors size, delta is the probability to 

select neighbors and nr is the number of the maximal updating. SBX and PM operators are used and their 

details are shown in Section 4.3. Due to the difference of information demanded for updating, HAE and 

LWS will do the population update procedure after combing the parents with their offspring, while iPBI, 

PaP and PaS will update the population once an offspring is generated. The nadir point of the iPBI 

approach is updated when an offspring replaces one parent, in which each element of the nadir point is 

always the maximal value of each objective of current population. 
 

Table 5 

Parameters settings in the MOEA/D framework 

T delta nr 

20 0.9 2 

 

 In Table 6, the HV experimental results of five decomposition approaches and HAE on WFG test 

problems are provided. It is obvious that HAE performs best in most of test problems except for WFG1. 

Comparing LWS with HAE, it can be found that LWS is worse than HAE obviously, especially on WFG1, 

and LWS hardly deals with WFG1 in our experiment. LWS gets the HV values under an accuracy level of  
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Table 6 
The HV comparison results of HAE and four decomposition methods on all the WFG test problems 

Problem m  LWS PaS PaP iPBI HAE 

WFG1 

4 Mean 1.21E-1 － 8.49E-1 + 8.66E-1 + 2.89E-1 － 7.01E-1 
Std 3.11E-2 2.77E-2 3.17E-2 2.87E-2 2.94E-2 

6 Mean 1.75E-2 － 8.74E-1 + 9.05E-1 + 1.43E-1 － 6.15E-1 
Std 3.43E-2 2.33E-2 2.13E-2 4.47E-2 5.28E-2 

8 Mean 0.00E+0 － 9.34E-1 + 9.40E-1 + 5.06E-2 － 5.33E-1 
Std 0.00E+0 9.65E-3 5.61E-3 3.89E-2 8.51E-2 

10 Mean 2.51E-3 － 9.15E-1 + 9.44E-1 + 3.68E-2 － 7.11E-1 
Std 4.28E-3 3.91E-2 1.60E-2 2.97E-2 8.28E-2 

WFG2 

4 Mean 8.27E-1 － 8.66E-1 － 8.70E-1 － 6.22E-1 － 9.72E-1 
Std 7.04E-2 7.35E-2 7.93E-2 4.04E-2 2.35E-3 

6 Mean 8.17E-1 － 8.80E-1 － 9.16E-1 － 5.67E-1 － 9.96E-1 
Std 8.53E-2 1.24E-1 8.83E-2 6.45E-2 2.87E-3 

8 Mean 7.91E-1 － 8.97E-1 － 9.19E-1 － 3.32E-1 － 9.95E-1 
Std 9.72E-2 － 1.15E-1 8.88E-2 3.92E-2 1.77E-3 

10 Mean 8.04E-1 － 8.53E-1 － 9.36E-1 － 3.56E-1 － 9.91E-1 
