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Abstract Pareto-based multi-objective evolutionary algorithms use non-dom-
inated sorting as an intermediate step. These algorithms are easy to parallelize
as various steps of these algorithms are independent of each other. Researchers
have focused on the parallelization of non-dominated sorting in order to reduce
the execution time of these algorithms. In this paper, we focus on one of the
initial approaches for non-dominated sorting also known as naive approach,
proposed by Srinivas et al., and explore the scope of parallelism in this ap-
proach. Parallelism is explored in the considered approach in three different
ways considering PRAM CREW (Parallel Random Access Machine, Concur-
rent Read Exclusive Write) model. The time and space complexities of three
different parallel versions are also analyzed. Analysis of parallel algorithms
is usually carried out under the assumption that an unbounded number of
processors are available. Thus, the same assumption has been considered in
our analysis too and we have obtained the maximum number of processors
required for three parallel versions.
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1 Introduction

Pareto-based multi- and many-objective evolutionary algorithms use non-dom-
inated sorting as an intermediate step [4, 3]. Non-dominated sorting is also
used in other domains such as economics, databases, game theory and compu-
tational geometry. In non-dominated sorting, the solutions are sorted based on
the dominance relationship between the solutions. Let P = {sol1, sol2, . . . , solN}
be a set of N solutions where each solution is associated with M objectives.
The set of solutions is known as population. Actually, these solutions are in
an M -dimensional objective space. A particular solution soli(1 ≤ i ≤ N) in
the population is represented as soli = {f1(soli), f2(soli), . . . , fM (soli)} where
fm(soli), 1 ≤ m ≤M is the value of soli for the mth objective. We consider here
the optimization problems where the focus is to minimize all the objectives.
For sorting the solutions, the dominance relation between them is required,
which is defined as follows.

Definition 1 (Dominance) A solution soli is said to dominate another so-
lution solj which is represented as soli ≺ solj iff it satisfies the two following
conditions:

1. fm(soli) ≤ fm(solj),∀m ∈ {1, 2, . . . ,M}
2. fm(soli) < fm(solj),∃m ∈ {1, 2, . . . ,M}.

The notation soli ⊀ solj is used to represent that solution soli does not
dominate solution solj . We call two solutions soli and solj as non-dominated
when neither solution dominates another, i.e., neither soli ⊀ solj nor solj ⊀
soli. In non-dominated sorting, the set of solutions are divided into non-
dominated fronts as formally defined next.

Definition 2 (Non-dominated sorting) Given a set of N solutions {sol1,
sol2, . . . , solN}. In non-dominated sorting, these solutions are divided in K(1 ≤
K ≤ N) non-dominated fronts {F1, F2, . . . , FK} in decreasing order of their
dominance such that

1. ∪Ki=1Fi = P
2. ∀soli, solj ∈ Fk: soli ⊀ solj and solj ⊀ soli (1 ≤ k ≤ K)

3. ∀sol ∈ Fk, ∃sol ′ ∈ Fk−1: sol ′ ≺ sol (2 ≤ k ≤ K)

In these sorted fronts, F1 has the highest dominance, F2 has the second highest
dominance and so on. The last front FK has the lowest dominance.

Parallel programming has attracted a lot of attention in recent years as
a means to reduce the execution time of algorithms. Evolutionary algorithms
are normally easy to parallelize due to their low data dependency, and this has
motivated a considerable amount of research in this area [15, 34, 12, 16, 30, 36].
Consequently, the parallelization of non-dominated sorting algorithms has also
attracted the interest of several researchers (see for example [31, 8, 27, 25, 19]).

The main focus of the current research in this area has been on the paral-
lelization of the naive approach for non-dominated sorting proposed by Srinivas
et al. [32]. However, there are several other non-dominated sorting approaches
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which have also the parallelism property such as the fast non-dominated sort-
ing [4], ENS [38], BOS [28], DCNS [21], T-ENS [39] and ENS-NDT [9], among
others.

It is worth noticing that approaches such as ENS [38], BOS [28], DCNS [21],
ENS-NDT [9] and T-ENS [39], require to sort 2N solutions (in case of NSGA-
II [4], NSGA-III [3], and others) unlike the naive approach [32], fast non-
dominated sort [4] and deductive sort [17] where the process of sorting can
be stopped when we have enough fronts which contain N solutions. Let the
N th solution be inserted into the kth front. As soon as any other solution is
inserted into the k + 1th front, the process of non-dominated sorting stops in
case of the naive approach [32], fast non-dominated sort [4] and deductive sort
[17]. However, ENS [38], BOS [28], DCNS [21], ENS-NDT [9] and T-ENS [39]
continue the process until all 2N solutions are sorted. So, we have focused
on the scope of parallelism in the naive approach. The worst case time com-
plexity of the naive approach is O(MN3) and the best case time complexity
is O(MN2) [32]. The best case of the naive approach occurs when all the
solutions are non-dominated with respect to each other. Generally, when all
the solutions are in single front (non-dominated with respect to each other),
several approaches have their worst case (e.g., deductive sort [17], ENS [38],
DCNS [21], T-ENS [39] and ENS-NDT [9]), having a O(MN2) time complex-
ity. The naive approach performs close to its best case when the number of
fronts are less in number.

