
A Divide-and-Conquer based Efficient Non-dominated
Sorting Approach

Sumit Mishraa,∗, Sriparna Sahab, Samrat Mondalb, Carlos A. Coello Coelloa

aDepartamento de Computacion, CINVESTAV-IPN, Mexico City, D.F. 07360, Mexico
bDepartment of Computer Science & Engineering

Indian Institute of Technology Patna, Patna, Bihar – 801106, India

Abstract

In general, evolutionary algorithms are very prevalent in solving multi-objective
optimization problems. Pareto-based multi-objective evolutionary algorithms
are popularly used in solving different multi-objective optimization problems.
These algorithms work using several steps, non-dominated sorting being the
most salient one. However, this non-dominated sorting step is associated with
a high computational complexity. In the past, different approaches have been
proposed for non-dominated sorting. In this paper, to address the problem of
non-dominated sorting, a framework called DCNS (Divide-and-conquer based
non-dominated sorting) is developed. Based on this DCNS framework, four dif-
ferent approaches are proposed. The best case time complexity of our proposed
DCNS framework is proved to be O(N logN + MN) for M ≥ 2 where N is
the number of solutions and M is the number of objectives. This best case
time complexity is better than the best case time complexities of various other
approaches. The number of dominance comparisons performed by the proposed
framework is lower than those from other state-of-the-art approaches in different
scenarios. The proposed framework has the parallelism property and the scope
of parallelism is also discussed.

Keywords: Non-dominated sorting, dominance relation, computational
complexity, parallelism

1. Introduction

Over the past years, various multi-objective evolutionary algorithms (MOEAs)
have been developed for solving multi-objective optimization problems (MOOPs).
The algorithmic complexity of Pareto-based MOEAs is still high because of the
complexity of non-dominated sorting. The concept of non-dominated sorting is

∗Corresponding author
Email addresses: smishra@computacion.cs.cinvestav.mx (Sumit Mishra),

sriparna@iitp.ac.in (Sriparna Saha), samrat@iitp.ac.in (Samrat Mondal),
ccoello@cs.cinvestav.mx (Carlos A. Coello Coello)

Preprint submitted to Journal of LATEX Templates September 4, 2018

also used in various fields of study such as game theory, economics, computa-
tional geometry and databases [1]. Let P = {sol1, sol2, . . . , solN} be a popula-
tion of N solutions in M -dimensional objective space where M is the number
of objectives associated with each solution. A solution sol in M -dimensional
objective space is represented as sol = {f1(sol), f2(sol), . . . , fM (sol)} where
fm(sol), 1 ≤ m ≤ M is the value of sol for the mth objective. We are consider-
ing the minimization problem where all the objectives need to be minimized. In
non-dominated sorting, the solutions are sorted based on dominance relation-
ship between the solutions. Formally, the dominance relationship between two
solutions is defined as follows.

Definition 1 (Dominance). A solution soli is said to dominate another so-
lution solj denoted as soli ≺ solj if the two following conditions are satisfied:

• fm(soli) ≤ fm(solj),∀m ∈ {1, 2, . . . ,M}
• fm(soli) < fm(solj),∃m ∈ {1, 2, . . . ,M}

The notation soli ⊀ solj represents that soli does not dominate solj. Two solu-
tions soli and solj are said to be non-dominated when neither dominates other,
i.e., soli ⊀ solj and solj ⊀ soli.

Now, we formally define non-dominated sorting.

Definition 2 (Non-dominated Sorting). Non-dominated sorting divides a
set of N solutions {sol1, sol2, . . . , solN} into different fronts {F1, F2, . . . , FK}
which are arranged in decreasing order of their dominance such that the two
following conditions are satisfied:

• ∀soli, solj ∈ Fk: soli ⊀ solj and solj ⊀ soli (1 ≤ k ≤ K)

• ∀sol ∈ Fk, ∃sol′ ∈ Fk−1: sol′ ≺ sol (2 ≤ k ≤ K).

Front F1 has the highest dominance, front F2 has the second highest dominance
and so on. The last front FK has the lowest dominance.

O
bj

ec
tiv

e-
2

(M
in

im
iz

e)

Objective-1 (Minimize)

Front-1
Front-2
Front-3

sol1

sol2 sol3

sol4

sol5 sol6 sol7

sol8
1

2

3

4

5

6

7

1 2 3 4 5 6 7

Figure 1: A population with eight solutions in 2-dimensional objective space which is divided
into three fronts.

2

Example 1. Let P = {sol1, sol2, . . . , sol8} be a population of eight solutions
in a 2-dimensional objective space as shown in Figure 1. For a minimiza-
tion problem, these eight solutions are divided into three fronts where F1 =
{sol1, sol2, sol4, sol5, sol8}, F2 = {sol3, sol6} and F3 = {sol7}.

In the current work, we present a divide-and-conquer based non-domina-
ted sorting (DCNS) framework.1 This work is an extension of our previous
work [2]. In the previous work we have presented a divide-and-conquer based
non-dominated sorting framework and experimentally validated it. The major
changes with respect to this previous work are as follows. Here, we have explic-
itly presented the algorithm to reduce the number of dominance comparisons
without using extra space. The number of dominance comparisons is further
reduced with the use of extra space. The best case time complexity is proved to
be O(N logN + MN). Also, the parallelism is theoretically analyzed in three
different scenarios in different ways. The main contributions of the current
paper are thus summarized as follows:

• We propose a framework for non-dominated sorting based on a divide-
and-conquer strategy which has the parallelism property.

• Four variants of this DCNS framework are introduced varying the search
type and space requirements.

• For many cases, the number of dominance comparisons is significantly
reduced by our proposed DCNS framework.

• DCNS has the best case time complexity of O(N logN + MN) which
occurs when all the solutions are in different fronts. This best case time
complexity is better than the best case time complexity of most of the
existing approaches for M > 3.

• According to [3], [4], the processing time of non-dominated sorting is
bounded from below by O(N logN). Jensen et al. [3] showed that this
lower bound holds for M = 2. In this paper, we show that the processing
time of non-dominated sorting is bounded from below by O(N logN) for
M ≥ 3 and also when M = O(logN). However, the upper bound on the
processing time is still O(MN2).

The remainder of this paper is organized as follows. Section 2 summarizes
some of the previous works on non-dominated sorting. We discuss our proposed
DCNS framework in Section 3. The detailed description of the merge proce-
dure which is the basis of our DCNS framework is provided in Section 4. Our
proposed DCNS framework is experimentally evaluated in Section 5. Finally,
Section 6 summarizes the paper and provides some possible paths for future
research.

1A preliminary version of this paper was presented at the 2016 IEEE Congress on Evolu-
tionary Computation [2].

3

2. Related Work

In this section, we discuss several approaches for non-dominated sorting.
Srinivas et al. [5] presented a non-dominated sorting procedure which is con-
sidered as a naive approach. In the naive approach for non-dominated sorting,
each solution is compared with respect to all the other solutions. The solutions
which are not dominated by any other solution are assigned to the first front.
All the solutions which are assigned to the first front are not considered now.
Again, the solutions are compared with each other and the solutions which are
not dominated by any other solution are assigned to the second front. This
process is repeated until all the solutions are assigned to a front. The worst
case time complexity of this approach is O(MN3) when all the solutions are
in different fronts. However, the best case time complexity is O(MN2) when
all the solutions are in a single front. The space complexity of this approach
is O(N) [6]. Deb et al. [6] proposed a computationally cost effective approach
called fast non-dominated sorting (FNDS) with time complexity O(MN2) and
space complexity O(N2). In this approach, each solution is compared with
other solutions only once. Jensen et al. [3] proposed a non-dominated sorting
approach for 2 objectives. This approach first sorts all the solutions based on
the first objective. If two solutions share identical values for the first objective,
then the value of second objective is considered. After pre-sorting, the solutions
are assigned to their respective fronts. The time complexity of this approach is
O(N logN) and the space complexity is O(1) [7]. For more than two objectives,
Jensen et al. [3] proposed a recursive approach based on the divide-and-conquer
strategy. The time complexity of this approach is O(N logM−1N) and the
space complexity is O(MN). However, this approach is not suitable when two
solutions have the same value for a particular objective.

Fang et al. [8] proposed an efficient non-dominated sorting method based on
a divide-and-conquer strategy. The worst case time complexity of this method
is O(MN2) when all the solutions are non-dominated. The best case time com-
plexity of this method is O(MN logN). The space complexity of this method
is O(MN). However, this algorithm considers one solution as dominated by
another if two solutions are duplicates. A fast method for constructing the
non-dominated set based on arena’s principle is proposed by Tang et al. [9].
This approach can achieve a time complexity of O(MN

√
N) in some cases [7].

Climbing sort and deductive sort were developed by McClymont et al. [10]. In
general, the performance of deductive sort is better than climbing sort [10]. De-
ductive sort avoids some unnecessary dominance comparisons by inferring the
dominance relationship between the solutions. The worst case time complex-
ity of deductive sort is O(MN2) with O(N) space complexity. The best case
time complexity of deductive sort is O(MN

√
N). Fortin et al. [11] removed

the assumption of Jensen’s algorithm, but removing this assumption increases
the worst case time complexity to O(MN2). However, the average case time
complexity remains O(N logM−1N).

Corner sort is proposed by Wang et al. [12] with worst case time complexity
O(MN2). Efficient non-dominated sorting (ENS) was developed by Zhang et

4

al. [7]. ENS first pre-sorts the solutions. After pre-sorting, the solutions are
assigned to their respective fronts using two search techniques. Based on the
search technique, two variants of ENS – ENS-SS (ENS with sequential search)
and ENS-BS (ENS with binary search) are developed. ENS-SS and ENS-BS
both require O(MN2) time in the worst case. The best case time complexity
of ENS-SS and ENS-BS is O(MN

√
N) and O(MN logN), respectively. The

time complexity of non-dominated sorting was proved to be O(N logM−1N)
by Buzdalov et al. [13]. Bao et al. [14] proposed a Hierarchical Non-dominated
Sorting (HNDS) for non-dominated sorting. HNDS first sorts the solution based
on the first objective, then the solutions are assigned to their respective front.
The best case time complexity of HNDS is O(MN

√
N) and the worst case time

complexity is O(MN2) with space complexity O(N).
In general, for a solution to be inserted in a front, it needs to be compared

with respect to all the solutions in that particular front. However, it has been
shown that there is no need to do so in all cases. A solution can be inserted
in a front by comparing it with some of the solutions in that front. Several
approaches based on this idea have been recently proposed [1, 15, 16]. Best order
sort (BOS) [1] first sorts the solutions based on each objective individually unlike
ENS [7] where the solutions are sorted based on the first objective. BOS is very
efficient in terms of the number of dominance comparisons. Another advantage
of BOS is that when two solutions are compared in terms of dominance, there is
no need to compare all the objectives because of the comparison set concept [1].
The worst case time complexity is O(MN2) and the best case time complexity
is O(MN logN). The space complexity of BOS is O(MN). However, in its
current form, BOS is not suitable when there are duplicate solutions in the
population. BOS has been recently generalized to handle duplicate solutions
by removing the comparison set concept.2 If the comparison set concept is
removed, then the time to compare two solutions may be increased as all the
objectives have to be considered when solutions are compared.

A tree-based efficient non-dominated sorting approach known as T-ENS [15]
has also been proposed in the literature. This approach first sorts the population
based on the first objective to ensure that the latter solutions cannot dominate
the former solutions. In this approach, a non-dominated front is represented
as a tree which keeps track of the non-domination relationships between the
solutions. The use of the tree saves many unnecessary dominance comparisons.
The worst case time complexity of T-ENS is O(MN2). The best case time
complexity is O(MN logN/logM). However, T-ENS is not suitable when the solu-
tions share identical values for any of the objectives [16]. Recently, an efficient
non-dominated sorting approach with non-dominated tree (ENS-NDT) [16] has
been developed by extending ENS-BS [7], with a worst case time complexity
of O(MN2). The best case time complexity of ENS-NDT is O(MN logN)
when M > logN ; otherwise, it is O(N log2N). Few other approaches like
[17, 18, 19, 20] have been recently proposed for non-dominated sorting.

2https://github.com/Proteek/Best-Order-Sort/

5

Some of these approaches [21, 22, 23, 24, 25, 26, 27] were proposed for steady-
state evolutionary algorithms where a solution needs to be inserted into a set
of fronts.

3. Proposed Framework

In the current work, we have developed a divide-and-conquer based frame-
work for non-dominated sorting. We call this framework DCNS (Divide-and-
Conquer based Non-dominated Sorting). The DCNS framework is shown in
Algorithm 1. DCNS is a two-phased framework.

In the first phase, sorting of the solutions is performed based on the first
objective [2, 3, 7, 15, 16]. If two solutions have the same value for the first
objective, then the values of the second objective are considered for sorting. If
two solutions have the same value for the second objective, then the values of
the third objective are considered for sorting and so on. If two solutions are the
same (in terms of objectives values), then any order can be followed. In this
manner, solutions are sorted. This phase is called Pre-sorting. After sorting
the population based on the first objective, a solution soli will never dominate
a solution solj if i > j, 1 ≤ i, j ≤ N [2, 3, 7, 15, 16].

Algorithm 1 DCNS framework

Input: P: Population in M -dimensional space
Output: Non-dominated fronts in sorted order

1: Sort P in ascending order based on the first objective
// Assign the sorted solutions to F

2: for i← 1 to N do // Consider the solutions in sorted order
3: F1 ← {P(i)} // Consider a solution as a front
4: Fi ← {F1} // Consider a front as a set of fronts
5: F← F ∪ {Fi} // Add set of fronts to F

// Steps of non-dominated sorting
6: for i← 1 to dlog2Ne do // For each level
7: for each set of fronts F ∈ F do
8: F ′ ← Next set of fronts to F
9: if F ′ exists then

10: Merge(F ,F ′) // Insert all the solutions from F ′ to F
11: Delete F ′
12: return F(1) // Final non-dominated fronts are in F(1)

In the second phase, the actual sorting is performed. Our approach is based
on divide-and-conquer strategy. So, initially we consider N sets of fronts. A
set of fronts can have multiple sub-fronts where each sub-front can have several
solutions. Initially, a set of fronts contains only one solution, i.e., each set of
fronts has a single front and this single front has only one solution. Formally, let
F = {F1,F2, . . . ,FN} be the N sets of fronts where each set of fronts Fi = {F1}

6

and F1 = {soli} , 1 ≤ i ≤ N . The set of fronts in F at the ith position is referred
to as F(i), 1 ≤ i ≤ N .

The DCNS framework is based on a divide-and-conquer strategy. A binary
tree type structure is followed which observes a bottom up strategy. The basis of
the framework is a merge operation which merges two sets of fronts. The merge
operations are performed in a total of dlog2Ne levels because of the height of
the tree which is dlog2Ne. At each level, two consecutive sets of fronts are
merged. The merge operation is performed using the Merge(F ,F ′) procedure
which is described in detail in Section 4. The following example illustrates the
working flow of the proposed framework.

Example 2. Let P = {sol1, sol2, . . . , sol8} be a population of eight solutions in
2-dimensional objective space as shown in Figure 1. The first phase sorts the
solutions based on the first objective. In the second phase, the actual sorting
is performed. As the number of solutions is eight, the height of the tree L =
dlog 8e = 3. Hence, the merge operations are performed at three different levels.
The complete procedure is shown in Figure 2.