Std 9.94E-2 1.53E-1 8.43E-2 3.79E-2 3.56E-3 

WFG3 

4 Mean 7.22E-1 － 7.11E-1 － 7.71E-1 － 6.50E-1 － 8.04E-1 
Std 1.15E-2 7.21E-3 1.97E-3 1.86E-2 2.89E-3 

6 Mean 7.02E-1 － 7.44E-1 － 7.96E-1 － 5.97E-1 － 8.02E-1 
Std 8.99E-3 1.26E-2 4.43E-3 1.60E-2 5.12E-3 

8 Mean 6.21E-1 － 7.21E-1 － 7.86E-1 － 4.77E-1 － 7.62E-1 
Std 1.19E-2 9.10E-3 6.17E-3 4.81E-3 4.91E-3 

10 Mean 6.16E-1 － 7.57E-1 － 7.87E-1 － 4.84E-1 － 7.66E-1 
Std 9.94E-3 6.58E-3 7.92E-3 1.87E-2 4.32E-3 

WFG4 

4 Mean 5.41E-1 － 3.32E-1 － 3.20E-1 － 2.46E-1 － 6.91E-1 
Std 5.26E-3 3.27E-2 1.09E-2 2.06E-2 2.01E-3 

6 Mean 4.39E-1 － 4.64E-1 － 4.46E-1 － 1.48E-1 － 8.41E-1 
Std 5.85E-3 6.70E-2 2.10E-2 5.03E-3 6.35E-3 

8 Mean 3.70E-1 － 5.15E-1 － 4.87E-1 － 1.27E-1 － 9.01E-1 
Std 7.67E-3 6.58E-2 5.54E-2 2.25E-3 1.81E-2 

10 Mean 2.93E-1 － 5.57E-1 － 3.93E-1 － 1.05E-1 － 8.04E-1 
Std 5.58E-3 1.11E-1 7.31E-2 3.44E-3 5.66E-2 

WFG5 

4 Mean 5.23E-1 － 2.76E-1 － 2.70E-1 － 2.25E-1 － 6.47E-1 
Std 4.13E-3 1.88E-2 1.48E-5 1.61E-2 2.10E-3 

6 Mean 4.23E-1 － 4.00E-1 － 3.83E-1 － 1.43E-1 － 7.91E-1 
Std 6.71E-3 4.21E-2 7.58E-3 3.11E-3 6.18E-3 

8 Mean 3.51E-1 － 5.07E-1 － 3.67E-1 － 1.24E-1 － 8.52E-1 
Std 4.31E-3 5.72E-2 3.48E-2 1.99E-3 6.16E-3 

10 Mean 2.73E-1 － 5.77E-1 － 2.83E-1 － 1.03E-1 － 8.54E-1 
Std 2.83E-3 7.49E-2 2.75E-2 4.01E-3 8.53E-3 

WFG6 

4 Mean 5.40E-1 － 2.82E-1 － 2.74E-1 － 2.57E-1 － 6.49E-1 
Std 1.20E-2 1.47E-2 1.11E-2 2.85E-2 7.60E-3 

6 Mean 4.23E-1 － 3.89E-1 － 3.90E-1 － 1.44E-1 － 7.89E-1 
Std 1.02E-2 2.93E-2 1.05E-2 4.14E-3 1.12E-2 

8 Mean 3.52E-1 － 4.87E-1 － 3.34E-1 － 1.25E-1 － 8.52E-1 
Std 7.38E-3 5.63E-2 1.28E-2 3.03E-3 1.11E-2 

10 Mean 2.75E-1 － 5.37E-1 － 2.92E-1 － 1.01E-1 － 8.85E-1 
Std 9.53E-3 7.56E-2 3.81E-2 5.52E-3 1.25E-2 

WFG7 

4 Mean 5.44E-1 － 3.10E-1 － 3.17E-1 － 1.96E-1 － 6.92E-1 
Std 7.08E-3 2.06E-2 1.13E-4 1.70E-2 2.05E-3 

6 Mean 4.31E-1 － 4.23E-1 － 4.19E-1 － 1.43E-1 － 8.44E-1 
Std 1.00E-2 4.78E-2 2.50E-2 2.21E-3 5.86E-3 

8 Mean 3.68E-1 － 5.18E-1 － 3.81E-1 － 1.24E-1 － 9.20E-1 
Std 7.21E-3 9.59E-2 4.37E-3 2.65E-3 7.41E-3 

10 Mean 2.82E-1 － 5.58E-1 － 3.20E-1 － 1.01E-1 － 9.38E-1 