The organization of the rest of the paper is as follows. Some of the ap-
proaches for non-dominated sorting are described in Section 2. The naive ap-
proach is illustrated in Section 3 along with its time and space complexities.
Parallelism in the naive approach is explored in Section 4 and three parallel
versions are proposed. The time and space complexities of the parallel versions
are mathematically derived. Finally, Section 5 concludes the paper with some
possible paths for future research.

2 Previous Related Work

We discuss here some of the approaches for non-dominated sorting that have
been proposed in the specialized literature. Deb et al. [4] proposed fast non-
dominated sort which requires O(MN2) time and has a space complexity of
O(N2). Jensen et al. [11] proposed a recursive approach based on a divide-
and-conquer strategy with time complexity O(N logM−1 N) and space com-
plexity O(MN). When two solutions have the same value for a particular ob-
jective, then this approach is not able to correctly sort the solutions. For two
objectives, the time complexity of Jensen’s approach is O(N logN). Fang et
al. [6] proposed another approach based on a divide-and-conquer strategy. The
worst case time complexity of this approach is O(MN2). However, the best
case time complexity is O(MN logN) and its space complexity is O(MN).
This approach has improved the best case time complexity. However, in case
of duplicate solutions, this approach considers one solution as dominated by
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another. Tang et al. [33] proposed an approach based on arena’s principle
with a worst case time complexity O(MN2) and a best case time complexity
O(MN

√
N).

McClymont et al. [17] proposed two approaches: Climbing sort and Deduc-
tive sort. The worst case time complexity of both the approaches is O(MN2).
However, deductive sort performs half the comparisons of climbing sort in the
worst case. The best case time complexity of deductive sort is O(MN

√
N).

This approach reduces the number of comparisons by inferring the dominance
relationship between the solutions. The limitation of Jensen’s approach is re-
moved by adopting the proposal of Fortin et al. [7]. However, the limitation
is removed at the cost of an increased worst case time complexity which is
O(MN2). The average case time complexity of Fortin’s approach is same as
Jensen’s approach which is O(N logM−1 N).

An efficient approach for non-dominated sorting known as ENS was pro-
posed by Zhang et al. [38]. ENS works in two phases. In the first phase, the
solutions are sorted based on a particular objective (generally the first objec-
tive). The solutions are ranked in the second phase. There are two variants
of ENS based on how a solution is added to the existing set of fronts. The
first one is ENS-SS which is based on sequential search and the second one
is ENS-BS which is based on binary search. ENS-SS and ENS-BS both have
worst case time complexity O(MN2). However, the best case time complexity
of ENS-SS is O(MN

√
N) and the best case time complexity of ENS-BS is

O(MN logN). Buzdalov et al. [2] proposed an approach with time complexity
O(N logM−1 N). A Hierarchical Non-dominated Sorting (HNDS) scheme was
proposed by Bao et al. [1]. Like ENS, this is also a two-phased approach where
the solutions are sorted based on a particular objective in the first phase and
the solutions are ranked in the second phase. The worst case time complexity
of HNDS is O(MN2) and the best case time complexity is O(MN

√
N). Cor-

ner sort was proposed by Wang et al. [35] with a worst case time complexity
O(MN2).

There are several other recent proposals [28, 39, 9, 24, 23, 29] where, for a
solution to be inserted into a front, there is no need to compare it with all the
other solutions. Best Order Sort (BOS) [28] is based on this same concept. In
BOS, the solutions are initially sorted based on each of the objectives, con-
sidered separately. Then, the solutions are assigned to their respective front.
The worst case time complexity of BOS is O(MN2) whereas its best case time
complexity is O(MN logN). BOS has two advantages: (i) the number of domi-
nance comparisons is reduced to a great extent and (ii) all the objectives values
of two solutions are not considered while obtaining the dominance relationship
between them. The second advantage of BOS is because of the comparison set
concept which contains all the objective values of the solution. In spite of these
two advantages, BOS is not able to handle duplicate solutions properly. BOS
has been recently updated1 to remove its limitation. However, BOS loses its
second advantage in the process of removing its limitation. Mishra et al. [24]

1 https://github.com/Proteek/Best-Order-Sort/
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also worked on the same limitation of BOS and handled duplicate solutions
efficiently without retaining the second advantage of BOS. Recently, the gen-
eralized version of BOS called “Generalized Best Order Sort” (GBOS) has
been proposed which handles duplicate solutions efficiently and retains the
comparison set concept of BOS [23]. Thus, it makes BOS more effective in
terms of the number of comparisons. Bounded Best Order Sort (BBOS) [29] is
an improved version of BOS. BBOS works better for a large number of fronts.
A heuristic is proposed to reduce the computational effort of solution compar-
isons. The worst case time complexity of BBOS is O(MN2) and the best case
time complexity is O(MN logN). BBOS can achieve O(MN logN +N2) time
complexity in case of a single front. The same time complexity has also been
achieved by [28, 24, 23].