4. Merge Procedure

The merge procedure is summarized in Algorithm 2 which merges two sets
of fronts F = {F1, F2, . . . , FP } and F ′ =

{
F ′1, F

′
2, . . . , F

′
Q

}
. The uth solution

in front Fp(1 ≤ p ≤ P) is denoted as Fp(u). Similarly, the vth solution in
front F ′q(1 ≤ q ≤ Q) is denoted as F ′q(v). The fronts in these sets of fronts
are arranged in decreasing order of their dominance. In the merge procedure,
initially the solutions of F ′1 are inserted into F , then the solutions of F ′2 are
inserted and so on. Whenever a solution is inserted in F , it is removed from
F ′ so that a solution occupies only one place. After the insertion of all the
solutions from front F ′ ∈ F ′ in F , front F ′ is also removed (see lines 4 and
9 of Algorithm 2). In the merge procedure, the dominance relationships as
discussed in [2] are considered which helps in avoiding unnecessary dominance
comparisons.

In the merge procedure, the insertion of a front F ′ ∈ F ′ in F is performed
either by Algorithm 3 (Insert() procedure) which uses constant space or by
Algorithm 6 (Insert-WS() procedure) which uses O(N) space.

Initially, the solutions of front F ′1 are inserted which find their positions in F
by comparing with the solutions of different fronts starting from the first front.
When the solutions of the next front (i.e., F ′2) are inserted, then these solutions
do not start comparing with the solutions of the first front in F because of
the dominance relationship [2]. Let the index of the front in F from where
the solutions of front F ′ ∈ F ′ start the comparison be denoted by α, i.e., the
solutions of F ′ start comparing with Fα. The solutions of the first front F ′1
start comparing with F1 so the initial call to either Insert() or Insert-WS()
is with α = 1.

When a front F ′ is inserted into F using either the Insert() or the Insert-
WS() procedure, then it returns an index value which indicates the index of the

7

– – – – – – – – Eight solutions for sorting – – – – – – – –

sol1 sol2 sol3 sol4 sol5 sol6 sol7 sol8

– – – – – – – – Solutions after Pre-sorting – – – – – – – –

sol1 sol2 sol4 sol3 sol5 sol6 sol7 sol8

– – – – – Consider each solution as a set of fronts – – – – –
F1 F2 F3 F4 F5 F6 F7 F8

sol1 sol2 sol4 sol3 sol5 sol6 sol7 sol8

sol1, sol2 sol4 sol3 sol5 sol6 sol7 sol8

sol1, sol2 sol4 sol5 sol6 sol7 sol8
sol3

sol1, sol2 sol4 sol5 sol7 sol8
sol3 sol6

sol1, sol2 sol4 sol5 sol7, sol8
sol3 sol6

– – – – – – – – – – – – – LEVEL-1 – – – – – – – – – – – – –

sol1, sol2, sol4 sol5 sol7, sol8
sol3 sol6

sol1, sol2, sol4 sol5, sol8
sol3 sol6

sol7

– – – – – – – – – – – – – LEVEL-2 – – – – – – – – – – – – –

sol1, sol2, sol4, sol5, sol8
sol3, sol6

sol7

– – – – – – – – – – – – – LEVEL-3 – – – – – – – – – – – – –

Figure 2: Working flow of the proposed DCNS framework. indicates the merge operation
between the immediate left and right set of fronts. soli, . . . , solj represent that these solutions
are non-dominated to each other. The solutions are merged at three different levels.

front in F having the highest dominance where the solutions of front F ′ have
been inserted. When the next front of F ′ is inserted into F , then solutions of
this front start the dominance comparison with front Fα+1. Each time a front
F ′ is inserted into F , α is updated accordingly. If the value of α is equal to
the cardinality of F after the insertion of front F ′, i.e., all the solutions of F ′

are either inserted in FP or in FP+1, then all the remaining fronts of F ′ are
inserted into F directly without any dominance comparison with the solutions

8

Algorithm 2 Merge(F ,F ′)
Input: Two sets of fronts F , F ′
Output: Updated F after insertion of all the solutions from F ′

1: α← 0
2: for each front F ′ ∈ F ′ do
3: α← Insert(F , F ′, α+ 1) // Insert all the solutions from F ′ to F
4: F ′ ← F ′ \ {F ′} // Delete the inserted front from F ′
5: if α = |F| then
6: Break

// Add the solutions of remaining fronts of F ′ to F without comparison
7: for each front F ′ ∈ F ′ do
8: F ← F ∪ {F ′} // Add all the solutions of F ′ to F
9: F ′ ← F ′ \ {F ′} // Delete the inserted front from F ′

of F (see lines 7 – 9 of Algorithm 2). Next, we discuss the Insert() and the
Insert-WS() procedures one by one in detail.

Algorithm 3 Insert(F , F ′, α)

Input: F : Set of fronts, F ′: Front for insertion in F , α: Index of the front in
F from where the solutions of F ′ start the dominance comparison

Output: hfi: Index of the front in F having the highest dominance in which
the solutions of front F ′ are inserted

1: P ← |F| // Store the cardinality of F
2: hfi← P + 1 // Initialize hfi
3: ΥfIndex ← 0, ΥnSol ← 0 // Initialize Υ
4: for each solution sol ∈ F ′ do
5: Insert-SS(F , sol) // Insert sol in F
6: F ′ ← F ′ \ {sol} // Delete sol from F ′

7: return hfi

4.1. Insert Procedure without Extra Space

The procedure to insert the solutions of a front F ′ in F , which requires
constant space is discussed in Algorithm 3. This procedure uses a variable hfi
(highest front index) to keep track of α. hfi stores the index of the front in F
having the highest dominance in which the solutions of front F ′ are inserted. As
all the solutions of F ′ are non-dominated with each other, so, when the solutions
of F ′ are inserted into F , then the solutions of F ′ can add a maximum of one
front in F . The solutions of F ′ can also be inserted into the existing fronts in
F . It may also be possible that some of the solutions of F ′ are inserted into
the existing fronts, whereas some are inserted into the newly created front. So,
initially the value of hfi is set to P + 1 where P is the number of fronts in F
before insertion of front F ′.

9

A set Υ = {ΥfIndex,ΥnSol} stores two pieces of information – (i) the index of
the front in F in which the previous solution of front F ′ was inserted (denoted
by ΥfIndex) and (ii) the number of solutions in FΥfIndex

when the last time a
solution of front F ′ was inserted in a different front other than FΥfIndex

(denoted
by ΥnSol). The set Υ is used to avoid unnecessary dominance comparisons.
Initially, ΥfIndex is set to 0 and ΥnSol is also set to 0. Consider the following
example which illustrates the importance of Υ.

Example 3. Let F = {F1} be the set of fronts where there is only a sin-
gle front. F1 = {sol1, sol2, . . . , sol8}. Consider the solutions of a front F ′ =
{sol9, sol10, . . . , sol16} which need to be inserted in F . Let all the solutions of
front F ′ will be inserted in F1. When sol9 is inserted into F , it is compared
with all the eight solutions in F1. Now, ΥfIndex = 1 and ΥnSol = 8. When sol10

is inserted into F , it is compared with the first eight (ΥnSol = 8) solutions in
F1 and not with nine solutions. As sol10 and sol9 are from front F ′ hence both
are non-dominated, so there is no need to compare sol10 with sol9. The remain-
ing solutions of F ′ are only compared with the first eight solutions. The use of
Υ helps in reducing the number of dominance comparisons. Table 1 shows the
number of dominance comparisons after insertion of each solution of front F ′ in
F considering Υ and without considering Υ. This table shows that the number
of dominance comparisons is reduced when Υ is used.

Table 1: Number of dominance comparisons required to insert the solutions of front F ′ in F .

Inserted Solution sol9 sol10 sol11 sol12 sol13 sol14 sol15 sol16

Dominance comparisons without Υ 8 9 10 11 12 13 14 15
Dominance comparisons with Υ 8 8 8 8 8 8 8 8

The solution sol ∈ F ′ can be inserted in F using a sequential search based
strategy or a binary search based strategy as in [7, 2].

4.1.1. Sequential Search based Strategy

The procedure to insert a solution sol in F using a sequential search based
strategy is given in Algorithm 4. sol is compared with the solutions of each of
the fronts in F starting from Fα to FP in a sequential manner.

A set Υ is considered to reduce the unnecessary dominance comparisons. So,
we first check whether the previous solution was inserted in the pth front which
is to be explored (line 5). If this condition is true, then sol is compared with the
initial ΥnSol solutions of Fp; otherwise, sol is compared with all the solutions of
Fp. If sol is non-dominated with respect to all the solutions of Fp, then sol is
inserted in Fp, and hfi and Υ are updated accordingly. If sol is dominated by
any of the solutions in Fp, then sol is compared with the solutions of the next
front, i.e., Fp+1. If sol is dominated by each of the compared fronts, then sol is
inserted into FP+1.

10

Algorithm 4 Insert-SS(F , sol)

Input: F : Set of fronts, sol: Solution for insertion in F
Output: Updated Υ and hfi based on the insertion of sol

1: insertionDone← False // sol is not yet inserted
2: for p← α to P do // Check for each front in F starting from αth front
3: domCount← 0
4: nSolFront← |Fp| // Number of solutions in Fp
5: if p = ΥfIndex then // Previous solution of F ′(sol∈F ′) was inserted in Fp
6: nSolFront← ΥnSol // sol will be compared with maximum nSolFront

solutions in Fp

7: for u← 1 to nSolFront do
8: if sol is non-dominated with Fp(u) then
9: domCount← domCount + 1

10: else
11: Break // Check for next front in F
12: if domCount = nSolFront then // sol is non-dominated with all the solu-

tions of Fp
13: Fp ← Fp ∪ {sol} // Insert sol in Fp
14: insertionDone← True // Insertion of sol is done
15: if p < hfi then // sol is inserted into higher dominance front than hfi
16: hfi← p // Update hfi

17: if p 6= ΥfIndex then
18: ΥfIndex ← p, ΥnSol ← domCount // Update Υ

19: Break // Do not check other fronts

20: if insertionDone = False then // sol is not yet inserted
21: FP+1 ← FP+1 ∪ {sol} // Insert sol in front FP+1

4.1.2. Binary Search based Strategy

The procedure to insert a solution sol in F using a binary search based
strategy is given in Algorithm 5. As opposed to the sequential search based
strategy, sol is not compared with each of the fronts in F starting from Fα
to FP , but rather only dlog(P − α + 2)e fronts are considered for comparison
purposes. Here, we are not creating the tree explicitly, rather the set of fronts
are visualized as a tree.

We have considered two variables L and R to follow the tree structure.
Initially, L is set to α and R is set to P . At first, sol is compared with Fmid

where mid = b(L+R)/2c. Like sequential search, we first check whether the
previous solution was inserted in Fmid or not (line 5). If this condition is true,
then sol is compared with the initial ΥnSol solutions of Fmid; otherwise, sol is
compared with all the solutions of Fmid. If sol is non-dominated with respect
to all the solutions of Fmid to which it is compared (line 12), then there are two
possibilities:

• If a leaf of the tree is reached (i.e., mid = L), then sol is inserted in Fmid

11

Algorithm 5 Insert-BS(F , sol)

Input: F : Set of fronts, sol: Solution for insertion in F
Output: Updated Υ and hfi based on the insertion of sol

1: L← α, R← P , mid← b(L+R)/2c
2: while True do // Position of sol in F is not identified
3: domCount← 0
4: nSolFront← |Fmid| // Number of solutions in Fmid

5: if mid = ΥfIndex then // Previous solution of F ′(sol ∈ F ′) was inserted
in Fmid

6: nSolFront← ΥnSol // sol will be compared with a maximum of
nSolFront solutions in Fmid

7: for u← 1 to nSolFront do
8: if sol is non-dominated with respect to Fmid(u) then
9: domCount← domCount + 1

10: else
11: Break // Check for other front in F
12: if domCount = nSolFront then // sol is non-dominated with respect to

all the solu- tions of Fmid

13: if mid = L then // The front at leaf is explored
14: Fmid ← Fmid ∪ {sol} // Insert sol in Fmid

15: if mid < hfi then // sol is inserted into higher dominance front than
hfi

16: hfi← mid // Update hfi

17: if mid 6= ΥfIndex then
18: ΥfIndex ← mid, ΥnSol ← domCount // Update Υ

19: Break // Insertion of sol is done
20: else
21: R← mid− 1, mid← b(L+R)/2c // Explore left sub-tree

22: else
23: if L = P then // Right most leaf is explored
24: FP+1 ← FP+1 ∪ {sol} // Insert sol in FP+1

25: Break // Insertion of sol is done
26: else if mid = R then // sol is dominated by leaf node
27: FR+1 ← FR+1 ∪ {sol} // Insert sol in FR+1

28: Break // Insertion of sol is done
29: else
30: L← mid + 1, mid← b(L+R)/2c // Explore right sub-tree

and hfi as well as Υ is updated. After this, the process terminates.

• Otherwise, (mid 6= L) the root of the left sub-tree is checked.

If sol is dominated by any of the solutions of Fmid, then there are three possi-
bilities:

12

• If the rightmost node of the tree is reached (i.e., L = P), then sol is
inserted in FP+1 and the process terminates.

• If sol is dominated by the leaf node, (i.e., mid = R), then sol is inserted
in FR+1 and the process terminates.

• Otherwise, the root of the right sub-tree is checked.

Example 4. Consider two sets of fronts F = {{sol1, sol2, sol4} , {sol3}} and
F ′ = {{sol5, sol8} , {sol6} , {sol7}} which are merged at the last level in Figure 2.
Figure 3 shows the working of the merge procedure to merge two sets of fronts F
and F ′ using a sequential search based strategy to insert a solution from F ′ in F .
Here, the Insert() procedure is called three times corresponding to the number
of fronts in F ′. In the first Insert() procedure, the Insert-SS() procedure
is called twice because the first front in F ′ has two solutions. Similarly, in the
second and third Insert() procedures, the Insert-SS() procedure is called once
as there is only a single solution in the second and third fronts of F ′.

sol1 sol2 sol4 sol5 sol8
sol3 sol6

sol7
F F ′

(a) Two sets of fronts

sol1 sol2 sol4 sol5 sol8
sol3 sol6

sol7
F F ′

(b) Insertion of sol5

sol1 sol2 sol4 sol5 sol8 sol6
sol3 sol7

F F ′

(c) Insertion of sol8

sol1 sol2 sol4 sol5 sol8 sol7
sol3 sol6

F F ′

(d) Insertion of sol6

sol1 sol2 sol4 sol5 sol8
sol3 sol6
sol7

F

(e) Insertion of sol7

Figure 3: Working of the Merge() procedure to merge two sets of fronts F and F ′. The
solutions of each front in F ′ are inserted one by one in F . The solution which is added to F
is shown in boldface in F .

Algorithm 6 Insert-WS(F , F ′, α)

Input: Same as Algorithm 3
Output: Same as Algorithm 3

1: P ← |F| // Store the cardinality of F
2: hfi← P + 1 // Initialize hfi
3: Ψ [1, 2, . . . , P−α+1]← Φ // Initialize an array to store the cardinality of the

fronts in F
4: for p← α to P do
5: Ψ[p− α+ 1]← |Fp| // Store the cardinality of front Fp

6: for each solution sol ∈ F ′ do
7: Insert-SS-WS(F , sol) // Insert sol in F
8: F ′ ← F ′ \ {sol} // Delete sol from F ′

9: return hfi

13

Table 2: Maximum number of dominance comparisons required to insert the solutions of front
F in F .

Inserted Solution sol9 sol10 sol11 sol12 sol13 sol14 sol15 sol16

Dominance comparisons with Υ 8 4 8 4 8 4 8 4
Dominance comparisons with Ψ 8 4 9 5 11 6 13 7

4.2. Extra space is required

The procedure to insert all the solutions of front F ′ in F is presented in
Algorithm 6 when extra space is required for insertion of a solution in the set of
fronts. When the solutions from a front F ′ are inserted into F , then the number
of fronts in F can be increased by 1. So, the value of hfi is set to P+1 where P is
the number of fronts in F before insertion of front F ′. In this procedure, before
insertion of the solutions from front F ′ into F , a vector Ψ of length P − α + 1
is initialized with the number of solutions in each front Fp, α ≤ p ≤ P . This
is used to prevent unnecessary dominance comparisons when multiple solutions
from front F ′ are inserted in a particular front Fp. When a solution from front
F ′ is compared with the solutions of Fp, then it is compared with the initial
Ψ[p − α + 1] solutions and not with all the solutions. This is because all the
solutions of front F ′ are non-dominated with each other. So, there is no need to
compare them with each other. Consider the following example which illustrates
the benefit of storing the number of solutions in each front in F .