Std 1.27E-2 1.06E-1 1.46E-2 3.57E-3 1.06E-2 

WFG8 

4 Mean 4.97E-1 － 2.22E-1 － 2.69E-1 － 2.78E-1 － 6.03E-1 
Std 1.28E-2 8.54E-3 4.10E-2 1.23E-2 2.20E-3 

6 Mean 2.99E-1 － 3.04E-1 － 3.14E-1 － 1.74E-1 － 7.41E-1 
Std 3.29E-2 2.66E-2 2.68E-2 9.45E-3 7.62E-3 

8 Mean 2.23E-1 － 3.70E-1 － 3.39E-1 － 1.25E-1 － 8.08E-1 
Std 3.74E-2 3.30E-2 8.70E-3 2.97E-3 1.23E-2 

10 Mean 1.45E-1 － 4.24E-1 － 3.12E-1 － 1.04E-1 － 8.14E-1 
Std 6.76E-2 4.64E-2 1.63E-2 4.32E-3 2.26E-2 

WFG9 

4 Mean 5.14E-1 － 2.25E-1 － 2.61E-1 － 2.37E-1 － 5.79E-1 
Std 1.65E-2 7.12E-3 3.08E-2 2.75E-2 1.27E-3 

6 Mean 4.17E-1 － 3.27E-1 － 3.51E-1 － 1.61E-1 － 6.94E-1 
Std 1.11E-2 2.95E-2 4.09E-2 1.16E-2 7.34E-3 

8 Mean 3.55E-1 － 3.90E-1 － 4.29E-1 － 1.23E-1 － 7.31E-1 
Std 1.37E-2 4.30E-2 4.77E-2 6.16E-3 9.00E-3 

10 Mean 2.83E-1 － 4.07E-1 － 4.30E-1 － 1.03E-1 － 7.31E-1 
Std 2.21E-2 5.45E-2 6.39E-2 1.37E-2 1.41E-2 

“－”, “+”, and “=” indicate that the results of the algorithm are worse than, better than, and 
similar to that of MOEA/D-HAE using Wilcoxon’s rank sum test with 0.05  , respectively 
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10-2 on WFG1 with 6 objectives, and cannot even find any solution that can dominate the reference point 

for HV on WFG1 with 8 objectives. Considering PaS, its performance is better than HAE on WFG1, but 

it is worse than HAE apparently on the other test problems. PaP adopts the similar method as PaS, which 

adjusts its parameters to find suitable solutions, thus PaS and PaP perform comparatively on all the test 

problems. As to iPBI, it is universally worse than HAE except WFG1. The main issue of iPBI is how to 

set the nadir point that seriously influences its performance. In Table 2, the results of HAE on WFG1 are 

not so promising, as WFG1 requires strong convergence for decomposition approach and HAE executes 

the AD approach considering the diversity first, which makes the shortage of the convergence on WFG1. 

 
Table 7 

The HV comparison results of HAE and four decomposition methods on the DTLZ1- DTLZ4 test problems 