A tree-based approach known as T-ENS was proposed by Zhang et al. [39].
In this approach, a non-dominated front is represented in the form of a tree
to reduce the number of comparisons. The worst case time complexity of T-
ENS is O(MN2) and the best case time complexity is O(MN logN/logM). By
extending ENS-BS [38], a tree-based approach known as ENS-NDT (Efficient
Non-dominated Sort based on Non-dominated Tree) was proposed by Gustavs-
son et al. [9]. This approach is able to handle duplicate solutions efficiently. The
worst case time complexity of ENS-NDT is O(MN2) and its best case time
complexity is O(MN logN) when M > logN ; otherwise, it is O(N log2 N).

There has been also some research on the parallelization of non-dominated
sorting. A very fast non-dominated sort was proposed by Smutnicki et al. [31].
This approach focuses on exploring the parallelization of fast non-dominated
sort [4]. Parallelism is considered in two different manners. The time com-
plexity of the first parallel version is O(M + N logN) and the second parallel
version is O(M+N). Gupta et al. [8] proposed a GPU-based parallel algorithm
for non-dominated sorting which is also based on fast non-dominated sort [4].
Ortega et al. [27] also explores the parallelism in fast non-dominated sort [4].
Three parallel versions were developed in this regard (i.e., first based on GPUs,
a second one based on multicores and a third one based on both GPUs and
multicores). Recently the parallelism in BOS [28] has been explored by Moreno
et al. [25]. They have proposed two different parallel versions based on multi-
core processors and the GPU. Recently, the parallel version of ENS [38] has
been discussed in [19].

There are also other approaches [5, 20, 14, 22, 37] where in spite of per-
forming the complete non-dominated sorting, an offspring solution is inserted
into its proper place in the existing sorted set of fronts. This kind of scenario
is generally used in steady-state multi-objective evolutionary algorithms [22].

3 Naive Approach: Serial Version

In this section, we discuss the naive approach [32] in its serial version. In
the naive approach, each solution is compared with all the other solutions.
After comparing the solutions with each other, the solutions which are not
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Algorithm 1 Naive Approach
Input: P: Population of size N where each solution is associated with M objectives
Output: Ranked solutions
1: rank← 1
2: repeat
3: isDominated[1, 2, . . . , |P|]← False // Initialize an array of size |P| to store whether a

solution is dominated by any other solution in P or not
4: for each solution sol ∈ P do
5: for each solution sol ′ ∈ P do
6: if sol is dominated by sol ′ then
7: isDominated[sol]← True
8: Break // sol is dominated by sol ′ so there is no need to compare sol with

others
9: end if

10: end for
11: end for

/* Check for each solution in P whether it is not dominated by any other solution */

12: for each solution sol ∈ P : isDominated[sol] = False do
13: solrank ← rank // Assign rank to sol
14: P← P \ {sol} // Remove sol from P as it has been ranked
15: end for
16: rank← rank + 1 // Increase the value of rank
17: until P becomes empty

dominated by any other solution are assigned to the first front. Now, the
solutions of the first front are not considered. The rest of the solutions are
compared with each other. Now, the solutions which are not dominated by
any other solution are assigned to the second front. This process is repeated
until all the solutions are assigned to their respective front. The naive approach
is described in Algorithm 1.

The worst case of the naive approach occurs when all the solutions are in
the different fronts. In this case, in each iteration of the algorithm, a single
solution is ranked. Thus, the time complexity in the worst case is given by
Eq. (1).

T1worst =
∑N

i=1

[{∑N−i+1

j=1
M(N − i)

}
+ (N − i + 1)

]
=

1

3
MN(N2 − 1) +

1

2
N(N + 1) = O(MN3) (1)

The best case of the naive approach occurs when all the solutions are in the
same front. In this case, each solution is compared with other solutions only
once and they are ranked. Thus, the best case time complexity is given by
Eq. (2).

T1best
=
∑1

i=1

[{∑N−i+1

j=1
M(N − i)

}
+ (N − i + 1)

]
= MN(N − 1) + N = O(MN2) (2)

To sort the solutions into different fronts, an array ‘isDominated[ ]’ is
needed to store whether a solution is dominated by any other solution in
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the population or not. The maximum size of the population is N . Thus, the
space complexity of the naive approach is O(N).

4 Scope of Parallelism

In this section, we discuss the scope of parallelism in the naive approach.
Parallelism is analyzed in the naive approach in three different manners. Before
discussing the parallelism in detail, we first discuss the computing environment
for which parallelism will be explored.

4.1 Computing Environment

In our study, we are considering the PRAM CREW (Parallel random-access
machine with Concurrent Read, Exclusive Write) model as considered in [31].
The PRAM CREW model is earliest and best-known model of parallel compu-
tation [10, 13]. In this model, simultaneous read at the same memory location
is allowed. However, simultaneous write is not allowed. As simultaneous write
operations are not allowed, so there will be no concurrent write operations in
our parallel version. Analysis of parallel algorithms is usually carried out under
the assumption that an unbounded number of processors is available [26, 18].
So we have also considered this assumption. In our analysis we have also
obtained the maximum number of processors which can be required for the
parallel version of the algorithm.