Example 5. Let F = {F1, F2} be the set of two fronts where F1 = {sol1, sol2, sol3,
sol4} and F2 = {sol5, sol6, sol7, sol8}. Consider the solutions of front F ′ =
{sol9, sol10, . . . , sol16} which need to be inserted into F in alternate fronts (sol9
sol11, sol13, sol15 are inserted in F2 and sol10, sol12, sol14, sol16 are inserted in
F1). When the insertion is performed using Algorithm 3 (Υ is used) and Al-
gorithm 6 (Ψ is used) considering a sequential search based strategy, then the
maximum number of dominance comparisons corresponding to the insertion of
each of the solutions is given in Table 2. The calculation of the number of
dominance comparisons given in Table 2 is explained in Appendix A.

There are two ways to insert a solution sol ∈ F ′ in F depending on the
search type – sequential or binary.

4.2.1. Sequential Search based Strategy

The sequential search based strategy to insert a solution sol in F is sum-
marized in Algorithm 7. sol is compared with each of the fronts in F starting
from Fα to FP in a sequential manner. When sol is compared with a front Fp,
then it is compared only with the initial Ψ[p − α + 1] solutions and not with
all of them. If sol is non-dominated with respect to all the solutions to which
it is compared, then it is inserted in Fp and hfi is updated accordingly. If sol is
dominated by all the compared fronts, then sol is inserted into FP+1.

4.2.2. Binary Search based Strategy

A binary search based strategy to insert a solution sol in F is summarized
in Algorithm 8. Here also, when sol is compared with a front Fmid, then it is

14

Algorithm 7 Insert-SS-WS(F , sol)
Input: F : Set of fronts, sol: Solution for insertion in F
Output: Updated hfi depending upon the insertion of sol

1: insertionDone← False // sol is not yet inserted
2: for p← α to P do // Check for each front starting from αth front
3: domCount← 0
4: for u← 1 to Ψ[p− α+ 1] do
5: if sol is non-dominated with Fp(u) then
6: domCount← domCount + 1
7: else
8: Break // Check for next front in F
9: if domCount = Ψ[p− α+ 1] then // sol is non-dominated with all the

solutions of Fp
10: Fp ← Fp ∪ {sol} // Insert sol in Fp
11: insertionDone← True // Insertion of sol is done
12: if p < hfi then // sol is inserted into higher dominance front than hfi
13: hfi← p // Update hfi

14: Break // Do not check other fronts

15: if insertionDone = False then // sol is not yet inserted
16: FP+1 ← FP+1 ∪ {sol} // Insert sol in front FP+1

compared only with the initial Ψ[mid − α + 1] solutions and not with all the
solutions.

Based on the space requirement and search type, there are four variants of
our proposed DCNS framework.

(i). DCNS-SS: DCNS approach with constant space and sequential search

(ii). DCNS-BS: DCNS approach with constant space and binary search

(iii). DCNS-SS-WS: DCNS approach with linear space and sequential search

(iv). DCNS-BS-WS: DCNS approach with linear space and binary search

4.3. Time Complexity Analysis

The complexity of the DCNS framework is analyzed under various scenarios
as discussed in [7] and [10]. Our DCNS framework consists of two phases.
Heapsort [28] can be adopted in the first phase with time complexity O(N logN)
as in [7]. So, the worst case time complexity of the first phase is O(MN logN).
The best case time complexity is O(N logN) when all the solutions have distinct
values for the first objective. Let L be the height of the tree. Assume ΓSS,
ΓSS-WS, ΓBS and ΓBS-WS are the number of dominance comparisons performed
by DCNS-SS, DCNS-SS-WS, DCNS-BS and DCNS-BS-WS, respectively. Now
we discuss the time complexity of our framework in three different scenarios.

15

Algorithm 8 Insert-BS-WS(F , sol)
Input: F : Set of fronts, sol: Solution for insertion in F
Output: Updated hfi depending upon the insertion of sol

1: L← α, R← P , mid← b(L+R)/2c
2: while True do // Position of sol in F is not identified
3: domCount← 0
4: for u← 1 to Ψ[mid− α+ 1] do
5: if sol is non-dominated with Fmid(u) then
6: domCount← domCount + 1
7: else
8: Break // Check for other fronts in F
9: if domCount = Ψ[mid− α+ 1] then // sol is non-dominated with

respect to all the solutions of Fmid

10: if mid = L then // The front at leaf is explored
11: Fmid ← Fmid ∪ {sol} // Insert sol in Fmid

12: if mid < hfi then // sol is inserted into higher dominance front than
hfi

13: hfi← mid // Update hfi

14: Break // Insertion of sol is done
15: else
16: R← mid− 1, mid← b(L+R)/2c // Explore left sub-tree

17: else
18: if L = P then // Right most leaf is explored
19: FP+1 ← FP+1 ∪ {sol} // Insert sol in FP+1

20: Break // Insertion of sol is done
21: else if mid = R then // sol is dominated by leaf node
22: FR+1 ← FR+1 ∪ {sol} // Insert sol in FR+1

23: Break // Insertion of sol is done
24: else
25: L← mid + 1, mid← b(L+R)/2c // Explore right sub-tree

4.3.1. All Solutions are in a Single Front

In this case, binary search performs like sequential search as the number of
fronts is one. The proposed approach with and without extra space also performs
the same because there is a single front in each set of fronts at every level of the
merge operations and the number of solutions in a single front is stored only.
Thus, the values of ΓSS, ΓSS-WS, ΓBS and ΓBS-WS are the same. Each set of
fronts has a single front because all the solutions belong to a single front. Thus,
in the Merge() procedure, the Insert() or the Insert-WS() procedure is
called just once. The number of solutions in each set of fronts at the lth level is
2l−1. So, the number of dominance comparisons using Algorithms 4, 5, 7 and 8
to insert a solution at the lth level is 2l−1. These algorithms are called 2l−1 times
in Algorithms 3 or 6 corresponding to each of the 2l−1 solutions which need to
be inserted. Thus, the number of dominance comparisons in the Insert() or the

16

Insert-WS() procedure at the lth level is 2l−1×2l−1. Therefore, the Merge()
procedure performs 2l−1 × 2l−1 dominance comparisons at the lth level. The
number of merge operations at the lth level is N/2l. So, the total number of
dominance comparisons in this case is obtained by Eq. (1).

ΓSS =
∑L

l=1

(
N

2l

)(
2l−1

) (
2l−1

)
=

1

2
N(N−1) (1)

Thus, the time complexity of the second phase in this case is O(MN2). The
first phase has a worst case time complexity of O(MN logN). So, the overall
time complexity is O(MN2).

4.3.2. All Solutions are in Separate Fronts

Here, binary and sequential search perform differently because the number
of fronts is more than one. The proposed approach with and without extra space
performs the same because each front has a single solution in all the set of fronts
at every level of the merge operations and the number of solutions in a single
front is stored only which is always 1. Thus, ΓSS = ΓSS-WS and ΓBS = ΓBS-WS.

When two sets of fronts F and F ′ are merged, then after the insertion of
the solution of the first front from F ′ in F , the solutions of the remaining fronts
from F ′ are added to F without performing any dominance comparison because
all the solutions are in different fronts. Before the merge operation, the number
of solutions in each set of fronts at the lth level is 2l−1. All the solutions in
F ′ are dominated by each of the solutions of F . So, a solution of F ′ needs to
be compared and dominated by 2l−1 solutions in F using a sequential search
based strategy. Using a binary search based strategy, a solution of F ′ needs to
be compared and dominated by dlog

(
2l−1 + 1

)
e solutions in F . The number of

merge operation at the lth level is N/2l. Thus, the total number of dominance
comparisons using sequential search is obtained by Eq. (2). The total number
of dominance comparisons using binary search is obtained by Eq. (3).

ΓSS =
∑L

l=1

(
N

2l

)(
2l−1

)
(1) =

1

2
N logN (2)

ΓBS =
∑L

l=1

(
N

2l

)(⌈
log
(
2l−1 + 1

)⌉)
(1) = 2N − logN − 2 (3)

Before the merge operations at the lth level, there are 2l−1 fronts in each set of
fronts, out of which the solution of 2l−1 − 1 fronts are added directly to the F
which requires O(2l−1) time. Thus, the total time to directly add the solutions

without dominance comparisons is
∑L
l=1

N
2l

(
2l−1 − 1

)
= O(N logN). Thus, the

time complexity of the second phase is O(MN logN+N logN) = O(MN logN)
using a sequential search based strategy, whereas O(MN + N logN) using a
binary search based strategy. The best case time complexity of the first phase
is O(N logN). Thus, the overall best case time complexity of both DCNS-BS
and DCNS-BS-WS is O(N logN +MN).

17

4.3.3.
√
N solutions in each of the

√
N fronts

Here, we discuss the time complexity when
√
N fronts contain equal number

of solutions. Each solution in a front dominates all the solutions in its succeed-
ing front. Here, binary and sequential search perform differently because the
number of fronts is more than one. Till the L/2th level, there is a single front
in each set of fronts at every level of the merge operations and the number of
solutions in a single front is stored only. After the L/2th level, the number of
solutions in each front in both sets of fronts at every level of the merge opera-
tions is fixed to

√
N . So, the proposed approach with and without extra space

performs the same because of the dominance nature of the solutions. Thus,
ΓSS = ΓSS-WS and ΓBS = ΓBS-WS.

As each front has
√
N = 2L/2 solutions, so till the L/2th level, each set of

fronts has a single front. Thus, in the Merge() procedure, the Insert() or the
Insert-WS() procedure is called just once. The number of solutions in each
set of fronts at the lth level is 2l−1. So, the number of dominance comparisons
using Algorithms 4, 5, 7 and 8 to insert a solution at the lth level is 2l−1. These
algorithms are called 2l−1 times in Algorithms 3 or 6 corresponding to each of
the 2l−1 solutions which need to be inserted. Thus, the number of dominance
comparisons in the Insert() or the Insert-WS() procedure at the lth level is
2l−1×2l−1. Therefore, the Merge() procedure performs 2l−1×2l−1 dominance
comparisons at the lth level. The number of merge operations at the lth level is
N/2l. So, the total number of dominance comparisons in this case till the L/2th

level is
∑L/2
l=1

(
N
2l

) (
2l−1

) (
2l−1

)
.

After L/2th level, each set of fronts has 2l−(L/2+1) fronts at the lth level and
each front has

√
N = 2L/2 solutions. When two sets of fronts F and F ′ are

merged at the lth(L/2+1 ≤ l ≤ L) level, then the solutions of only the first front
of F ′ are compared with the solutions of F . The solutions of the remaining
2l−(L/2+1) − 1 fronts from F ′ are added directly to F . The solutions of the first
front in F ′ are compared with only a single solution in each of the fronts in
F because each solution in a front is dominated by all the solutions in its pre-
ceding front. Thus, the number of dominance comparisons after the L/2th level

performed by DCNS-SS and DCNS-SS-WS is
∑L
l=L/2+1

(
N
2l

) (
2l−(L/2+1)

) (
2L/2

)
and the number of dominance comparisons performed by DCNS-BS and DCNS-
BS-WS is

∑L
l=L/2+1

(
N
2l

) (⌈
log
(
2l−(L/2+1) + 1

)⌉) (
2L/2

)
. The values of ΓSS and

ΓSS-WS can be obtained using Eq. (4). Similarly, the values of ΓBS and ΓBS-WS

can be obtained using Eq. (5).

ΓSS =
∑L/2

l=1

(
N

2l

)(
2l−1

) (
2l−1

)
+
∑L

l=L/2+1

(
N

2l

)(
2l−(L2 +1)

)(
2
L
2

)
=

1

2
N
(√

N − 1
)

+
1

4
N logN (4)

ΓBS =

L/2∑
l=1

(
N

2l

)(
2l−1

) (
2l−1

)
+

L∑
l=L/2+1

(
N

2l

)(⌈
log
(

2l−(L2 +1) + 1
)⌉)(

2
L
2

)

18

=
1

2
N
(√

N − 1
)

+
1

2

√
N
(

4
√
N − logN − 4

)
(5)

When two sets of fronts F and F ′ are merged at the lth(L/2+1 ≤ l ≤ L) level,
then the solutions of only the first front of F ′ are compared with the solutions
of F . The solutions of the remaining 2l−(L/2+1) − 1 fronts from F ′ are added
directly to F . So, a total of

∑L
l=L/2+1

(
N
2l

) (
2l−(L/2+1) − 1

) (
2L/2

)
solutions are

added directly to F which requires O(N logN) time. Thus, the time complexity
of the second phase of all the four variants is O(MN

√
N + N logN) which is

O(MN
√
N). The first phase has a worst case time complexity O(MN logN).

So, the overall time complexity is O(MN
√
N).

The number of dominance comparisons performed by different non-dominated
sorting approaches in three different scenarios are given in Table 3. This table
clearly shows that the DCNS-based approaches are efficient regarding the num-
ber of dominance comparisons in two scenarios.

Table 3: Number of dominance comparisons performed by various non-dominated sorting
approaches in three different scenarios.

Approach
N solutions N solutions in N solutions are equally

in single front N fronts divided into
√

N fronts

FNDS [6] 1
2N(N − 1) 1

2N(N − 1) 1
2N(N − 1)

Deductive [10] 1
2N(N − 1) 1

2N(N − 1) 1
2 (N − 1)(

√
N+1)∗

ENS-SS [7] 1
2N(N − 1) 1

2N(N − 1) N(
√
N − 1)

ENS-BS [7] 1
2N(N − 1) N logN − (N − 1) 1

2N(
√
N − 1) +N log

√
N −

√
N(
√
N − 1)

DCNS-SS
1
2N(N − 1) 1

2
N log N 1

2
N(
√
N−1) + 1

4
N log N

DCNS-SS-WS

DCNS-BS
1
2N(N − 1) 2N − log N − 2 1

2
N(
√
N − 1) + 1

2

√
N(4
√
N − log N − 4)

DCNS-BS-WS

∗Assumption: The first solution selected at each iteration is in the current front [10].

4.4. Space Complexity Analysis

Our DCNS framework consists of two phases. Heapsort [28] can be adopted
in the first phase with a space complexity of O(1) as in [7]. The first phase of
our DCNS framework works in constant space so the first phase does not have
any role in the overall space complexity of our DCNS framework. The space
complexity consists of the extra space required except for the initial population
and the final fronts Fk(1 ≤ k ≤ K). Each solution is considered as a set of fronts.
Thus, initially there are N sets of fronts (which contain a single solution). As
the sorting proceeds, these sets of fronts get reduced and finally it becomes one
which contains the final fronts. The list data structure can be used to store the
set of fronts.

The important point in space complexity is how the merge operation is
preformed: (i) without storing the cardinality of each front in the first set

19

Table 4: Space and Time complexities of different approaches.

Approach
Space Time Complexity

Complexity Best Case Worst Case

Naive approach O(N) O(MN2) O(MN3)

FNDS [6] O(N2) O(MN2) O(MN2)

Jensen [3] O(MN) O(MN logN) O(N logM−1N)

Deductive Sort [10] O(N) O(MN
√
N) O(MN2)

ENS-SS [7] O(1) O(MN
√
N) O(MN2)

ENS-BS [7] O(1) O(MN logN) O(MN2)

BOS [1] O(MN) O(MN logN) O(MN2)

T-ENS† [15] O(MN) O(MN logN/logM) O(MN2)

ENS-NDT‡ [16] O(N logN) O(MN logN) O(MN2)

DCNS-SS O(1) O(MN logN) O(MN2)

DCNS-BS O(N) O(N log N + MN) O(MN2)

DCNS-SS-WS O(N) O(MN logN) O(MN2)

DCNS-BS-WS O(N) O(N log N + MN) O(MN2)

†Not suitable when the solutions share identical values for any of the objectives [16].