Problem m  LWS PaS PaP iPBI HAE 

DTLZ1 

4 Mean 8.26E-1 － 4.08E-1 － 7.27E-1 － 0.00E+0 － 9.45E-1 
Std 6.09E-3 4.99E-2 5.43E-2 0.00E+0 8.45E-5 

6 Mean 9.43E-1 － 5.53E-1 － 5.65E-1 － 0.00E+0 － 9.92E-1 
Std 2.07E-2 5.21E-2 1.24E-1 0.00E+0 2.03E-4 

8 Mean 7.75E-1 － 6.25E-1 － 9.53E-1 － 0.00E+0 － 9.98E-1 
Std 1.31E-2 1.42E-1 2.61E-2 0.00E+0 2.25E-3 

10 Mean 7.30E-1 － 6.52E-1 － 9.35E-1 － 0.00E+0 － 1.00E+0 
Std 1.33E-2 1.91E-1 3.14E-2 0.00E+0 2.77E-3 

DTLZ2 

4 Mean 6.29E-1 － 3.21E-1 － 3.17E-1 － 6.47E-2 － 7.15E-1 
Std 7.71E-3 1.49E-2 3.56E-9 1.08E-2 3.32E-5 

6 Mean 4.35E-1 － 4.31E-1 － 4.39E-1 － 1.60E-5 － 8.75E-1 
Std 3.08E-4 2.10E-2 1.32E-2 7.85E-6 1.52E-4 

8 Mean 7.77E-1 － 5.19E-1 － 3.78E-1 － 9.68E-4 － 9.47E-1 
Std 1.30E-2 4.39E-2 4.54E-3 9.91E-5 5.61E-3 

10 Mean 7.92E-1 － 5.86E-1 － 3.16E-1 － 9.99E-4 － 9.71E-1 
Std 2.13E-2 7.61E-2 3.73E-3 3.84E-4 6.75E-3 

DTLZ3 

4 Mean 6.21E-1 － 3.12E-1 － 3.17E-1 － 0.00E+0 － 7.13E-1 
Std 7.10E-3 2.71E-2 6.79E-4 0.00E+0 7.60E-4 

6 Mean 4.36E-1 － 4.08E-1 － 4.21E-1 － 0.00E+0 － 8.72E-1 
Std 3.28E-3 7.42E-2 4.39E-2 0.00E+0 9.63E-4 

8 Mean 7.82E-1 － 4.69E-1 － 3.82E-1 － 0.00E+0 － 9.47E-1 
Std 1.81E-2 1.31E-1 2.35E-2 0.00E+0 8.40E-3 

10 Mean 7.99E-1 － 5.58E-1 － 3.14E-1 － 0.00E+0 － 9.71E-1 
Std 2.98E-2 1.34E-1 1.30E-2 0.00E+0 6.41E-3 

DTLZ4 

4 Mean 6.67E-1 － 2.57E-1 － 2.78E-1 － 3.79E-2 － 7.15E-1 
Std 4.80E-3 6.87E-2 4.71E-2 2.27E-2 5.13E-5 

6 Mean 3.89E-1 － 3.95E-1 － 3.90E-1 － 2.05E-4 － 8.75E-1 
Std 4.41E-2 5.94E-2 7.48E-2 7.09E-4 9.14E-5 

8 Mean 8.87E-1 － 5.00E-1 － 3.78E-1 － 8.69E-4 － 9.47E-1 
Std 1.02E-2 7.17E-2 1.17E-2 2.16E-4 7.12E-3 

10 Mean 9.08E-1 － 5.66E-1 － 3.17E-1 － 1.36E-3 － 9.73E-1 
Std 8.67E-3 4.94E-2 3.12E-3 5.42E-4 6.25E-3 

“－”, “+”, and “=” indicate that the results of the algorithm are worse than, better than, and similar to that of MOEA/D-HAE 
using Wilcoxon’s rank sum test with 0.05  , respectively 

 

The HV comparison results of different decomposition approaches on DTLZ1-DTLZ4 are shown in 

Table 7. It can be seen that HAE performs best on all the test problems. It is observed that LWS is better 

than PaP, PaS and iPBI on most of test problems and iPBI hardy finds good solutions to dominate the 

reference point. By observing the standard deviation values and the mean values of the results, it can be 

found that the mean values of HAE are large relatively, while its Std values are small with an accuracy 

level of 10-3 on all the test problems. However, LWS, PaS and PaP have relative small mean values and 
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large Std values on some test problems (e.g., , DTLZ1 with 6, 8 and 10 objectives and DTLZ3 with 8 and 

10 objectives), this is because they may easily fall into local optimal PFs and cannot cover the PFs well. 

 
Table 8 

The comparison summary of HAE and four decomposition methods on the WFG and the DTLZ test problems 

 LWS PaS PaP iPBI HAE 
better/similar/worse(WFG) 36/0/0 32/0/4 32/0/4 36/0/0  
better/similar/worse(DTLZ) 16/0/0 16/0/0 16/0/0 16/0/0  

best/all 0/52 0/52 4/52 0/52 48/52 

 

 
(a)                                               (b) 

 
(c)                                              (d) 

Fig. 12 the average running times of LWS, PaS, PaP, iPBI and HAE on DTLZ1-DTLZ4 and WFG1-WFG9 

 

 All the comparison results based on the HV metric are summarized in Table 8 for all the DTLZ and 

WFG test problems, in which the terms “better/similar/worse” indicate that HAE respectively performs 

better than, similarly to, and worse than that of the compared decomposition approaches using Wilcoxon’s 

rank sum test with 0.05   on the WFG and DTLZ1-DTLZ4 test problems. The terms “best/all” in the 

last row indicates the proportion that the corresponding algorithm achieves the best results among all the 
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compared algorithms when solving all the 52 cases (i.e., 9 WFG and 4 DTLZ test problems with 4, 6, 8, 

and 10 objectives). The summarized results in Table 8 show that HAE obtains the very promising 

performance and performs better than other decomposition approaches on most cases of all the test 

problems adopted. 