4.2 Parallelism in Dominance Comparisons

In general, the dominance relation between two solutions can be obtained in
O(M) time as M objectives need to be compared. The dominance relation
between each pair of solutions in the population can be obtained simultane-
ously. The dominance relationship between each pair of solutions can be stored
in a matrix of size N × N . We call this matrix dominance matrix. Thus, the
dominance matrix can be obtained in O(M) time if the dominance relation
between each pair of solutions can be obtained simultaneously. Smutnicki et
al. [31] has obtained the dominance matrix in the same manner. The time
complexity of obtaining the dominance matrix can be further improved if the
time complexity of obtaining the dominance relation can be improved. Now,
we discuss the improved way to compute the dominance relation between two
solutions.

Let’s have two solutions soli and solj . For these two solutions, we create
two Boolean arrays, each of size M . Let the first array be Bi and the second
array be Bj . Bi is used to store whether soli is better than solj for each of the
M objectives. Similarly, Bj is used to store whether solj is better than soli for
each of the M objectives. If the objective value of soli is better than (less than
as we focus to minimize all the objectives) the objective value of solj for the
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same objective, then the corresponding cell of Bi is set to ‘True’; otherwise,
it is set to ‘False’. Similarly, Bj is also filled.

These two arrays Bi and Bj are processed simultaneously. As the size of
both the arrays is M , so these arrays are processed at logM levels. At each
level, ‘OR’ operations between two consecutive array cells are performed. The
number of ‘OR’ operations at the lth level is M/2l. Thus, the number of ‘OR’
operations at the last level is one and we get either ‘True’ or ‘False’ after
the ‘OR’ operation at the last level. Two values are obtained after processing
both the arrays Bi and Bj . Let the value obtained from Bi be Vi and the value
obtained from Bj be Vj . The dominance relationship between two solutions
soli and solj can be obtained from Vi and Vj based on the following four
conditions:

1. Vi = Vj = False: Solutions soli and solj are the same in terms of the
objective values.

2. Vi = Vj = True: Solutions soli and solj are non-dominated.
3. Vi = True and Vj = False: Solution soli dominates solj .
4. Vi = False and Vj = True: Solution soli is dominated by solj .

The arrays Bi and Bj can be filled in O(1) time, in parallel. Different ‘OR’
operations at the same level can be performed simultaneously in both Boolean
arrays, so the time complexity of processing these arrays in a parallel manner
is O(logM). Thus, the dominance relationship between a pair of solutions
can be obtained in O(logM) time. Hence, the dominance matrix can also be
obtained in O(logM) time in parallel, as the dominance relation between each
pair of solutions can be obtained simultaneously. Once the dominance matrix is
obtained, the time complexity of obtaining the dominance relationship between
two solutions is O(1) as only a lookup in the dominance matrix is required.

The dominance relation between two solutions is obtained using two Boolean
arrays of size M which require O(M) space. There are a total of N2 pairs of
solutions, so the overall space required to obtain the dominance relation be-
tween each pair of solutions is O(MN2). Also, the space required to store the
dominance matrix is O(N2). Thus, the overall space complexity to obtain the
dominance matrix in a parallel manner is O(MN2).

Example 1 Let’s consider two solutions soli= {4, 2, 6, 5} and solj= {4, 2, 6, 1}
which are in 4-dimensional objective space. For obtaining the dominance re-
lationship between these two solutions, we fill the Boolean arrays Bi and Bj.
After obtaining two Boolean arrays, these arrays are processed simultaneously
using ‘OR’ operations. The final value obtained after processing Bi is ‘False’
and after processing Bj is ‘True’. So, soli is dominated by solj. The complete
process of filling both Boolean arrays and processing them is shown in Fig. 1.

Boolean array Bi can be filled using maximum of M processors in parallel
as its size is M . In the same manner, array Bj can also be filled using maximum
of M processors. Both these arrays can be filled simultaneously. Thus, the
maximum number of processors required to fill both the boolean arrays is
2M . To obtain the dominance relationship between solutions soli and solj ,
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4 2 6 1

4 2 6 1

4 2 6 5

soli

solj

solj

soli

T: True

F: False
soli is dominated by solj

Fig. 1: The process to obtain the dominance relationship between the two
solutions soli and solj in a parallel manner.

boolean arrays Bi and Bj are processed at logM levels. The maximum number
of processors required to process any of the boolean arrays is M/2. Both the
boolean arrays can be processed simultaneously, thus, the maximum number
of processors required to process both the boolean arrays is M/2 + M/2 = M .
Hence using maximum 2M processors, the dominance relationship between
two solutions can be obtained. As the dominance relationship between each
pair of the solutions can be obtained simultaneously and there are N2 pairs
of solutions, so the maximum number of processors required to obtain the
dominance matrix in a parallel manner is 2MN2.