‡Space complexity – worst: O(N logN), best: O(logN), average: O(N).

of fronts which is considered in DCNS-SS and DCNS-BS and (ii) storing the
cardinality considered in DCNS-SS-WS and DCNS-BS-WS. In the first case,
only Υ is used which takes constant space, whereas the space required by the
second case is O(N). In case of a sequential search based strategy, the fronts
in F are accessed sequentially. However, in the case of the binary search based
strategy, there is a direct access to the fronts in F . So, for direct access of
the fronts in F , the pointers to the fronts in F are stored in an array. So, the
space required in this case is O(N). Hence, the space complexity of DCNS-SS
is O(1) and the space complexity of DCNS-BS is O(N). The space complexity
of DCNS-SS-WS and DCNS-BS-WS is O(N).

In a nutshell, the specification of our DCNS framework is given in Table 4.
The worst and best case time complexities of several approaches along with
their space complexity is also given in Table 4. The best case time complexity
of our approach is better than all other approaches for M > 3. However, the
worst case time complexity is the same as most of the other approaches.

4.5. Scope of Parallelism in our DCNS Framework

In this section, we discuss the scope of parallelism in our DCNS frame-
work. The comparison between different solutions in the naive approach can
also be performed simultaneously. So, the naive approach also has the paral-
lelism property. The parallel version of fast non-dominated sort [6] is discussed
in [29, 30, 31]. Jensen’s approach [3] is a divide-and-conquer algorithm so it can
also be implemented in a parallel environment [21].

20

In the first phase of ENS [7], solutions can be sorted based on the first
objective using some parallel sorting algorithm like parallel merge sort [32].
In the second phase, a solution can be compared with all the solutions in a
particular front simultaneously. Thus, ENS also has the parallelism property.
However, when all the solutions are in different fronts, then each front has a
single solution. So, when a solution is compared with the other fronts, then it
cannot be performed in parallel because each front has a single solution. Hence,
when all the solutions are in different fronts, then the second phase of ENS does
not have the parallelism property.

In BOS [1], the solutions can be sorted based on the second to M th objective
simultaneously. Also, the solutions can be sorted based on each objective using
some parallel sorting algorithm like parallel merge sort. Also, while assigning
rank to the solutions in BOS, solutions can be ranked based on each objective
simultaneously. Also, a solution can be compared with all the solutions which
have been assigned the same rank based a particular objective, simultaneously.

In our DCNS framework, the parallelism in the first phase depends on the
sorting algorithm used. If merge sort is used, then the first phase has the
parallelism property. In the merge sort, all the merge operations at a level
can be performed in parallel. However, to achieve a better speedup, the merge
operation itself can be implemented in such a way that it also has the parallelism
property [32].

In the second phase of our DCNS framework, all the merge operations at the
same level are independent of each other. So, they can be performed simultane-
ously. In our DCNS framework, the merge operation itself has the parallelism
property. There can be three ways to achieve parallelism in the second phase
which are discussed as follows:
Version-1: Different merge operations at the same level can be performed
simultaneously.
Version-2: Different merge operations at the same level can be performed
simultaneously. Also all the solutions of a front F ′ ∈ F ′ can be compared with
the solutions of a front F ∈ F simultaneously. However, a solution of a front
F ′ is compared with all the solutions of a front F in a serial manner.
Version-3: Different merge operations at the same level can be performed
simultaneously. Also all the solutions of a front F ′ ∈ F ′ can be compared with
the solutions of a front F ∈ F simultaneously. Also, a solution of a front F ′ is
compared with all the solutions of a front F simultaneously.

The parallelism in these three different ways are discussed in detail in Ap-
pendix B.

5. Experimental Analysis

In this section, we compare the performance of our proposed approaches
namely DCNS-SS, DCNS-BS, DCNS-SS-WS and DCNS-BS-WS with four state-
of-the-art non-dominated sorting approaches: fast non-dominated sort (FNDS) [6],
deductive sort (DS) [10], ENS-SS [7] and ENS-BS [7].

21

0 1000 2000 3000 4000 5000
10

2

10
4

10
6

10
8

#Solutions

#D
om

in
an

ce
 C

om
pa

ri
so

ns

(a) M = 2

0 1000 2000 3000 4000 5000
10

3

10
4

10
5

10
6

10
7

10
8

#Solutions

#D
om

in
an

ce
 C

om
pa

ri
so

ns

(b) M = 5

0 1000 2000 3000 4000 5000
10

3

10
4

10
5

10
6

10
7

10
8

#Solutions

#D
om

in
an

ce
 C

om
pa

ri
so

ns

(c) M = 10

0 1000 2000 3000 4000 5000
10

3

10
4

10
5

10
6

10
7

10
8

#Solutions

#D
om

in
an

ce
 C

om
pa

ri
so

ns

(d) M = 20

0 1000 2000 3000 4000 5000
10

−2

10
−1

10
0

10
1

10
2

10
3

#Solutions

R
un

ti
m

e
(m

s)

(e) M = 2

0 1000 2000 3000 4000 5000
10

−2

10
−1

10
0

10
1

10
2

10
3

#Solutions

R
un

ti
m

e
(m

s)

(f) M = 5

0 1000 2000 3000 4000 5000
10

−1

10
0

10
1

10
2

10
3

10
4

#Solutions

R
un

ti
m

e
(m

s)

(g) M = 10

0 1000 2000 3000 4000 5000
10

−1

10
0

10
1

10
2

10
3

10
4

#Solutions

R
un

ti
m

e
(m

s)

(h) M = 20

Figure 4: Performance of different non-dominated sorting approaches in terms of the number
of dominance comparisons and running times for the cloud dataset. (a) – (d) show the number
of dominance comparisons, whereas (e) – (h) show the running time (in milliseconds).

22

0 10 20 30 40 50 60 70
10

4

10
5

10
6

10
7

#Fronts

#D
om

in
an

ce
 C

om
pa

ri
so

ns

(a) M = 2

0 10 20 30 40 50 60 70
10

4

10
5

10
6

10
7

#Fronts

#D
om

in
an

ce
 C

om
pa

ri
so

ns

(b) M = 5

0 10 20 30 40 50 60 70
10

4

10
5

10
6

10
7

#Fronts

#D
om

in
an

ce
 C

om
pa

ri
so

ns

(c) M = 10

0 10 20 30 40 50 60 70
10

4

10
5

10
6

10
7

#Fronts

#D
om

in
an

ce
 C

om
pa

ri
so

ns

(d) M = 20

0 10 20 30 40 50 60 70
10

−1

10
0

10
1

10
2

10
3

#Fronts

R
un

ti
m

e
(m

s)

(e) M = 2

0 10 20 30 40 50 60 70
10

0

10
1

10
2

10
3

#Fronts

R
un

ti
m

e
(m

s)

(f) M = 5

0 10 20 30 40 50 60 70
10

0

10
1

10
2

10
3

#Fronts

R
un

ti
m

e
(m

s)

(g) M = 10

0 10 20 30 40 50 60 70
10

0

10
1

10
2

10
3

#Fronts

R
un

ti
m

e
(m

s)

(h) M = 20

Figure 5: Performance of different non-dominated sorting approaches in terms of the number
of dominance comparisons and running times for the fixed front dataset. (a) – (d) show the
number of dominance comparisons, whereas (e) – (h) show the running time (in milliseconds).

23

5.1. Experiments with the Cloud Dataset

For our experiments, we adopted the cloud dataset [7], but we have varied
the size of the population from 100 to 5000 with an increment of 100 as done
in [7]. Four different objectives – 2, 5, 10 and 20 are considered. The num-
ber of dominance comparisons and the running times (in miliseconds) for this
setup are shown in Figure 4. For two objectives, DCNS outperforms FNDS, De-
ductive sort and ENS-SS while it underperforms ENS-BS both in terms of the
number of dominance comparisons as well as in terms of running time. For five
objectives, ENS-SS outperforms the other approaches in terms of both the num-
ber of comparisons and running time. DCNS-SS and DCNS-SS-WS outperform
ENS-BS and deductive sort. For ten objectives, DCNS-SS-WS and ENS-SS per-
form almost the same number of dominance comparisons whereas DCNS-SS-WS
takes less time than the other approaches. For twenty objectives, DCNS-SS-WS
and DCNS-BS-WS outperform DCNS-SS and DCNS-BS and require almost the
same number of comparisons as the ENS-based approaches.

5.2. Experiments with the Fixed Front Dataset

We also adopted the fixed front dataset [7], with a population size of 2000.
In this case, we vary the number of fronts from 2 to 20 with an increment
of 1 as done in [7]. Four different numbers of objectives – 2, 5, 10 and 20
are considered. The number of dominance comparisons and running times (in
miliseconds) for this setup are shown in Figure 5. ENS-SS and deductive sort
perform a very similar number of dominance comparisons for sorting. ENS-BS
outperforms ENS-SS when the number of fronts increases. As the number of
fronts increases, DCNS based approaches outperform ENS-BS with respect to
the number of dominance comparisons. From the Figures 5(a) – 5(d), it is clear
that the number of dominance comparisons is the same for all the four objectives.
This is because the number of fronts as well as the number of solutions inside
the front are the same for a population with a different number of objectives.
Also, the dominance nature of the solutions among the fronts is the same.

5.3. Experiments using NSGA-II as the Underlying Optimization Technique

We have also evaluated the performance of the proposed non-dominated
sorting approaches when those are incorporated in NSGA-II [6]. Benchmark
problems DTLZ1, DTLZ2, DTLZ3 and DTLZ4 [33] with 2, 5, 10 and 20 objec-
tives were adopted to assess performance. There is no need to sort the entire
population by Fast non-dominated sort and Deductive sort in MOEAs [7]. How-
ever, ENS-SS, ENS-BS and DCNS based algorithms require to sort the entire
population. While evaluating the performance, this fact is taken into consid-
eration. The number of generations is set to 250 and the population size is
set to 200 as done in [7]. Other parameters are kept the same as done in [6].
Table 5 shows the number of dominance comparisons and the running times (in
miliseconds) of different sorting approaches when those are embedded in NSGA-
II. This table shows that FNDS requires the maximum number of dominance
comparisons to sort the population because it compares each solution with other

24

T
a
b

le
5
:

P
er

fo
rm

a
n

ce
o
f

n
o
n

-d
o
m

in
a
te

d
so

rt
in

g
a
lg

o
ri

th
m

s
in

te
rm

s
o
f

th
e

n
u

m
b

er
o
f

d
o
m

in
a
n

ce
co

m
p

a
ri

so
n

s
(#

d
cm

p
)

a
n

d
ru

n
n

in
g

ti
m

es
(i

n
m

il
li
se

co
n

d
s)

w
h

en
th

ey
a
re

in
co

rp
o
ra

te
d

in
N

S
G

A
-I

I
fo

r
so

lv
in

g
D

T
L

Z
1
,

D
T

L
Z

2
,

D
T

L
Z

3
a
n

d
D

T
L

Z
4
.

B
es

t
v
a
lu

es
a
re

m
a
rk

ed
in

b
o
ld

fa
c
e
.

T
e
st

O
b

j.
F

N
D

S
D

S
E

N
S

-S
S

E
N

S
-B

S
D

C
N

S
-S

S
D

C
N

S
-B

S
D

C
N

S
-S

S
-W

S
D

C
N

S
-B

S
-W

S
P

ro
b

le
m

#
d
cm

p
ti

m
e(

m
s)

#
d
cm

p
ti

m
e(

m
s)

#
d
cm

p
ti

m
e(

m
s)

#
d
cm

p
ti

m
e(

m
s)

#
d
cm

p
ti

m
e(

m
s)

#
d
cm

p
ti

m
e(

m
s)

#
d
cm

p
ti

m
e(

m
s)

#
d
cm

p
ti

m
e(

m
s)

D
T

L
Z

1

2
3.

99
e+

7
4.

19
e+

2
1.

66
e+

7
1.

36
e+

2
1
.3

7
e
+

7
1
.2

9
e
+

2
1
.7

3
e+

7
2.

0
2
e+

2
1
.4

0
e+

7
1
.5

6
e+

2
1
.6

4
e+

7
1.

8
8
e+

2
1
.4

0
e+

7
1.

5
4e

+
2

1
.6

2
e+

7
2.

4
3
e+

2
5

3.
99

e+
7

6.
67

e+
2

1.
89

e+
7

3.
42

e+
2

1
.7

4
e
+

7
2
.7

5
e
+

2
1
.8

3
e+

7
3.

8
0
e+

2
1
.8

0
e+

7
2
.8

2
e+

2
1
.8

6
e+

7
2.

9
7
e+

2
1
.7

5
e+

7
2
.7

5
e
+

2
1
.8

1
e+

7
3.

7
8
e+

2
10

3.
99

e+
7

1.
23

e+
3

1.
95

e+
7

6.
23

e+
2

1
.8

9
e
+

7
5
.1

0
e+

2
1
.9

0
e+

7
5.

8
9
e+

2
1
.9

3
e+

7
4
.9

3
e+

2
1
.9

3
e+

7
5.

2
3
e+

2
1
.9

0
e+

7
4
.8

6
e
+

2
1
.9

0
e+

7
6.

0
9
e+

2
20

3.
99

e+
7

1.
95

e+
3

1.
97

e+
7

1.
00

e+
3

1
.9

6
e
+

7
7
.8

3
e+

2
1
.9

6
e
+

7
8.

9
0
e+

2
1
.9

6
e
+

7
7
.6

2
e
+

2
1
.9

6
e
+

7
7.

7
7
e+

2
1
.9

6
e
+

7
7.

7
3e

+
2

1
.9

6
e
+

7
8.

8
2
e+

2

D
T

L
Z

2

2
3.

99
e+

7
3.

76
e+

2
1.

88
e+

7
1.

37
e+

2
1
.1

4
e
+

7
1
.0

9
e
+

2
1
.6

3
e+

7
1.

9
0
e+

2
1
.1

8
e+

7
1
.3

6
e+

2
1
.5

2
e+

7
1.

8
3
e+

2
1
.1

8
e+

7
1.

3
3e

+
2

1
.5

1
e+

7
2.

2
6
e+

2
5

3.
99

e+
7

7.
62

e+
2

1.
94

e+
7

3.
79

e+
2

1
.8

9
e
+

7
3
.2

7
e+

2
1
.8

9
e
+

7
4.

0
0
e+

2
1
.8

9
e
+

7
3
.1

5
e
+

2
1
.8

9
e
+

7
3.

3
5
e+

2
1
.8

9
e
+

7
3.

2
3e

+
2

1
.8

9
e
+

7
4.

2
8
e+

2
10

3.
99

e+
7

1.
20

e+
3

1.
97

e+
7

6.
36

e+
2

1
.9

4
e
+

7
5
.0

4
e+

2
1
.9

4
e
+

7
6.

0
0
e+

2
1
.9

4
e
+

7
4
.9

7
e
+

2
1
.9

4
e
+

7
5.

1
7
e+

2
1
.9

4
e
+

7
5.

0
3e

+
2

1
.9

4
e
+

7
6.

1
0
e+

2
20

3.
99

e+
7

1.
99

e+
3

1.
98

e+
7

1.
07

e+
3

1
.9

7
e
+

7
8
.2

6
e+

2
1
.9

7
e
+

7
8.

8
7
e+

2
1
.9

7
e
+

7
7
.7

6
e
+

2
1
.9

7
e
+

7
8.

1
0
e+

2
1
.9

7
e
+

7
7.