Moreover, the average running times for different decomposition approaches (i.e., LWS, PaS, PaP, 

iPBI and HAE) are also recorded to analyze their efficiencies on solving all the used test problems. It is 

noted that all the compared approaches are implemented using Java in a personal computer with Intel i5 

8600K@4.7Ghz (CPU) and 2*16GB DDR4 2666 (RAM). Figs. 12(a), (b), (c) and (d) show the average 

running times of 30 runs for LWS, PaS, PaP, iPBI and HAE, when solving each of DTLZ1-DTLZ4 and 

WFG1-WFG9 with 4, 6, 8 and 10 objectives, respectively. It can be found that iPBI gives the best results 

of the average running times on all the cases due to its simplicity, while HAE obtains the 2nd rank on all 

the cases, as it needs to sequentially run two decomposition approaches. LWS runs more slowly than 

HAE, as the solutions in LWS may need to calculate their aggregated functions for many times. At last, 

PaS and PaP show the slowest running speed, as their adopted greedy algorithms are more time 

consuming. 

4.5. Parameter Sensitivity Analysis in HAE  

In MOEA/D-HAE, only one parameter needs to be pre-set, i.e., the   value for the HAE approach. 

In order to study its effect, different   values, i.e., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9   are examined 

on all the WFG test problems with 4 objectives, and the same settings for other parameters in Section 4.3 

are used. Table 9 collects all the HV comparison results for MOEA/D-HAE with the different  values, 

where “－”, “+”, and “=” indicate that the result of MOEA/D-HAE with 0.1   is better than, worse than, 

and similar to that of MOEA/D-HAE with other values of   using Wilcoxon’s rank sum test with 

0.05  , respectively. 
Table 9 

The HV comparison results of HAE with 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9   on WFG test problems with 4 objectives 

Problem PF Geometry  0.1   0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9   
WFG1 Convex 

Mixed 
Mean 7.22E-1 7.04E-1 － 6.89E-1 － 6.69E-1 － 6.45E-1 － 6.17E-1 － 6.11E-1 － 6.03E-1 － 5.98E-1 － 
Std 2.89E-2 3.57E-2 3.30E-2 3.65E-2 4.84E-2 4.86E-2 5.84E-2 5.92E-2 5.88E-2 

WFG2 Convex 
Disconnected 

Mean 9.64E-1 9.71E-1 + 9.70E-1 + 9.71E-1 + 9.71E-1 + 9.70E-1 + 9.70E-1 + 9.70E-1 + 9.71E-1 + 
Std 2.85E-2 3.62E-3 4.07E-3 4.13E-3 5.43E-3 5.23E-3 5.52E-3 5.18E-3 3.75E-3 

WFG3 Linear 
Degenerate 

Mean 8.05E-1 8.03E-1 － 8.00E-1 － 8.01E-1 － 8.00E-1 － 8.00E-1 － 7.99E-1 － 8.00E-1 － 7.99E-1 － 
Std 3.64E-3 4.58E-3 5.45E-3 4.92E-3 5.11E-3 4.94E-3 6.28E-3 5.47E-3 5.52E-3 

WFG4 Concave Mean 6.91E-1 6.90E-1 = 6.91E-1 = 6.90E-1 = 6.90E-1 = 6.91E-1 = 6.91E-1 = 6.90E-1 = 6.90E-1 = 
Std 5.61E-3 5.03E-3 4.62E-3 5.42E-3 5.99E-3 6.20E-3 6.12E-3 7.50E-3 6.71E-3 

WFG5 Concave Mean 6.49E-1 6.48E-1 = 6.48E-1 = 6.48E-1 = 6.48E-1 = 6.48E-1 = 6.48E-1 = 6.48E-1 = 6.49E-1 = 
Std 4.67E-3 6.29E-3 5.63E-3 4.19E-3 5.62E-3 4.67E-3 4.87E-3 7.27E-3 7.68E-3 

WFG6 Concave Mean 6.51E-1 6.52E-1 = 6.51E-1 = 6.50E-1 = 6.50E-1 = 6.52E-1 = 6.50E-1 = 6.50E-1 = 6.50E-1 = 
Std 1.02E-2 8.00E-3 9.77E-3 9.82E-3 8.95E-3 9.75E-3 1.00E-2 9.59E-3 8.50E-3 