4.3 Parallel Version-1

The parallel version-1 of the naive approach is described in Algorithm 2. Here,
each solution sol can be simultaneously compared with other solutions (the
outer for loop in lines 4− 11 can be implemented in a parallel manner). How-
ever, a particular solution sol is compared to other solution sol ′ in a serial
manner (the inner for loop in lines 5− 10 is implemented in a serial manner).
This scenario is shown in Fig. 2(a). In this figure, all the N solutions in the
top array are simultaneously compared with other solutions in the bottom
array. However, each of the solutions in the top array are compared with all
the solutions in the bottom array sequentially.

In this parallel version, after comparing each solution with all the other
solutions, we check each solution sequentially to see whether it has been dom-
inated by any other solution or not (lines 12− 15). The solution which is not
dominated by any other solution is assigned a rank and removed from the
population so that it do not take part is rank assignment process again. We
repeat this process until all the solutions are ranked.
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Algorithm 2 Naive Approach: Parallel Version-1
Input: P: Population of size N where each solution is associated with M objectives
Output: Ranked solutions
1: rank← 1
2: repeat
3: isDominated[1, 2, . . . , |P|]← False // Initialize an array of size |P| to store whether a

solution is dominated by any other solution in P or not
/* Parallel Section Starts */

4: for each solution sol ∈ P do // Each solution sol is simultaneously compared with
other solutions

5: for each solution sol ′ ∈ P do // sol is compared with all the solutions in a ser-
ial manner

6: if sol is dominated by sol ′ then
7: isDominated[sol]← True
8: Break

9: end if
10: end for
11: end for

/* Parallel Section Ends */

/* Check for each solution in P whether it is not dominated by any other solution */

12: for each solution sol ∈ P : isDominated[sol] = False do
13: solrank ← rank // Assign rank to sol
14: P← P \ {sol} // Remove sol from P as it has been ranked
15: end for
16: rank← rank + 1 // Increase the value of rank
17: until P becomes empty

sol1 sol2 sol3 solN: : :

Compare these solutions simultaneously

: : :

sol1 sol2 sol2 solN: : :

: : :

Compare with solutions sequentially

1 2 3 N

(a) Version-1

sol1 sol2 sol3 solN: : :

Compare these solutions simultaneously

: : :

sol1 sol2 sol2 solN: : :

: : :

Compare with solutions simultaneously

1 1 1 1

(b) Version-2 / Version-3

Fig. 2: Different types of parallelism in the naive approach. 1, 2, 3, . . . , N in
(a) denotes the sequential comparisons whereas 1, 1, 1, . . . , 1 in (b) denotes the
parallel comparisons.

The time complexity in the worst case is given by Eq. (3).

T∞worst =
∑N

i=1
[M(N − i) + (N − i + 1)]

=
1

2
MN(N − 1) +

1

2
N(N + 1) = O(MN2) (3)

The time complexity in the best case is given by Eq. (4).

T∞best
=
∑1

i=1
[M(N − i) + (N − i + 1)]

= M(N − 1) + N = O(MN) (4)
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To sort the solutions into different fronts, an array ‘isDominated[ ]’ is
needed to store whether a solution is dominated by any other solution in
the population or not. The maximum size of the population is N . Thus, the
space complexity of this parallel version is O(N). So, this parallel version does
not add any extra overhead in terms of the space complexity as compared to
the serial version.

In this parallel version, each solution sol can be simultaneously compared
with other solutions. However, a particular solution sol is compared with other
solutions in a serial manner. There are maximum N solutions, thus the maxi-
mum number of processors required by this approach is N .

In this parallel version, if the dominance relationship between different
solutions can be obtained initially as described in Section 4.2 and stored in
dominance matrix, then the time complexity in the worst case is given by
Eq. (5) and the time complexity in the best case is given by Eq. (6).

T∞worst = logM +
∑N

i=1
[(N − i) + (N − i + 1)]

= logM +
1

2
N(N − 1) +

1

2
N(N + 1) = O(logM + N2) (5)

T∞best = logM +
∑1

i=1
[(N − i) + (N − i + 1)]

= logM + (N − 1) + N = O(logM + N) (6)

If the dominance relationship between different solutions can be obtained
initially and stored in a matrix as described in Section 4.2, then the space re-
quired for obtaining the dominance matrix is O(MN2). Thus, the overall space
complexity of this parallel version when the dominance relationship between
different solutions can be obtained beforehand, is O(MN2).

The maximum number of processors required by this approach is N . When
the dominance relationship between different solutions can be obtained ini-
tially and stored in a matrix as described in Section 4.2, then the maximum
number of processors required by parallel version-1 is 2MN2.

4.4 Parallel Version-2

The parallel version-2 of the naive approach is described in Algorithm 3. In
this parallel version, each solution sol can be simultaneously compared with
other solutions (The outer for loop in lines 4− 15 is implemented in a parallel
manner). Also, a particular solution sol is compared with other solutions sol ′

in a parallel manner (the inner for loop in lines 6−10 is also implemented in a
parallel manner). This scenario is shown in Fig. 2(b). In this figure, all the N
solutions in the top array are simultaneously compared with other solutions
in the bottom array. Also, each of the solutions in the top array is compared
with all the solutions in the bottom array, simultaneously.