9
4e

+
2

1
.9

7
e
+

7
8.

8
1
e+

2

D
T

L
Z

3

2
3.

99
e+

7
3.

94
e+

2
1.

71
e+

7
1.

34
e+

2
1
.1

3
e
+

7
1
.1

9
e
+

2
1
.6

9
e+

7
1.

9
8
e+

2
1
.1

9
e+

7
1
.4

0
e+

2
1
.5

2
e+

7
1.

7
8
e+

2
1
.1

9
e+

7
1.

3
9e

+
2

1
.5

0
e+

7
2.

2
6
e+

2
5

3.
99

e+
7

7.
76

e+
2

1.
92

e+
7

3.
75

e+
2

1
.8

3
e
+

7
3
.1

6
e+

2
1
.8

5
e+

7
3.

8
0
e+

2
1
.8

7
e+

7
3
.0

5
e
+

2
1
.8

9
e+

7
3.

2
2
e+

2
1
.8

4
e+

7
2.

9
6e

+
2

1
.8

5
e+

7
4.

0
4
e+

2
10

3.
99

e+
7

1.
22

e+
3

1.
96

e+
7

6.
36

e+
2

1
.9

1
e
+

7
5
.0

3
e+

2
1
.9

2
e+

7
5.

9
5
e+

2
1
.9

3
e+

7
4
.9

4
e
+

2
1
.9

3
e+

7
5.

2
3
e+

2
1
.9

1
e
+

7
5.

1
2e

+
2

1
.9

2
e+

7
6.

3
3
e+

2
20

3.
99

e+
7

2.
11

e+
3

1.
97

e+
7

1.
12

e+
3

1
.9

6
e
+

7
7
.9

3
e+

2
1
.9

6
e
+

7
9.

3
4
e+

2
1
.9

6
e
+

7
7
.8

4
e
+

2
1
.9

6
e
+

7
8.

1
0
e+

2
1
.9

6
e
+

7
7.

9
9e

+
2

1
.9

6
e
+

7
9.

3
1
e+

2

D
T

L
Z

4

2
3.

99
e+

7
4.

26
e+

2
1.

55
e+

7
1.

34
e+

2
8
.9

7
e
+

6
9
.4

0
e
+

1
1
.3

4
e+

7
1.

6
0
e+

2
9
.3

3
e+

6
1
.3

0
e+

2
1
.2

4
e+

7
1.

5
0
e+

2
9
.3

3
e+

6
1.

2
8e

+
2

1
.2

3
e+

7
1.

9
8
e+

2
5

3.
99

e+
7

7.
71

e+
2

1.
92

e+
7

3.
59

e+
2

1
.7

7
e
+

7
2
.8

3
e+

2
1
.8

2
e+

7
3.

3
9
e+

2
1
.8

0
e+

7
2
.8

2
e
+

2
1
.8

3
e+

7
3.

1
3
e+

2
1
.7

8
e+

7
2.

8
5e

+
2

1
.8

1
e+

7
3.

8
4
e+

2
10

3.
99

e+
7

1.
30

e+
3

1.
96

e+
7

6.
87

e+
2

1
.9

2
e
+

7
5
.3

0
e
+

2
1
.9

2
e
+

7
6.

3
1
e+

2
1
.9

2
e
+

7
5
.4

0
e+

2
1
.9

2
e
+

7
5.

7
1
e+

2
1
.9

2
e
+

7
5.

5
3e

+
2

1
.9

2
e
+

7
6.

7
5
e+

2
20

3.
99

e+
7

2.
52

e+
3

1.
97

e+
7

1.
38

e+
3

1
.9

5
e
+

7
1
.0

2
e+

3
1
.9

5
e
+

7
1.

1
5
e+

3
1
.9

5
e
+

7
1
.0

1
e
+

3
1
.9

5
e
+

7
1.

0
5
e+

3
1
.9

5
e
+

7
1.

0
6e

+
3

1
.9

5
e
+

7
1.

1
9
e+

3

25

10
0

10
5

10
10

#Solutions

#D
om

in
an

ce
 C

om
pa

ri
so

ns

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

ENS−SS
ENS−BS
DCNS−SS/DCNS−SS−WS
DCNS−BS/DCNS−BS−WS

Figure 6: Number of dominance comparisons performed by different non-dominated sorting
approaches when all the solutions are in separate fronts. The number of dominance compar-
isons performed by DCNS-SS and DCNS-SS-WS are the same. Also, the number of dominance
comparisons performed by DCNS-BS and DCNS-BS-WS are the same.

solutions. The time taken by FNDS is also maximum. With an increase in the
number of objectives, the number of dominance comparisons performed by both
the DCNS-based approaches and the ENS-based approaches is almost the same.

5.4. Discussion & Analysis

The worst case time complexity of the DCNS framewrok isO(MN2), whereas
the best case time complexity is O(N logN +MN). The same worst case time
complexity is reported by various other approaches [1, 6, 7, 10, 12, 15, 16]. The
obtained best case time complexity is better than the best case time complexity
of most of the existing approaches for M > 3. A lower bound on the problem
of identifying the non-dominated set is presented by Kung et al. [4]. According
to this, the processing time is bounded from below by O(N logN) [3]. Jensen
et al. [3] claimed that it is trivial to see that this bound must also hold for non-
dominated sorting. Jensen et al. [3] were able to show that this bound holds for
M = 2 but not for M ≥ 3. We have obtained the best case time complexity as
O(N logN + MN) for a general M (M ≥ 3 also). Thus, we are able to reach
the lower bound in the best case of our approach when M = O(logN). The
assumption M = O(logN) seems to be valid, because M is generally very low
as compared to N . However, the upper bound of the DCNS framework is still
O(MN2). In the DCNS framework, we can have parallelism in all the scenar-
ios of the solutions. This framework is very generic and some of the existing
approaches like BOS [1] can also exploit parallelism using this framework.

Figure 6 shows the number of dominance comparisons when all the solutions
are in separate fronts. Here, the number of solutions is N = 2i(1 ≤ i ≤ 16). In
this case, the DCNS-based approaches perform a lower number of dominance

26

Table 6: Number of dominance comparisons when N = 2a(a ≥ 1) solutions are equally divided
into K = 2b(1 ≤ b ≤ a) fronts.

(a) Each solution in a front is dominated by all the solutions in its preceding front.

ΓENS-SS =
∑2b

i=1(i− 1)2a−b.1 +
∑2b

i=1
2a−b(2a−b−1)

2

= 1
2N

(
N
K +K − 2

)
ΓENS-BS =

∑2b

i=1

⌈
log i

⌉
2a−b.1 +

∑2b

i=1
2a−b(2a−b−1)

2

= 1
2N

(
N
K − 1

)
+N logK − N

K (K − 1)

ΓSS = ΓSS-WS =
∑a−b
i=1

N
2i 2i−12i−1 +

∑a
i=a−b+1

N
2i 2i−(a−b+1)2a−b

= 1
2N

(
N
K − 1

)
+ 1

2N logK

ΓBS = ΓBS-WS =
∑a−b
i=1

N
2i 2i−12i−1 +

∑a
i=a−b+1

N
2i

⌈
log(2i−(a−b+1) + 1)

⌉
2a−b

= 1
2N

(
N
K − 1

)
+ N

K (2K − (logK + 2))

(b) Each solution in a front is dominated by only one solution in its preceding front.

ΓENS-SS =
∑2b

i=1(i− 1)2a−b2a−b +
∑2b

i=1
2a−b(2a−b−1)

2

= 1
2N(N−1)

ΓENS-BS =
∑2b

i=1

⌈
log i

⌉
2a−b2a−b +

∑2b

i=1
2a−b(2a−b−1)

2

= N2

K

(
logK − 1

2

)
+ N2

K2 − 1
2N

ΓSS = ΓSS-WS =
∑a−b
i=1

N
2i 2i−12i−1 +

∑a
i=a−b+1

N
2i 2i−(a−b+1)2a−b2a−b

= N2

2K (logK + 1)− 1
2N

ΓBS = ΓBS-WS =
∑a−b
i=1

N
2i 2i−12i−1 +

∑a
i=a−b+1

N
2i

⌈
log(2i−(a−b+1) + 1)

⌉
2a−b2a−b

= N2

K

(
5
2 −

logK+2
K

)
− 1

2N

comparisons than those of the ENS-based approaches. DCNS-BS and DCNS-
BS-WS perform the same number of dominance comparisons. Similarly, DCNS-
SS and DCNS-SS-WS perform the same number of dominance comparisons.
DCNS-BS and DCNS-BS-WS require a lower number of dominance comparisons
than other approaches.

Let us assume that N solutions are equally divided into K fronts. Thus, each
front has N/K solutions. Consider a situation, where each solution in a front is
dominated by all the solutions in its preceding front. This shows the behavior
of the fixed front dataset. Consider another situation, where each solution in a
front is dominated by only one solution in its preceding front. Let the number
of solutions N = 2a, a ≥ 1 and the number of fronts be K = 2b, 1 ≤ b ≤ a.
Thus, each front has 2a−b solutions. Let the number of dominance comparisons
performed by ENS-SS be denoted by ΓENS-SS and the number of dominance
comparisons performed by ENS-BS be denoted by ΓENS-BS. In this case, the
number of dominance comparisons performed by different approaches in the
first situation is given in Table 6(a), whereas for the second situation, it is given
in Table 6(b). These tables show that the number of dominance comparisons

27

10
5

10
10

#Fronts

#D
om

in
an

ce
 C

om
pa

ri
so

ns

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

ENS−SS
ENS−BS
DCNS−SS/DCNS−SS−WS
DCNS−BS/DCNS−BS−WS

(a)

10
5

10
10

#Fronts

#D
om

in
an

ce
 C

om
pa

ri
so

ns

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

ENS−SS
ENS−BS
DCNS−SS/DCNS−SS−WS
DCNS−BS/DCNS−BS−WS

(b)

Figure 7: Number of dominance comparisons performed by different non-dominated sorting
approaches. (a) Solutions are equally divided into fronts such that each solution in a front is
dominated by all the solutions in its preceding front. (b) Solutions are equally divided into
fronts such that each solution in a front is dominated by only one solution in its preceding
front. The number of dominance comparisons performed by DCNS-SS and DCNS-SS-WS are
the same. Also, the number of dominance comparisons performed by DCNS-BS and DCNS-
BS-WS are the same.

performed by the DCNS-based approaches is less than that of the other two
approaches. Let N = 216 be the number of solutions. The number of fronts K =
2b, 1 ≤ b ≤ 16. In this case, the number of dominance comparisons in the first
and the second situations are shown in Figures 7(a) and 7(b), respectively. In
the first situation, for ENS-SS, the minimum number of dominance comparisons
is attained at K = 28 because its best case occurs when K =

√
N =

√
216 = 28.

For other approaches, the number of dominance comparisons decreases when the
number of fronts increases because the best cases of ENS-BS and the DCNS-
based approaches occur when K = N . In the second situation, the number of
dominance comparisons performed by ENS-SS remains fixed irrespective of the
number of fronts. However, the number of dominance comparisons decreases
with an increase in the number of fronts for the ENS-BS and DCNS based
approaches. In both situations the DCNS-based approaches perform a lower
number of dominance comparisons than the ENS-based approaches.

6. Conclusions and Future Work

In this paper, a framework for non-dominated sorting named DCNS is pre-
sented. Initially, the solutions are sorted based on the objectives and then
solutions are allocated to different fronts. A total of four different versions of
the DCNS framework are developed by varying the search type and space re-
quirements. We have theoretically shown that the worst case time complexity
of the framework is O(MN2) which is the same as that of many existing ap-
proaches. The best case time complexity of two of our approaches (DCNS-BS
and DCNS-BS-WS) is O(N logN + MN) which is better than the best case
time complexities of many other existing approaches. The lower bound of non-

28

dominated sorting as discussed in [3, 4] is also obtained in the best case of our
approaches. However, the upper bound remains as O(MN2).

BOS [1] can be generalized in the future to handle duplicate solutions by
retaining its comparison set concept. T-ENS [15] can also be generalized in
the future. The proposed framework has the parallelism property, so in the
future we would like to implement this framework in a parallel environment and
would like to observe how much speedup can be obtained in different scenarios.
Theoretical speedup can also be calculated. It would be interesting to combine
the proposed framework with BOS to further reduce the number of dominance
comparisons.

References

[1] P. C. Roy, M. M. Islam, K. Deb, Best order sort: A new algorithm to
non-dominated sorting for evolutionary multi-objective optimization, in:
Proceedings of the 2016 on Genetic and Evolutionary Computation Con-
ference Companion, ACM Press, Denver, Colorado, USA, 2016, pp. 1113–
1120, ISBN: 978-1-4503-4323-7.

[2] S. Mishra, S. Saha, S. Mondal, Divide and Conquer Based Non-Dominated
Sorting for Parallel Environment, in: 2016 IEEE Congress on Evolution-
ary Computation (CEC’2016), IEEE Press, Vancouver, Canada, 2016, pp.
4297–4304, ISBN: 978-1-5090-0623-6.

[3] M. T. Jensen, Reducing the Run-Time Complexity of Multiobjective EAs:
The NSGA-II and Other Algorithms, IEEE Transactions on Evolutionary
Computation 7 (5) (2003) 503–515.

[4] H.-T. Kung, F. Luccio, F. P. Preparata, On finding the maxima of a set of
vectors, Journal of the ACM (JACM) 22 (4) (1975) 469–476.

[5] N. Srinivas, K. Deb, Multiobjective Optimization Using Nondominated
Sorting in Genetic Algorithms, Evolutionary Computation 2 (3) (1994)
221–248.

[6] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A Fast and Elitist Multiob-
jective Genetic Algorithm: NSGA-II, IEEE Transactions on Evolutionary
Computation 6 (2) (2002) 182–197.

[7] X. Zhang, Y. Tian, R. Cheng, J. Yaochu, An Efficient Approach to Non-
dominated Sorting for Evolutionary Multiobjective Optimization, IEEE
Transactions on Evolutionary Computation 19 (2) (2015) 201–213.

[8] H. Fang, Q. Wang, Y.-C. Tu, M. F. Horstemeyer, An Efficient Non-
dominated Sorting Method for Evolutionary Algorithms, Evolutionary
Computation 16 (3) (2008) 355–384.

29

[9] S. Tang, Z. Cai, J. Zheng, A Fast Method of Constructing the Non-
dominated Set: Arena’s Principle, in: 2008 Fourth International Con-
ference on Natural Computation, IEEE Computer Society Press, Jinan,
China, 2008, pp. 391–395, ISBN: 978-0-7695-3304-9.

[10] K. McClymont, E. Keedwell, Deductive Sort and Climbing Sort: New
Methods for Non-Dominated Sorting, Evolutionary Computation 20 (1)
(2012) 1–26.

[11] F.-A. Fortin, S. Greiner, M. Parizeau, Generalizing the Improved Run-Time
Complexity Algorithm for Non-Dominated Sorting, in: 2013 Genetic and
Evolutionary Computation Conference (GECCO’2013), ACM Press, New
York, USA, 2013, pp. 615–622, ISBN: 978-1-4503-1963-8.

[12] H. Wang, X. Yao, Corner Sort for Pareto-Based Many-Objective Optimiza-
tion, IEEE Transactions on Cybernetics 44 (1) (2014) 92–102.

[13] M. Buzdalov, A. Shalyto, A Provably Asymptotically Fast Version of the
Generalized Jensen Algorithm for Non-dominated Sorting, in: Parallel
Problem Solving from Nature - PPSN XIII, 13th International Confer-
ence, Springer. Lecture Notes in Computer Science Vol. 8672, Ljubljana,
Slovenia, 2014, pp. 528–537.

[14] C. Bao, L. Xu, E. D. Goodman, L. Cao, A Novel Non-Dominated Sort-
ing Algorithm for Evolutionary Multi-Objective Optimization, Journal of
Computational Science 23 (2017) 31–43.