WFG7 Concave Mean 6.91E-1 6.92E-1 = 6.92E-1 = 6.92E-1 = 6.91E-1 = 6.92E-1 = 6.92E-1 = 6.91E-1 = 6.92E-1 = 
Std 4.34E-3 5.03E-3 5.66E-3 4.14E-3 5.05E-3 4.51E-3 5.93E-3 6.39E-3 4.56E-3 

WFG8 Concave Mean 6.03E-1 6.03E-1 = 6.03E-1 = 6.04E-1 = 6.04E-1 = 6.04E-1 = 6.03E-1 = 6.02E-1 = 6.03E-1 = 
Std 4.52E-3 5.15E-3 4.54E-3 5.79E-3 5.63E-3 5.33E-3 4.50E-3 5.08E-3 5.46E-3 

WFG9 Concave Mean 5.80E-1 5.79E-1 = 5.79E-1 = 5.79E-1 = 5.79E-1 = 5.79E-1 = 5.79E-1 = 5.80E-1 = 5.80E-1 = 
Std 4.62E-3 4.25E-3 5.01E-3 5.08E-3 4.66E-3 4.58E-3 3.75E-3 5.19E-3 2.87E-3 

“－”, “+”, and “=” indicate that the results of the parameter are worse than, better than, and similar to that of HAE with 
0.1   using Wilcoxon’s rank sum test with 0.05  , respectively 
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In Table 9, the HV comparison results of HAE with different   values are provided. On WFG1 with 

convex and mixed PF, the HV values decrease with the increase of the   value, which shows that the 

solution of WFG1 with 4 objectives needs strong convergence pressure. On WFG2, the HV value for 

0.1   is clearly worse than that with the other   values. From 0.2   to 0.9  , their HV results 

change slightly, and they are statistically similar to each other by Wilcoxon’s rank sum test with 0.05  . 

MOEA/D-HAE is more effective to find the marginal solutions from the population for covering the 

whole PF when 0.2  . For WFG3 with linear and degenerate geometry, the HV value with 0.1   is 

better than that with 0.2  . Observing 0.2   to 0.9   on WFG3, it can be found that the 

performance is not significantly impacted by the   value and it indicates that the convergence weights 

more than the marginal exploitation on WFG3. For the rest cases (in WFG4-WFG9), it can be observed 

that most of the HV results for MOEA/D-HAE with 0.1   are statistically similar to that of 

MOEA/D-HAE with 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9  . The reason may be that the true PFs of 

WFG4-WFG9 are concave and continuous. In this case, the HAE approach has few contributions to these 

test problems. The angle-based decomposition approach is able to find the suitable solutions associated to 

most of subproblems. Therefore, for most of test problems adopted in this paper, the setting of   would 

not significantly affect the performance of MOEA/D-HAE. 

5. Conclusions and Future Work 

In this paper, we have presented the hybrid angle-encouragement decomposition approach, which is 

embedded into a general framework of MOEAs. The proposed algorithm includes the angle-based 

decomposition and the EBI decomposition approaches. The former one defines the feasible region for 

each subproblem and only selects the solutions in this area for association, which helps to maintain the 

diversity first and also consider the convergence when several solutions are under the feasible region. 

When the subproblems are not associated to any solution using the angle-based decomposition method, 

the latter one (EBI) is executed to only consider the convergence and to extend the boundaries of current 

population, as there has not any solution under the feasible region. Compared with several competitive 

MaOEAs (i.e., NSGA-III, MOEA/DD, Two_Arch2, SRA, VaEA, MaOEAR&D, and MaOEA-CSS), the 

experiments confirm the superiority of MOEA/D-HAE when solving different types of MaOPs (i.e., the 

DTLZ1-DTLZ4 and WFG test problems with various objectives). Moreover, the advantages of HAE as a 

hybrid decomposition approach are also confirmed under the MOEA/D framework by comparing with 

other competitive decomposition approaches designed for MaOPs (i.e., iPBI, LWS, PaP, and PaS). 

Our future work will further study the performance of the proposed hybrid decomposition approach 

in other decomposition-based MOEAs, such as MOEA/D-FRRMAB [65] with multiple differential 

evolution operators. Furthermore, the extension of MOEA/D-HAE to solve some real-world applications 
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will also be studied. 
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