After comparing sol with all the other solutions simultaneously, we check
whether sol is dominated by any of the solutions or not (line 11−14). For this
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Algorithm 3 Naive Approach: Parallel Version-2
Input: P: Population of size N where each solution is associated with M objectives
Output: Ranked solutions
1: rank← 1
2: repeat
3: isDominated[1, 2, . . . , |P|]← False // Initialize an array of size |P| to store whether a

solution is dominated by any other solution in P or not
/* Parallel Section Starts */

4: for each solution sol ∈ P do // Each solution sol is simultaneously compared with
other solutions

5: isDom[1, 2, . . . , |P|]← False // Initialize an array of size |P| to store whether sol is
dominated by sol ′ ∈ P or not
/* Parallel Section Starts */

6: for each solution sol ′ ∈ P do // sol is compared with all the solutions simultan-
eously

7: if sol is dominated by sol ′ then
8: isDom[sol ′]← True
9: end if

10: end for
/* Parallel Section Ends */

/* Parallel Section Starts */

11: Identify whether sol is dominated by any other solution or not considering isDom[ ]
// It can be done in O(logN) time in parallel manner if the size of isDom[ ] is N

12: if sol is dominated by sol ′ then
13: isDominated[sol ] ← True
14: end if

/* Parallel Section Ends */

15: end for
/* Parallel Section Ends */

/* Check for each solution in P whether it is not dominated by any other solution */

16: for each solution sol ∈ P : isDominated[sol] = False do
17: solrank ← rank // Assign rank to sol
18: P← P \ {sol} // Remove sol from P as it has been ranked
19: end for
20: rank← rank + 1 // Increase the value of rank
21: until P becomes empty

purpose, the dominance relation of sol with respect to all the other solutions
are stored in an array ‘isDom[ ]’. Let the size of ‘isDom[ ]’ be N which stores
whether a particular solution sol is dominated by other solutions sol ′ ∈ P. A
True value in this array indicates that sol is dominated by sol ′ and False
indicates that it is not dominated.

To know whether sol is dominated by any other solution or not, the array
‘isDom[ ]’ is processed in a parallel manner at logN levels. At each level, an
‘OR’ operation is performed between two consecutive array cells. At the lth

level, N/2l ‘OR’ operations are performed. We are considering ‘OR’ operations
because a solution cannot be ranked even if it is dominated by at least one
of the solutions and ‘OR’ gives True if any of its inputs is True. The time
complexity of processing the ‘isDom[ ]’ array in a parallel manner is O(logN)
as the ‘OR’ operation is performed at logN levels and at each level all the
‘OR’ operations are performed simultaneously. At the last level, if True is
obtained, it means that sol is dominated by at least one of the solutions.
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sol3 is dominated by at-least one of

the solutions

Fig. 3: Simultaneously check whether a solution sol is dominated by at least
one of the solutions or not in O(logN) time considering N solutions.

Now, we discuss the processing of the ‘isDom[ ]’ array in a parallel manner
using an example.

Example 2 Let P = {sol1, sol2, . . . , sol8} be a population of eight solutions.
So, the size of the ‘isDom[ ]’ array will also be eight. Let solution sol3 be
checked to see whether it is dominated by other solutions in P or not. The
array ‘isDom[ ]’ stores whether sol3 is dominated by the solutions of P or
not. Fig. 3 shows the ‘isDom[ ]’ array. As the size of this array is eight, it is
processed at 3(= log 8) levels. At the last level, we are getting True, so sol3
is dominated by at least one of the solutions of population P.

After comparing each solution with respect to all the others, we check for
the solutions which are dominated by at least one of the solutions. This process
is implemented in a parallel manner (lines 11 − 14). The solutions which are
not dominated by any other solution are assigned rank one. This complete
process is repeated until all the solutions are ranked.
The time complexity in the worst case is given by Eq. (7).

T∞worst
=
∑N

i=1

[
M +

⌈
log(N − i + 1)

⌉]
+ (N − i + 1)

= MN + N logN − (N − 1) +
1

2
N(N + 1) = O(MN + N2) (7)

The time complexity in the best case is given by Eq. (8).

T∞best
=
∑1

i=1

[
M +

⌈
log(N − i + 1)

⌉]
+ (N − i + 1)

= (M + logN) + N = O(M + N) (8)

In this parallel version, an array of population size ‘isDominated[ ]’ is
needed to store which solution is dominated by any other solution in the
population. Along with this, for each solution sol, an array ‘isDom[ ]’ of the
size equal to the size of population, is also created. The space required to store
the ‘isDominated[ ]’ array is O(N). The space required to store ‘isDom[ ]’ ar-
ray is also O(N) and this array ‘isDom[ ]’ is created for each of the solutions.
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Thus, the overall space required to store ‘isDom[ ]’ is O(N2). Thus, the space
complexity of this parallel version is O(N2).

In this parallel version, each solution sol is simultaneously compared with
other solutions. Also, a particular solution sol is compared with other solutions
simultaneously. Once a solution sol has been compared with other solutions
simultaneously (line 6− 10), we check whether sol is dominated by any other
solutions to whom it has been simultaneously compared (line 11 − 14). The
number of processors require to compare a solution with all the solutions
simultaneously is N . The maximum number of processors required to check
whether a solution is dominated by any other solution or not in a parallel
manner is N/2. Thus, the maximum number of processors required by this
approach is N2.