[15] X. Zhang, Y. Tian, R. Cheng, Y. Jin, A Decision Variable Clustering-
Based Evolutionary Algorithm for Large-Scale Many-Objective Optimiza-
tion, IEEE Transactions on Evolutionary Computation 22 (1) (2018) 97–
112.

[16] P. Gustavsson, A. Syberfeldt, A New Algorithm Using the Non-Dominated
Tree to Improve Non-Dominated Sorting, Evolutionary Computation 26 (1)
(2018) 89–116.

[17] Y. Zhou, Z. Chen, J. Zhang, Ranking Vectors by Means of the Dominance
Degree Matrix, IEEE Transactions on Evolutionary Computation 21 (1)
(2017) 34–51.

[18] V. Palakonda, T. Pamulapati, R. Mallipeddi, P. P. Biswas, K. C. Velu-
volu, Nondominated Sorting based on Sum of Objectives, in: 2017 IEEE
Symposium Series on Computational Intelligence (SSCI), IEEE, 2017, pp.
1–8.

[19] P. C. Roy, K. Deb, M. M. Islam, An efficient nondominated sorting algo-
rithm for large number of fronts, IEEE Transactions on Cybernetics.

30

[20] A. Jaszkiewicz, T. Lust, Nd-tree-based update: a fast algorithm for the dy-
namic non-dominance problem, IEEE Transactions on Evolutionary Com-
putation.

[21] M. Drozdik, Y. Akimoto, H. Aguirre, K. Tanaka, Computational Cost Re-
duction of Nondominated Sorting Using the M-Front, IEEE Transactions
on Evolutionary Computation 19 (5) (2015) 659–678.

[22] M. Buzdalov, I. Yakupov, A. Stankevich, Fast Implementation of the
Steady-State NSGA-II Algorithm for Two Dimensions Based on Incremen-
tal Non-Dominated Sorting, in: 2015 Genetic and Evolutionary Compu-
tation Conference (GECCO 2015), ACM Press, Madrid, Spain, 2015, pp.
647–654, ISBN: 978-1-4503-3472-3.

[23] I. Yakupov, M. Buzdalov, Incremental Non-Dominated Sorting with O(N)
Insertion for the Two-Dimensional Case, in: 2015 IEEE Congress on Evo-
lutionary Computation (CEC’2015), IEEE Press, Sendai, Japan, 2015, pp.
1853–1860, ISBN: 978-1-4799-7492-4.

[24] K. Li, K. Deb, Q. Zhang, Q. Zhang, Efficient Nondomination Level Update
Method for Steady-State Evolutionary Multiobjective Optimization, IEEE
Transactions on Cybernetics 47 (9) (2017) 2838–2849.

[25] S. Mishra, S. Mondal, S. Saha, Fast Implementation of Steady-State NSGA-
II, in: 2016 IEEE Congress on Evolutionary Computation (CEC’2016),
IEEE Press, Vancouver, Canada, 2016, pp. 3777–3784, ISBN: 978-1-5090-
0623-6.

[26] S. Mishra, S. Mondal, S. Saha, Improved Solution to the Non-Domination
Level Update Problem, Applied Soft Computing 60 (2017) 336–362.

[27] I. Yakupov, M. Buzdalov, Improved Incremental Non-dominated Sorting
for Steady-State Evolutionary Multiobjective Optimization, in: 2017 Ge-
netic and Evolutionary Computation Conference (GECCO’2017), ACM
Press, Berlin, Germany, 2017, pp. 649–656, ISBN: 978-1-4503-4920-8.

[28] J. W. J. Williams, Algorithm-232-heapsort (1964).

[29] C. Smutnicki, J. Rudy, D. Zelazny, Very fast non-dominated sorting, Deci-
sion Making in Manufacturing and Services 8 (1-2) (2014) 13–23.

[30] S. Gupta, G. Tan, A Scalable Parallel Implementation of Evolutionary
Algorithms for Multi-Objective Optimization on GPUs, in: 2015 IEEE
Congress on Evolutionary Computation (CEC’2015), IEEE Press, Sendai,
Japan, 2015, pp. 1567–1574, ISBN: 978-1-4799-7492-4.

[31] G. Ortega, E. Filatovas, E. M. Garzon, L. G. Casado, Non-Dominated Sort-
ing Procedure for Pareto Dominance Ranking on Multicore CPU and/or
GPU, Journal of Global Optimization 69 (3) (2017) 607–627.

31

[32] T. H. C. and Charles E. Leiserson and Ronald L. Rivest and Clifford Stein,
Introduction to Algorithms, MIT press, Cambridge, Massachusetts, USA,
2009, ISBN: 978-0-262-03384-8.

[33] K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable Test Problems for
Evolutionary Multiobjective Optimization, in: Evolutionary Multiobjec-
tive Optimization. Theoretical Advances and Applications, Springer, USA,
2005, pp. 105–145.

Appendix A. Effect of Υ and Ψ on the number of dominance com-
parisons

In this section, we obtain the number of dominance comparisons when the
solutions from a front F ′ are inserted into a set of fronts F using Υ and Ψ.
For this purpose, Example 5 of the paper is considered where F = {F1, F2},
F1 = {sol1, sol2, sol3, sol4} and F2 = {sol5, sol6, sol7, sol8}. The front F ′ =
{sol9, sol10, sol11, sol12, sol13, sol14, sol15, sol16}. The set of solutions in F to
which each solution of front F ′ is compared for insertion in F without using Υ
or Ψ is given in Table A.7.

Table A.7: Set of solutions in F to which each solution in front F ′ is compared before being
inserted in F when neither Υ nor Ψ is used.

Inserted
Compared solutions

solution
sol9 sol1, sol2, sol3, sol4, sol5, sol6, sol7, sol8
sol10 sol1, sol2, sol3, sol4
sol11 sol1, sol2, sol3, sol4, sol10, sol5, sol6, sol7, sol8, sol9
sol12 sol1, sol2, sol3, sol4, sol10
sol13 sol1, sol2, sol3, sol4, sol10, sol12, sol5, sol6, sol7, sol8, sol9, sol11
sol14 sol1, sol2, sol3, sol4, sol10, sol12
sol15 sol1, sol2, sol3, sol4, sol10, sol12, sol14, sol5, sol6, sol7, sol8, sol9, sol11, sol13
sol16 sol1, sol2, sol3, sol4, sol10, sol12, sol14

Appendix A.1. Insertion using Υ

We discuss how the solutions of front F ′ are inserted in F using Υ. Initially,
Υ = {ΥfIndex,ΥnSol} = {0, 0}.

Insert sol9: When sol9 is inserted into F , it is compared with all the solutions
of F and inserted in F2. The updated value of Υ = {2, 4} because sol9 is in-
serted in the second front F2 (ΥfIndex = 2) and has been compared with four
solutions (ΥsSol = 4) in F2.

Insert sol10: When sol10 is inserted into F , it is compared with all the solu-
tions of front F1 and inserted in F1. The updated value of Υ = {1, 4} because
sol10 is inserted in the first front F1 (ΥfIndex = 1) and has been compared with

32

Initial set of fronts F
F1 sol1, sol2, sol3, sol4
F2 sol5, sol6, sol7, sol8

Υ = {0, 0}

F and Υ after insertion of sol9
F1 sol1, sol2, sol3, sol4
F2 sol5, sol6, sol7, sol8, sol9

Υ = {2, 4}
F and Υ after insertion of sol10
F1 sol1, sol2, sol3, sol4, sol10
F2 sol5, sol6, sol7, sol8, sol9

Υ = {1, 4}

F and Υ after insertion of sol11
F1 sol1, sol2, sol3, sol4, sol10
F2 sol5, sol6, sol7, sol8, sol9, sol11

Υ = {2, 5}
F and Υ after insertion of sol12
F1 sol1, sol2, sol3, sol4, sol10, sol12
F2 sol5, sol6, sol7, sol8, sol9, sol11

Υ = {1, 5}

F and Υ after insertion of sol13
F1 sol1, sol2, sol3, sol4, sol10, sol12
F2 sol5, sol6, sol7, sol8, sol9, sol11, sol13

Υ = {2, 6}
F and Υ after insertion of sol14

F1 sol1, sol2, sol3, sol4, sol10, sol12, sol14
F2 sol5, sol6, sol7, sol8, sol9, sol11, sol13

Υ = {1, 6}

F and Υ after insertion of sol15
F1 sol1, sol2, sol3, sol4, sol10, sol12, sol14
F2 sol5, sol6, sol7, sol8, sol9, sol11, sol13, sol15

Υ = {2, 7}
F and Υ after insertion of sol16

F1 sol1, sol2, sol3, sol4, sol10, sol12, sol14, sol16
F2 sol5, sol6, sol7, sol8, sol9, sol11, sol13, sol15

Υ = {1, 7}

Figure A.8: Insertion of all the solutions of front F ′ in F .

Table A.8: Set of solutions in F to which each solution in F ′ is compared before being inserted
in F using Υ.

Inserted
Compared solutions

solution
sol9 sol1, sol2, sol3, sol4, sol5, sol6, sol7, sol8
sol10 sol1, sol2, sol3, sol4
sol11 sol1, sol2, sol3, sol4, sol5, sol6, sol7, sol8, sol9
sol12 sol1, sol2, sol3, sol4, sol10
sol13 sol1, sol2, sol3, sol4, sol10, sol5, sol6, sol7, sol8, sol9, sol11
sol14 sol1, sol2, sol3, sol4, sol10, sol12
sol15 sol1, sol2, sol3, sol4, sol10, sol12, sol5, sol6, sol7, sol8, sol9, sol11, sol13
sol16 sol1, sol2, sol3, sol4, sol10, sol12, sol14

four solutions (ΥsSol = 4) in F1.

Insert sol11: At this point of time, front F1 has five solutions as sol10 has
already been inserted into F1. As the value of Υ = {1, 4} so when sol11 starts
comparison with the solutions of front F1, it is compared with the initial four
(ΥfIndex = 1 and ΥnSol = 4) solutions, instead of five. Solution sol11 is compared
with all the five solutions in front F2. After the insertion of sol11 in front F2,
the updated value of Υ = {2, 5} because sol11 is inserted in the second front
F2 (ΥfIndex = 2) and has been compared with five solutions (ΥsSol = 5) in F2.

In a similar way, the remaining solutions from front F ′ will be inserted in F .
Figure A.8 shows the updated F after insertion of each of the solutions of F ′.
This figure also shows the value of Υ after insertion of each of the solutions from
F ′ in F . The set of solutions to which each of the solutions of F ′ is compared
for insertion in F using Υ is given in Table A.8.

33

Table A.9: Set of solutions in F to which each solution in F ′ is compared before being inserted
in F using Ψ.

Inserted
Compared solutions

solution
sol9 sol1, sol2, sol3, sol4, sol5, sol6, sol7, sol8
sol10 sol1, sol2, sol3, sol4
sol11 sol1, sol2, sol3, sol4, sol5, sol6, sol7, sol8
sol12 sol1, sol2, sol3, sol4
sol13 sol1, sol2, sol3, sol4, sol5, sol6, sol7, sol8
sol14 sol1, sol2, sol3, sol4
sol15 sol1, sol2, sol3, sol4, sol5, sol6, sol7, sol8
sol16 sol1, sol2, sol3, sol4

Table A.10: Number of dominance comparisons when the solutions from front F ′ are inserted
in F without using Υ or Ψ, using Υ and using Ψ.

Solution Simple Use of Υ Use of Ψ
sol9 8 8 8
sol10 4 4 4
sol11 10 9 8
sol12 5 5 4
sol13 12 11 8
sol14 6 6 4
sol15 14 13 8
sol16 7 7 4

Total dominance comparisons 66 63 48

Appendix A.2. Insertion using Ψ

We discuss how the solutions of front F ′ are inserted in F using Ψ. As there
are two fronts in F , so the cardinality of Ψ will be 2. Ψ[1] stores the cardinality
of front F1 and Ψ[2] stores the cardinality of front F2. Thus, Ψ[1] = |F1| = 4
and Ψ[2] = |F2| = 4.

Insert sol9: When sol9 is inserted into F , it is compared with the initial Ψ[1]
solutions of F1 and the initial Ψ[2] solutions of F2 and inserted in F2.

Insert sol10: When sol10 is inserted into F , it is compared with the initial Ψ[1]
solutions of F1 and inserted in F1.

Insert sol11: When sol11 is inserted into F , it is compared with the initial Ψ[1]
solutions of F1 and the initial Ψ[2] solutions of F2 and inserted in F2.

In a similar way, the remaining solutions from front F ′ will be inserted in
F . The set of solutions to which each of the solutions of front F ′ is compared
for insertion in F using Ψ is given in Table A.9. Table A.10 shows the number
of dominance comparisons when the solutions from front F ′ are inserted in F
without using Υ or Ψ, using Υ and using Ψ. From this table, it is clear that
the number of dominance comparisons is the minimum when Ψ is considered.

34

Appendix B. Scope of Parallelism

In this section, we thoroughly discuss the scope of parallelism in the proposed
approach. As the approach has two phases, we discuss the parallelism in both
of them. Let us assume that the number of solutions be N and the number of
objectives be M .

Our approach is very much similar to merge sort [32]. In merge sort, paral-
lelism can be achieved in different ways. The simplest way is to perform all the
merge operations at the same level simultaneously. In this manner, the time
complexity of the parallel version of merge sort becomes O(N) for N numbers
which is an O(logN) times improvement over the serial version. As suggested
in [32], to improve the time complexity of parallel merge sort further, the merge
operation itself can also be preformed in a parallel manner. If the merge oper-
ation is performed in a parallel manner along with performing different merge
operations at the same level simultaneously, then the time complexity of the
parallel version of merge sort becomes O(log3N) which is an O(N/log2N) times
improvement over the serial version.

Parallelism in the first phase:. There is parallelism in the first phase of
the proposed approach if some parallel algorithm for sorting can be used such
as parallel merge sort [32]. The worst case time complexity of the first phase is
O(MN logN) and the best case time complexity is O(N logN). Using parallel
merge sort where all the merge operations at the same level are performed
simultaneously, the worst case time complexity becomes O(MN) and the best
case time complexity becomes O(N). This time complexity can be improved if
the merge operation can itself be implemented in a parallel manner along with
performing different merge operations at a level simultaneously as discussed
in [32]. In this manner, the worst case time complexity becomes O(M log3N)
and the best case time complexity becomes O(log3N).

Parallelism in the second phase:. In the second phase, the basic operation
is a merge operation which merges two sets of fronts. Let the first set of fronts
be denoted as F and the second set of fronts be denoted as F ′. The parallelism
can be achieved in a different manner. Here, we discuss the parallelism in the
second phase of the proposed approach in three different manners. Similar to
merge sort, in the first version of our parallel approach, we have performed all
the merge operations simultaneously. In the other two variants, we have focused
on the parallel implementation of the merge operation along with performing
different merge operations at the same level simultaneously. Now, we discuss
the parallelism in the second phase of the proposed approach:

1. Version-1:. All the merge operations at the same level are performed
simultaneously.

2. Version-2:. All the merge operations at the same level are performed
simultaneously. Also, the position of the different solutions of a front F ′ ∈ F ′
are identified in F simultaneously and they are added to their respective front

35

sol2 sol3 sol4 sol9 sol10 sol11 sol12

Solutions sol9, sol10, sol11

and sol12 can be compared

with the solutions of a front

F 2 F simultaneously. How-

ever, each of these solutions is

compared with the solutions

of front F in a serial manner.

sol9 is first compared with

sol1, then with sol2, then

with sol3 and at last with

sol4. Thus, sol9 is compared

with these four solutions se-

quentially.

sol1

F F 0

sol5 sol6 sol7

sol8

sol13 sol14

sol15

Compare sequentially

(a) Parallel version-2

sol2 sol3 sol4 sol9 sol10 sol11 sol12

Solutions sol9, sol10, sol11

and sol12 can be compared

with the solutions of a front

F 2 F simultaneously. Also,

each of these solutions is also

compared with the solutions

of front F simultaneously.

sol9 is compared with sol1,

sol2, sol3 and sol4 simultane-

ously.

sol1

F F 0

sol5 sol6 sol7

sol8

sol13 sol14

sol15

Compare simultaneously

(b) Parallel version-3

Figure B.9: Parallel version

in a sequential manner to avoid a write collision (or critical section). Here, a
solution of front F ′ is compared with the solutions of a front F ∈ F sequentially.

Let F = {{sol1, sol2, sol3, sol4} , {sol5, sol6, sol7} , {sol8}} and F ′ = {{sol9,
sol10, sol11, sol12} , {sol13, sol14} , {sol15}}. These two sets of fronts are shown
in Figure B.9(a). In parallel version-2 of the proposed approach, solutions
sol9, sol10, sol11, sol12 are compared with the solutions of the first front in F
simultaneously. However, each of these solutions is compared with the solutions
of the first front in F sequentially.

3. Version-3:. All the merge operations at the same level are performed
simultaneously. Also, the position of the different solutions of a front F ′ ∈ F ′
is identified in F simultaneously and they are added to their respective front
in a sequential manner to avoid a write collision (or critical section). Also,
each solution of front F ′ is compared with the solutions of a front F ∈ F
simultaneously.

Consider the same set of fronts as considered in parallel version-2. These
two sets of fronts are also shown in Figure B.9(b). In parallel version-3 of
the proposed approach, solutions sol9, sol10, sol11, sol12 are compared with the
solutions of the first front in F simultaneously. Also, each of these solutions is
compared with the solutions of the first front in F simultaneously.

Now, we obtain the recurrence relation of the serial and parallel version of
the proposed approach in three different scenarios and obtain the maximum
theoretical speedup. These three scenarios are discussed in [1, 2, 7, 10].

Appendix C. All the Solutions are in a Single Front

We establish the recurrence relation for our non-dominated sorting approach
when all the solutions are in a single front and obtain the maximum theoretical
speedup.

Appendix C.1. Serial Algorithm

The recurrence relation of the serial version of the non-dominated sorting ap-
proach is given by Eq. (C.1). In this recurrence relation, the first part M (N/2)

2

36

corresponds to the time to obtain the dominance relationship of the solutions
in F ′ with the solutions in F . The second part N/2 corresponds to the time to
add the solutions in F ′ to F .

T1(N,M) =

{
M + 1 if N = 2

2T1 (N/2,M) +M (N/2)
2

+ N/2 otherwise
(C.1)

The recurrence relation in Eq. (C.1) is solved using Eq. (C.2).

T1(N,M)=
[
M (N/2)

2
+N/2

]
+2
[
M (N/4)

2
+N/4

]
+ . . .+N/2

[
M (N/N)

2
+N/N

]
=1/2MN(N−1)+1/2N logN (C.2)

Appendix C.2. Parallel Algorithm: Version-1

The recurrence relation of parallel version-1 of the non-dominated sorting
approach is given by Eq. (C.3).

T∞(N,M) =

{
M + 1 if N = 2

T∞ (N/2,M) +M (N/2)
2

+ N/2 otherwise
(C.3)

The recurrence relation in Eq. (C.3) is solved using Eq. (C.4).

T∞(N,M)=
[
M (N/2)

2
+N/2

]
+
[
M (N/4)

2
+N/4

]
+ . . .+

[
M (N/N)

2
+N/N

]
=1/3M(N2−1)+(N−1) (C.4)

The speedup using parallel version-1 of the non-dominated sorting approach is
obtained in Eq. (C.5).

Speedup=
T1(N,M)

T∞(N,M)
=

1/2MN(N−1)+1/2N logN
1/3M(N2−1)+(N−1)

≡3/2 (C.5)

Appendix C.3. Parallel Algorithm: Version-2

The recurrence relation of parallel version-2 of the non-dominated sorting
approach is given by Eq. (C.6).

T∞(N,M) =

{
M + 1 if N = 2

T∞ (N/2,M) +M (N/2) + N/2 otherwise
(C.6)

The recurrence relation in Eq. (C.6) is solved using Eq. (C.7).

T∞(N,M)= [M (N/2) +N/2] + [M (N/4) +N/4] + . . .+ [M (N/N) +N/N]

=M(N−1)+(N−1) (C.7)

The speedup using parallel version-2 of the non-dominated sorting approach is
obtained in Eq. (C.8).

Speedup=
T1(N,M)

T∞(N,M)
=

1/2MN(N−1)+1/2N logN

M(N−1)+(N−1)
≡1/2N (C.8)

37

Appendix C.4. Parallel Algorithm: Version-3

The recurrence relation of parallel version-3 of the non-dominated sorting
approach is given by Eq. (C.9). In this recurrence relation, the first part, M +
log (N/2), corresponds to the time to obtain the dominance relationship of the
solutions in F ′ with the solutions in F . The second part, N/2, corresponds to
the time to add the solutions in F ′ to F .

T∞(N,M) =

{
M + 1 if N = 2

T∞ (N/2,M) +M + log (N/2) + N/2 otherwise
(C.9)

The recurrence relation in Eq. (C.9) is solved using Eq. (C.10).

T∞(N,M)= [M+ log (N/2) +N/2] + [M+ log (N/4) +N/4] + . . .+

[M+ log (N/N) +N/N]

=M logN+1/2(2N+ log2N− logN−2) (C.10)

The speedup using parallel version-3 of the non-dominated sorting approach is
obtained in Eq. (C.11).

Speedup=
T1(N,M)

T∞(N,M)
=

1/2MN(N−1)+1/2N logN

M logN+1/2(2N+ log2N− logN−2)
≡1/2MN (C.11)

Appendix D. All the Solutions are in Different Fronts

We establish the recurrence relation for the non-dominated sorting approach
when all the solutions are in different fronts and obtain the maximum theoretical
speedup. In this case, all the three parallel versions will perform the same
because each front has a single solution. As the number of fronts is more than
one so sequential and binary search based approaches perform differently.

Appendix D.1. Sequential Search based Approach

Here, the recurrence relation is established using a sequential search based
strategy.

Appendix D.1.1. Serial Algorithm

The recurrence relation of the serial version of the non-dominated sorting
approach using a sequential search based strategy is given by Eq. (D.1). This
recurrence relation is solved using Eq. (D.2).

T1(N,M) =

{
M + 1 if N = 2

2T1 (N/2,M) +M (N/2) + N/2 otherwise
(D.1)

T1(N,M)= [M (N/2) +N/2] +2 [M (N/4) +N/4] + . . .+N/2 [M (N/N) +N/N]

=1/2MN logN+1/2N logN (D.2)

38

Appendix D.1.2. Parallel Algorithm

The recurrence relation of the parallel version of the non-dominated sorting
approach using a sequential search based strategy is given by Eq. (D.3). This
recurrence relation is solved using Eq. (D.4).

T∞(N,M) =

{
M + 1 if N = 2

T∞ (N/2,M) +M (N/2) + N/2 otherwise
(D.3)

T∞(N,M)= [M (N/2) +N/2] + [M (N/4) +N/4] + . . .+ [M (N/N) +N/N]

=M(N−1)+(N−1) (D.4)

The speedup using the parallel version of the non-dominated sorting approach
is obtained in Eq. (D.5).

Speedup=
T1(N,M)

T∞(N,M)
=

1/2MN logN+1/2N logN

M(N − 1)+(N−1)
≡1/2 logN (D.5)

Appendix D.2. Binary Search based Approach

Here, the recurrence relation is established using a binary search based strat-
egy.

Appendix D.2.1. Serial Algorithm

The recurrence relation of the serial version of the non-dominated sorting
approach using a binary search based strategy is given by Eq. (D.6). This
recurrence relation is solved using Eq. (D.7).

T1(N,M) =

{
M + 1 if N = 2

2T1 (N/2,M) +Mdlog (N/2 + 1)e+ N/2 otherwise
(D.6)

T1(N,M)= [Mdlog (N/2+1)e+N/2] +2 [Mdlog (N/4+1)e+N/4] + . . .+

N/2 [Mdlog (N/N+1)e+N/N]

=M(2N− logN−2)+1/2N logN (D.7)

Appendix D.2.2. Parallel Algorithm

The recurrence relation of the parallel version of the non-dominated sorting
approach using a binary search based strategy is given by Eq. (D.8). This
recurrence relation is solved using Eq. (D.9).

T∞(N,M) =

{
M + 1 if N = 2

T∞ (N/2,M) +Mdlog (N/2 + 1)e+ N/2 otherwise
(D.8)

T∞(N,M) = [Mdlog (N/2+1)e+N/2] + [Mdlog (N/4+1)e+N/4] + . . .+

[Mdlog (N/N+1)e+N/N]

=1/2M(log2N+ logN)+(N−1) (D.9)

39

The speedup using the parallel version of the non-dominated sorting approach
is obtained in Eq. (D.10).

Speedup=
T1(N,M)

T∞(N,M)
=
M(2N− logN−2)+1/2N logN

1/2M(log2N+ logN)+(N−1)
≡1/2 logN (D.10)

Appendix E. N Solutions are Equally Divided into
√
N Fronts

We establish the recurrence relation for the non-dominated sorting approach
when N solutions are equally divided in

√
N fronts such that each solution in

a front dominates all the solutions in its succeeding front. We also obtain the
maximum theoretical speedup. As the number of fronts is more than one, the
sequential and the binary search based approaches perform differently. Let us
consider N ′ =

√
N .

Appendix E.1. Sequential Search based Approach

Here, the recurrence relation is established using a sequential search based
strategy.

Appendix E.1.1. Serial Algorithm

The recurrence relation of the serial version of the non-dominated sorting
approach using a sequential search based strategy is given by Eq. (E.1). Here,
till the L/2th level, in the merge operation, the solutions are non-dominated.
After the merge operation at the L/2th is finished, each set of fronts has a single
front which contains

√
N solutions. So, the first part of Eq. (E.1) corresponds

to the process of non-dominated sorting till the L/2th level. After the L/2th level,
each set of fronts has a higher number of fronts. Whenever a merge operation is
performed, all the fronts in F ′ have a lower dominance than that of the fronts
in F . Only the solutions of the first front in F ′ are compared with the solutons
of F . The solutions of the remaining fronts in F ′ are added directly to F
because of the dominance relationship as discussed in [2]. So, the second part
of Eq. (E.1) corresponds to the process of non-dominated sorting after the L/2th

level.

T1(N,M)=N ′T11(
√
N,M)+T12(N,M)︸ ︷︷ ︸

N>N ′

(E.1)

T11(
√
N,M)=

{
M+1 if

√
N=2

2T11

(√
N/2,M

)
+M

(√
N/2
)2

+
√
N/2 otherwise

(E.2)

T12(N,M)︸ ︷︷ ︸
N>N ′

=

{
MN ′+N ′ if N=2N ′

2T12 (N/2,M) +M (N/2N ′N ′) + (N/2N ′)N ′ otherwise

=

{
MN ′+N ′ if N=2N ′

2T12 (N/2,M) +M (N/2) +N/2 otherwise
(E.3)

40

T11(
√
N,M)=

[
M
(√

N/2
)2

+
√
N/2
]

+2
[
M
(√

N/4
)2

+
√
N/4
]

+ . . .+

√
N/2

[
M
(√

N/
√
N
)2

+
√
N/
√
N

]
=1/2M

√
N(
√
N−1)+1/4

√
N logN (E.4)

T12(N,M)= [M (N/2) +N/2] +2 [M (N/4) +N/4] + . . .+N ′/2 [M (N/N ′) +N/N ′]

=1/4MN logN+1/4N logN (E.5)

The solution to the recurrence relation in Eq. (E.1) is obtained in Eq. (E.6).

T1(N,M)=N ′T11(
√
N,M)+T12(N,M)=

√
NT11(

√
N,M)+T12(N,M)

=
√
N
[

1/2M
√
N(
√
N−1)+1/4

√
N logN

]
+1/4MN logN+1/4N logN

=1/4MN(2
√
N+ logN−2)+1/2N logN (E.6)

Appendix E.1.2. Parallel Algorithm: Version-1

The recurrence relation of parallel version-1 using a sequential search based
strategy is given by Eq. (E.7).

T∞(N,M)=N ′T∞1(
√
N,M)+T∞2(N,M)︸ ︷︷ ︸

N>N ′

(E.7)

T∞1(
√
N,M)=

{
M+1 if

√
N=2

T∞1

(√
N/2,M

)
+M

(√
N/2
)2

+
√
N/2 otherwise

(E.8)

T∞2(N,M)︸ ︷︷ ︸
N>N ′

=

{
MN ′+N ′ if N = 2N ′

T∞2 (N/2,M) +M (N/2N ′N ′) + (N/2N ′)N ′ otherwise

=

{
MN ′+N ′ if N=2N ′

T∞2 (N/2,M) +M (N/2) +N/2 otherwise
(E.9)

T∞1(
√
N,M)=

[
M
(√

N/2
)2

+
√
N/2
]

+
[
M
(√

N/4
)2

+
√
N/4
]

+ . . .+[
M
(√

N/
√
N
)2

+
√
N/
√
N

]
=1/3M(N−1)+(

√
N−1) (E.10)

T∞2(N,M)= [M (N/2) +N/2] + [M (N/4) +N/4] + . . .+ [M (N/N ′) +N/N ′]

=M
√
N(
√
N−1)+

√
N(
√
N−1) (E.11)

The solution to the recurrence relation in Eq. (E.7) is obtained in Eq. (E.12).

T∞(N,M)=N ′T∞1(
√
N,M)+T∞2(N,M)=

√
NT∞1(

√
N,M)+T∞2(N,M)

=
√
N
[

1/3M(N−1)+(
√
N−1)

]
+M
√
N(
√
N−1)+

√
N(
√
N−1)

=1/3M
√
N(N+3

√
N−4)+2

√
N(
√
N−1) (E.12)

41

The speedup using parallel version-1 is obtained in Eq. (E.13).

Speedup=
T1(N,M)

T∞(N,M)
=

1/4MN(2
√
N+ logN−2)+1/2N logN

1/3M
√
N(N+3

√
N−4)+2

√
N(
√
N−1)

≡3/2 (E.13)

Appendix E.1.3. Parallel Algorithm: Version-2

The recurrence relation of parallel version-2 using a sequential search based
strategy is given by Eq. (E.14).

T∞(N,M)=N ′T∞1(
√
N,M)+T∞2(N,M)︸ ︷︷ ︸

N>N ′

(E.14)

T∞1(
√
N,M)=

{
M+1 if

√
N=2

T∞1

(√
N/2,M

)
+M

(√
N/2
)

+
√
N/2 otherwise

(E.15)

T∞2(N,M)︸ ︷︷ ︸
N>N ′

=

{
M+N ′ if N=2N ′

T∞2 (N/2,M) +M (N/2N ′) + (N/2N ′)N ′ otherwise

=

{
M+N ′ if N=2N ′

T∞2 (N/2,M) +M (N/2N ′) +N/2 otherwise
(E.16)

T∞1(
√
N,M)=

[
M
(√

N/2
)

+
√
N/2
]

+
[
M
(√

N/4
)

+
√
N/4
]

+ . . .+[
M
(√

N/
√
N
)

+
√
N/
√
N
]

=M(
√
N−1)+(

√
N−1) (E.17)

T∞2(N,M)= [M (N/2N ′) +N/2] + [M (N/4N ′) +N/4] + . . .+

[M (N/N ′N ′) +N/N ′] =M(
√
N−1)+

√
N(
√
N−1) (E.18)

The solution to the recurrence relation in Eq. (E.14) is obtained in Eq. (E.19).