Here, if the dominance relationship between different solutions can be ob-
tained initially as described in Section 4.2, then the time complexity in the
worst case is given by Eq. (9) and the time complexity in the best case is given
by Eq. (10).

T∞worst
= logM +

∑N

i=1

[
1 +

⌈
log(N − i + 1)

⌉]
+ (N − i + 1)

= logM + N + N logN − (N − 1) +
1

2
N(N + 1)

= O(logM + N2) (9)

T∞best
= logM +

∑1

i=1

[
1 +

⌈
log(N − i + 1)

⌉]
+ (N − i + 1)

= logM + (logN + N) = O(logM + N) (10)

If the dominance relationship between different solutions can be obtained
initially and stored in a matrix as described in Section 4.2, then the space re-
quired for obtaining the dominance matrix is O(MN2). Thus, the overall space
complexity of this parallel version when the dominance relationship between
different solutions can be obtained beforehand, is O(MN2).

The maximum number of processors required by this approach is N2 with-
out considering dominance matrix. The maximum number of processors re-
quired to obtain the dominance matrix in a parallel manner is 2MN2. Thus,
the maximum number of processors required by parallel version-2 when the
dominance relation between the solution is obtained in constant time consid-
ering dominance matrix, is 2MN2.

4.5 Parallel Version-3

The parallel version-3 of the naive approach is described in Algorithm 4. In this
case, each solution sol can be simultaneously compared with other solutions
(the outer for loop in lines 5− 16 is implemented in a parallel manner). Also,
a particular solution sol is compared with other solutions sol ′ in a parallel
manner (the inner for loop in lines 7 − 11 is also implemented in a parallel
manner). This scenario is shown in Fig. 2(b).
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Algorithm 4 Naive Approach: Version-3
Input: P: Population of size N where each solution is associated with M objectives
Output: Ranked solutions
1: rank← 1

/* Initialize an array of size |P| to store whether a solution has been ranked or not */
2: isRanked[1, 2, . . . , |P|]← False
3: repeat

/* Initialize an array of size |P| to store whether a solution is dominated by any
other solution in P or not */

4: isDominated[1, 2, . . . , |P|]← False
/* Parallel Section Starts */

5: for each solution sol ∈ P : isRanked[sol] = False do // Each solution sol is simult-
aneously compared with other solutions

6: isDom[1, 2, . . . , |P|]← False // Initialize an array of size |P| to store whether sol is
dominated by sol ′ ∈ P or not
/* Parallel Section Starts */

7: for each solution sol ′∈P : isRanked[sol ′]=False do // sol is compared with all
the solutions simultaneously which are not ranked

8: if sol is dominated by sol ′ then
9: isDom[sol ′] ← True

10: end if
11: end for

/* Parallel Section Ends */

/* Parallel Section Starts */

12: Identify whether sol is dominated by any other solution or not considering isDom[ ]
// It can be done in O(logN) time in parallel manner if the size of isDom[ ] is N

13: if sol is dominated by sol ′ then
14: isDominated[sol]← True
15: end if

/* Parallel Section Ends */

16: end for
/* Parallel Section Ends */

/* Parallel Section Starts */

/* Check for each solution in P whether it is not dominated by any other solution */

17: for each solution sol ∈ P : isDominated[sol] = False and
isRanked[sol] = False do

18: solrank ← rank // Assign rank to sol
19: isRanked[sol]← True // Marked the solution sol as ranked
20: end for

/* Parallel Section Ends */

21: rank← rank + 1 // Increase the value of rank
22: until All the solutions are ranked // It can be checked in O(logN) time in parallel

In the previous versions of the naive approach, the solutions which are
ranked are removed from the population. However, in this version, the ranked
solutions are not removed from the population but instead, they are marked
so that they are not ranked again. After comparing solutions with each other,
we have to check whether a solution sol is dominated by another solution sol ′

or not. This can be done in a parallel manner by processing an array of size
N in O(logN) time as discussed in Parallel Version-2.

At last, we check the solutions which are not dominated by any other
solutions and are also not ranked, in a parallel manner (lines 17 − 20). After
assigning rank to the solutions which are not dominated by any other non-
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Fig. 4: Simultaneously check whether N solutions are ranked or not in
O(logN) time considering N solutions.

ranked solutions, we check whether all the solutions have been ranked or not.
This can also be checked in O(logN) time if performed in parallel. This whole
process is repeated until all the solutions are ranked.

Now, we discuss the process of knowing whether all the solutions are ranked
or not in a parallel manner using an example.

Example 3 Let P = {sol1, sol2, . . . , sol8} be a population of eight solutions.
Consider five solutions {sol1, sol4, sol5, sol6, sol8} which are ranked. In version-
1 and version-2, after obtaining the set of solutions belonging to a particular
front, these solutions are removed from the population. However, in version-3
the solutions are not deleted and to know which solutions are ranked or not, an
array of size equal to the population size is considered. The array corresponding
to eight solutions is shown in Fig. 4.

When a solution is ranked, the corresponding cell in the array is marked as
True which signifies that the solution is ranked. After obtaining the solutions
belonging to a particular front, we have to check whether all the solutions
have been ranked or not. For this purpose, the array is processed in a parallel
manner. As the length of the array is N (equal to the population size), so the
array is processed at logN levels where at each level, an ‘AND’ operation is
performed in consecutive array cells. At the last level, if True is obtained,
then all the solutions are ranked; otherwise, all the solutions are not ranked.
In Fig. 4, as there are eight solutions, so the parallel operation is performed
at three different levels. At the last level, False is obtained after an ‘AND’
operation which means that all the solutions are not ranked.

The time complexity in the worst case is given by Eq. (11).

T∞worst
=
∑N

i=1

[
M +

⌈
logN

⌉
+ 1
]

+
⌈
logN

⌉
= MN + N + 2N

⌈
logN

⌉
= O(MN + N logN) (11)
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The time complexity in the best case is given by Eq. (12).

T∞best
=
∑1

i=1

[
M +

⌈
logN

⌉
+ 1
]

+
⌈
logN

⌉
= M + 1 + 2

⌈
logN

⌉
= O(M + logN) (12)

In this parallel version, an array ‘isRanked[ ]’ of size N is created to store
which solution has been ranked. The space required to store this array is
O(N). The analysis of the space complexity remains the same as the parallel
version-2. Thus, the space complexity of this parallel version is O(N2).

In this parallel version, each solution sol is simultaneously compared with
other solutions. Also, a particular solution sol is compared with other solutions
simultaneously. Once a solution sol has been compared with other solutions
simultaneously (line 7− 11), we check whether sol is dominated by any other
solutions to whom it has been simultaneously compared (line 12 − 15). The
number of processors require to compare a solution with all the solutions si-
multaneously is N . The maximum number of processors required to check
whether a solution is dominated by any other solution or not in a parallel
manner is N/2. After this, for each solution sol which is not dominated by any
other solution and has been already ranked is assigned a rank. This opera-
tion can be carried out in parallel using maximum N processors. Thus, the
maximum number of processors required by this approach is N2.

Here, if the dominance relationship between different solutions can be ob-
tained initially as described in Section 4.2, then the time complexity in the
worst case is given by Eq. (13) and the time complexity in the best case is
given by Eq. (14).

T∞worst = logM +
∑N

i=1

[
1 +

⌈
logN

⌉
+ 1
]

+
⌈
logN

⌉
= logM + 2N + 2N

⌈
logN

⌉
= O(logM + N logN) (13)

T∞best
= logM +

∑1

i=1

[
1 +

⌈
logN

⌉
+ 1
]

+
⌈
logN

⌉
= logM + 2 + 2

⌈
logN

⌉
= O(logM + logN) (14)

If the dominance relationship between different solutions can be obtained
initially and stored in a matrix as described in Section 4.2, then the space re-
quired for obtaining the dominance matrix is O(MN2). Thus, the overall space
complexity of this parallel version when the dominance relationship between
different solutions can be obtained beforehand, is O(MN2).

The maximum number of processors required by this approach is N2 with-
out considering dominance matrix. The maximum number of processors re-
quired to obtain the dominance matrix in a parallel manner is 2MN2. Thus,
the maximum number of processors required by parallel version-3 when the
dominance relation between the solution is obtained in constant time consid-
ering dominance matrix, is 2MN2.

The worst case time complexity of the naive approach is O(MN3) and the
best case time complexity is O(MN2). The time complexity of the parallel
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version of the non-dominated sorting was proved to be O(M + N) by Smut-
nicki et al. [31]. The worst and the best case time complexities of the parallel
version-1 and parallel version-2 of the naive approach is O(logM + N2) and
O(logM + N), respectively. The best case time complexity is better than the
time complexity as reported in [31]. However, the worst case time complexity
is not. The worst and best case time complexities of the parallel version-3 of
the naive approach is O(logM +N logN) and O(logM + logN), respectively.
The best case time complexity of the parallel version-3 is O(logM + logN)
which is better than the time complexity as reported in [31]. However, the
worst case time complexity of the parallel version-3 is O(logM + N logN)
which is not good as compared to the time complexity reported in [31]. How-
ever, as discussed in Section 1, as the number of fronts decreases, the naive
approach performs near to its best case. So as the evolutionary algorithm pro-
ceeds, the parallel naive approach can be advantegeous because the number of
non-dominated fronts start reducing.

5 Conclusions & Future Work

In this paper, we have explored the scope of parallelism in the naive approach.
We have identified parallelism in the naive approach in three different ways.
The worst case time complexity of the parallel version is O(logM + N logN)
and the best case time complexity is O(logM + logN). The best case occurs
when all the solutions are in a single front. As the evolutionary algorithm
proceeds, the number of fronts decreases and the approach performs either in
the best case or near to its best case. As part of our future work, we would
like to find the scope of parallelism in other approaches as well. It would also
be interesting to see the actual speedup when different parallel methods of the
naive approach are implemented.
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