T∞(N,M)=N ′T∞1(
√
N,M)+T∞2(N,M)=

√
NT∞1(

√
N,M)+T∞2(N,M)

=
√
N
[
M(
√
N−1)+(

√
N−1)

]
+M(

√
N−1)+

√
N(
√
N−1)

=M(N−1)+2
√
N(
√
N−1) (E.19)

The speedup using parallel version-2 is obtained in Eq. (E.20).

Speedup=
T1(N,M)

T∞(N,M)
=

1/4MN(2
√
N+ logN−2)+1/2N logN

M(N−1)+2
√
N(
√
N−1)

≡1/2
√
N (E.20)

Appendix E.1.4. Parallel Algorithm: Version-3

The recurrence relation of parallel version-3 using a sequential search based
strategy is given by Eq. (E.21).

T∞(N,M) = N ′T∞1(
√
N,M)+T∞2(N,M)︸ ︷︷ ︸

N>N ′

(E.21)

42

T∞1(
√
N,M)=

{
M+1 if

√
N=2

T∞1

(√
N/2,M

)
+M+ log

(√
N/2
)

+
√
N/2 otherwise

(E.22)

T∞2(N,M)︸ ︷︷ ︸
N>N ′

=

{
M+ logN ′+N ′ if N=2N ′

T∞2 (N/2,M) +N/2N ′ (M+ logN ′) + (N/2N ′)N ′ otherwise

=

{
M+ logN ′+N ′ if N=2N ′

T∞2 (N/2,M) +N/2N ′ (M+ logN ′) +N/2 otherwise
(E.23)

T∞1(
√
N,M)=

[
M+ log

(√
N/2
)

+
√
N/2
]

+
[
M+ log

(√
N/4
)

+
√
N/4
]

+ . . .+[
M+ log

(√
N/
√
N
)

+
√
N/
√
N
]

=1/2M logN+1/8(8
√
N+ log2N−2 logN−8) (E.24)

T∞2(N,M)= [N/2N ′ (M+ logN ′) +N/2] + [N/4N ′ (M+ logN ′) +N/4] + . . .+

[N/N ′N ′ (M+ logN ′) +N/N ′]

=M(
√
N−1)+1/2(2N+

√
N logN−2

√
N− logN) (E.25)

The solution to the recurrence relation in Eq. (E.21) is obtained in Eq. (E.26).

T∞(N,M)=
√
NT∞1(

√
N,M)+T∞2(N,M)=

√
NT∞1(

√
N,M)+T∞2(N,M)

=
√
N
[

1/2M logN+1/8(8
√
N+ log2N−2 logN−8)

]
+

M(
√
N−1)+1/2(2N+

√
N logN−2

√
N− logN)

=1/2M(
√
N logN+2

√
N−2)+

1/8(16N+
√
N log2N+2

√
N logN−16

√
N−4 logN) (E.26)

The speedup using parallel version-3 is obtained in Eq. (E.27).

Speedup=
T1(N,M)

T∞(N,M)
≡1/4M

√
N≡1/4M

√
N (E.27)

Appendix E.2. Binary Search based Approach

Here, the recurrence relation is established using a binary search based strat-
egy.

Appendix E.2.1. Serial Algorithm

The recurrence relation of the serial version of the non-dominated sorting
approach using a binary search based strategy is given by Eq. (E.28).

T1(N,M)=N ′T11(
√
N,M)+T12(N,M)︸ ︷︷ ︸

N>N ′

(E.28)

43

T11(
√
N,M)=

{
M+1 if

√
N=2

2T11

(√
N/2,M

)
+M

(√
N/2
)2

+
√
N/2 otherwise

(E.29)

T12(N,M)︸ ︷︷ ︸
N>N ′

=

{
MN ′+N ′ if N=2N ′

2T12 (N/2,M) +M (dlog (N/2N ′+1)eN ′) + (N/2N ′)N ′ otherwise

=

{
MN ′+N ′ if N=2N ′

2T12 (N/2,M) +M (dlog (N/2N ′+1)eN ′) +N/2 otherwise

(E.30)

T11(
√
N,M)=

[
M
(√

N/2
)2

+
√
N/2
]

+2
[
M
(√

N/4
)2

+
√
N/4
]

+ . . .+

√
N/2

[
M
(√

N/
√
N
)2

+
√
N/
√
N

]
=1/2M

√
N(
√
N−1)+1/4

√
N logN (E.31)

T12(N,M)= [M (dlog (N/2N ′+1)eN ′) +N/2] +

2 [M (dlog (N/4N ′+1)eN ′) +N/4] + . . .+

N ′/2 [M (dlog (N/N ′N ′+1)eN ′) +N/N ′]

=1/2M
√
N(4
√
N− logN−4)+1/4N logN (E.32)

The solution to the recurrence relation in Eq. (E.28) is obtained in Eq. (E.33).

T1(N,M)=N ′T11(
√
N,M)+T12(N,M)=

√
NT11(

√
N,M)+T12(N,M)

=
√
N
[

1/2M
√
N(
√
N−1)+1/4

√
N logN

]
+

1/2M
√
N(4
√
N− logN−4)+1/4N logN

=1/2M
√
N(N+3

√
N− logN−4)+1/2N logN (E.33)

Appendix E.2.2. Parallel Algorithm: Version-1

The recurrence relation of parallel version-1 using a binary search based
strategy is given by Eq. (E.34).

T∞(N,M)=N ′T∞1(
√
N,M)+T∞2(N,M)︸ ︷︷ ︸

N>N ′

(E.34)

T∞1(
√
N,M)=

{
M+1 if

√
N=2

T∞1

(√
N/2,M

)
+M

(√
N/2
)2

+
√
N/2 otherwise

(E.35)

T∞2(N,M)︸ ︷︷ ︸
N>
√
N

=

MN ′+N ′ if N=2N ′

T∞2 (N/2,M) +M (dlog (N/2N ′+1)eN ′) +

(N/2N ′)N ′ otherwise

44

=

{
MN ′+N ′ if N=2N ′

T∞2 (N/2,M) +M (dlog (N/2N ′+1)eN ′) +N/2 otherwise

(E.36)

T∞1(
√
N,M)=

[
M
(√

N/2
)2

+
√
N/2
]

+
[
M
(√

N/4
)2

+
√
N/4
]

+ . . .+[
M
(√

N/
√
N
)2

+
√
N/
√
N

]
=1/3M(N−1)+(

√
N−1) (E.37)

T∞2(N,M)= [M (dlog (N/2N ′+1)eN ′) +N/2] + [M (dlog (N/4N ′+1)eN ′) +N/4]

+ . . .+ [M (dlog (N/N ′N ′+1)eN ′) +N/N ′]

=1/8M
√
N(log2N+2 logN)+

√
N(
√
N−1) (E.38)

The solution to the recurrence relation in Eq. (E.34) is obtained in Eq. (E.39).

T∞(N,M)=N ′T∞1(
√
N,M)+T∞2(N,M)=

√
NT∞1(

√
N,M)+T∞2(N,M)

=
√
N
[

1/3M (N−1) +(
√
N−1)

]
+

1/8M
√
N(log2N+2 logN)+

√
N(
√
N−1)

=1/24M
√
N(8N+3 log2N+6 logN−8)+2

√
N(N−1) (E.39)

The speedup using parallel version-1 is obtained in Eq. (E.40).

Speedup=
T1(N,M)

T∞(N,M)
=

1/2M
√
N(N+3

√
N− logN−4)+1/2N logN

1/24M
√
N(8N+3 log2N+6 logN−8)+2

√
N(N−1)

≡3/2

(E.40)

Appendix E.2.3. Parallel Algorithm: Version-2

The recurrence relation of parallel version-2 using a binary search based
strategy is given by Eq. (E.41).

T∞(N,M) = N ′T∞1(
√
N,M)+T∞2(N,M)︸ ︷︷ ︸

N>N ′

(E.41)

T∞1(
√
N,M) =

{
M+1 if

√
N=2

T∞1

(√
N/2,M

)
+M

(√
N/2
)

+
√
N/2 otherwise

(E.42)

T∞2(N,M)︸ ︷︷ ︸
N>
√
N

=

{
M+N ′ if N=2N ′

T∞2 (N/2,M) +M (dlog (N/2N ′+1)e) + (N/2N ′)N ′ otherwise

=

{
M+N ′ if N=2N ′

T∞2 (N/2,M) +M (dlog (N/2N ′+1)e) +N/2 otherwise

(E.43)

45

T∞1(
√
N,M)=

[
M
(√

N/2
)

+
√
N/2
]

+
[
M
(√

N/4
)

+
√
N/4
]

+ . . .+[
M
(√

N/
√
N
)

+
√
N/
√
N
]

=M(
√
N − 1)+(

√
N−1) (E.44)

T∞2(N,M)= [M (dlog (N/2N ′+1)e) +N/2] + [M (dlog (N/4N ′+1)e) +N/4] +

. . .+ [M (dlog (N/N ′N ′+1)e) +N/N ′]

=1/8M(log2N+2 logN)+
√
N(
√
N−1) (E.45)

The solution to the recurrence relation in Eq. (E.41) is obtained in Eq. (E.46).

T∞(N,M)=N ′T∞1(
√
N,M)+T∞2(N,M)=

√
NT∞1(

√
N,M)+T∞2(N,M)

=
√
N
[
M(
√
N−1)+(

√
N−1)

]
+1/8M(log2N+2 logN)+

√
N(
√
N−1)

= 1/8M(8N−8
√
N+ log2N+2 logN)+2

√
N(
√
N−1) (E.46)

The speedup using parallel version-2 is obtained in Eq. (E.47).

Speedup=
T1(N,M)

T∞(N,M)
≡1/2
√
N (E.47)

Appendix E.2.4. Parallel Algorithm: Version-3

The recurrence relation of parallel version-3 using a binary search based
strategy is given by Eq. (E.48).

T∞(N,M)=
√
NT∞1(

√
N,M)+T∞2(N,M)︸ ︷︷ ︸

N>
√
N

(E.48)

T∞1(
√
N,M)=

{
M+1 if

√
N=2

T∞1

(√
N/2,M

)
+M+ log

(√
N/2
)

+
√
N/2 otherwise

(E.49)

T∞2(N,M)︸ ︷︷ ︸
N>
√
N

=

M+ logN ′+N ′ if N=2N ′

T∞2 (N/2,M) +dlog (N/2N ′+1)e (M+ logN ′) +

(N/2N ′)N ′ otherwise

=

M+ logN ′+N ′ if N=2N ′

T∞2 (N/2,M) +dlog (N/2N ′+1)e (M+ logN ′) +
N/2 otherwise

(E.50)

46

Table E.11: Maximum theoretical speedup achieved by the parallel version of the second phase
of the non-dominated sorting approach in three different scenarios.

Scenario
Version-1 Version-2 Version-3

Sequential Binary Sequential Binary Sequential Binary

N solutions in single front 3
2

3
2

1
2N

1
2N

1
2MN 1

2MN

N solutions in N front 1
2 logN 1

2 logN 1
2 logN 1

2 logN 1
2 logN 1

2 logN

N solutions in
√
N front† 3

2
3
2

1
2

√
N 1

2

√
N 1

4M
√
N 1

4M
√
N

†: Each solution in a front is dominated by all the solutions in its preceding front.

T∞1(
√
N,M)=

[
M+ log

(√
N/2
)

+
√
N/2
]

+
[
M+ log

(√
N/4
)

+
√
N/4
]

+ . . .+[
M+ log

(√
N/
√
N
)

+
√
N/
√
N
]

=1/2M logN+1/8(8
√
N+ log2N−2 logN−8) (E.51)

T∞2(N,M)= [dlog (N/2N ′+1)e (M+ logN ′) +N/2] +

[dlog (N/4N ′+1)e (M+ logN ′) +N/4] + . . .+

[dlog (N/N ′N ′+1)e (M+ logN ′) +N/N ′]

=1/8M(log2N+2 logN)+1/16(16N−16
√
N+ log3N+2 log2N)

(E.52)

The solution to the recurrence relation in Eq. (E.48) is obtained in Eq. (E.53).

T∞(N,M)=N ′T∞1(
√
N,M)+T∞2(N,M)=

√
NT∞1(

√
N,M)+T∞2(N,M)

=
√
N
[

1/2M logN+1/8(8
√
N+ log2N−2 logN−8)

]
+

1/8M(log2N+2 logN)+1/16(16N−16
√
N+ log3N+2 log2N)+

√
N(
√
N−1)

=1/8M(4
√
N logN+ log2N+2 logN)+

1/16(32N−32
√
N+2

√
N log2N−4

√
N logN+ log3N+2 log2N)

(E.53)

The speedup using parallel version-3 is obtained in Eq. (E.54).

Speedup=
T1(N,M)

T∞(N,M)
≡1/4M

√
N (E.54)

Summary of maximum theoretical speedup:. Table E.11 summarizes the
maximum theoretical speedup by different parallel versions of the second phase
of the non-dominated sorting approach in three different scenarios.

The theoretical speedup of the parallel version of the second phase of the
non-dominated sorting approach can be further improved if the dominance rela-
tionship between each pair of solutions can be obtained before the merge opera-
tions. The dominance relationship between different solutions can be computed
in O(M) time [29]. Table E.12 summarizes the maximum theoretical speedup

47

achieved by different parallel versions of the second phase of the non-dominated
sorting approach in three different scenarios when the dominance relationship
between different solutions can be obtained beforehand.

Table E.12: Maximum theoretical speedup achieved by the parallel version of the second
phase of the non-dominated sorting approach in three different scenarios when the dominance
relationship between different solutions can be obtained beforehand.

Scenario
Version-1 Version-2 Version-3

Sequential Binary Sequential Binary Sequential Binary

N solutions in single front 3
2M

3
2M

1
4MN 1

4MN 1
2MN 1

2MN

N solutions in N front 1
4M logN 1

2 logN 1
4M logN 1

2 logN 1
4M logN 1

2 logN

N solutions in
√
N front† 3

2M
3
2M

1
6M
√
N 1

6M
√
N 1

4M
√
N 1

4M
√
N

†: Each solution in a front is dominated by all the solutions in its preceding front.

48

	Introduction
	Related Work
	Proposed Framework
	Merge Procedure
	Insert Procedure without Extra Space
	Sequential Search based Strategy
	Binary Search based Strategy

	Extra space is required
	Sequential Search based Strategy
	Binary Search based Strategy

	Time Complexity Analysis
	All Solutions are in a Single Front
	All Solutions are in Separate Fronts
	N solutions in each of the N fronts

	Space Complexity Analysis
	Scope of Parallelism in our DCNS Framework

	Experimental Analysis
	Experiments with the Cloud Dataset
	Experiments with the Fixed Front Dataset
	Experiments using NSGA-II as the Underlying Optimization Technique
	Discussion & Analysis

	Conclusions and Future Work
	Effect of and on the number of dominance comparisons
	Insertion using
	Insertion using

	Scope of Parallelism
	All the Solutions are in a Single Front
	Serial Algorithm
	Parallel Algorithm: Version-1
	Parallel Algorithm: Version-2
	Parallel Algorithm: Version-3

	All the Solutions are in Different Fronts
	Sequential Search based Approach
	Serial Algorithm
	Parallel Algorithm

	Binary Search based Approach
	Serial Algorithm
	Parallel Algorithm

	bold0mu mumu NN2005/06/28 ver: 1.3 subfig packageNNNN Solutions are Equally Divided into bold0mu mumu NN2005/06/28 ver: 1.3 subfig packageNNNN Fronts
	Sequential Search based Approach
	Serial Algorithm
	Parallel Algorithm: Version-1
	Parallel Algorithm: Version-2
	Parallel Algorithm: Version-3

	Binary Search based Approach
	Serial Algorithm
	Parallel Algorithm: Version-1
	Parallel Algorithm: Version-2
	Parallel Algorithm: Version-3

