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Abstract

Particle Swarm Optimization (PSO) is a bio-inspired metaheuristic that oper-
ates on a set of potential solutions (called particles). In PSO, each particle
moves throughout the search space using the information collected by itself
and its neighbors. Experimental studies have shown that the way each parti-
cle is connected (the swarm topology) impacts the performance of PSO both
for single- and multi-objective problems. Several experimental analyses have
shown that the number of connections among particles directly relates to the
behavior of single-objective PSO. However, few studies exist about this relation-
ship in Multi-Objective Particle Swarm Optimizers (MOPSOs). Furthermore,
the existing studies are limited to two-objective problems or do not use spe-
cific topologies to control the number of connections among particles. This
work analyzes the influence on the number of connections among particles in a
MOPSO using random regular graphs as the swarm topology in many-objective
problems. In order to undertake this analysis, we modified a variation of the
Speed-constrained Multi-objective Particle Swarm Optimizer that can handle
swarm topologies to make it more sensitive to its topology. Then, we analyzed
its performance using regular graphs of different degrees. Our experimental
results show that, in various problems, a higher connection degree produces in-
stability in the algorithms. Moreover, our analysis also indicates that MOPSOs
have a similar behavior if they have a swarm topology with the same connection
degree.
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1. Introduction

Particle Swarm Optimization (PSO) is a bio-inspired metaheuristic that was
originally proposed by James Kennedy and Russell Eberhart in 1995 [1]. PSO
operates with a set of particles (called swarm) that exchange information with
their neighbors, intending to find an optimal solution. Experimental studies
have shown that the way in which connections among particles are made (i.e.,
the swarm topology) affects the behavior and performance of PSO [2, 3, 4, 5].
For example, a fully connected topology improves the convergence speed; in
contrast, a topology with a lower number of connections slows down convergence
but avoids getting trapped in local optima (i.e., it favors diversity) [4].

Multi-objective Particle Swarm Optimizers (MOPSOs) have been very suc-
cessful in solving real-world many-objective problems, e.g., feature selection for
medical diagnosis [6] and for other applications [7], optimization of process pa-
rameters in stamping [8], optimization indoor CO5 and PM2.5, the carpooling
problem [9], concentrations [10], and optimization of machining operations [11].
Therefore, it is essential to understand the MOPSOs’ behavior.

In particular, some experiments have shown that including a swarm topol-
ogy in a MOPSO improves its performance [12, 13]. Accordingly, some attempts
have been made to analyze the influence of swarm topologies in multi-objective
problems [12, 14, 15, 13]. These studies differ in the topologies adopted and how
such topologies are implemented in the corresponding MOPSO (i.e., the topol-
ogy handling scheme adopted). Nonetheless, they use problems with restricted
characteristics, use swarm topologies where we cannot easily identify if a graph
property influences the swarm, or use expensive topology handling schemes.

In this work, we study the effect of the number of connections between
particles in a MOPSQO’s performance using many-objective problems with a
wide range of characteristics. Our contributions are the following:

1. We propose a new MOPSO sensitive to swarm topologies called SMPSO-
M. This algorithm is based on a version of the Speed-constrained Multi-
objective Particle Swarm Optimizer that employs a topology handling
scheme (SMPSO-E2).

2. We performed an experimental comparison between the SMPSO-M, SMPSO-
E2, and their original version. Our experimental analysis showed that our
proposed approach outperforms the other algorithms and is more sensitive
to swarm topologies.

3. We analyzed the influence of the number of connections between particles
in the SMPSO-M performance. In this study, we employed random regu-
lar graphs as topologies and many-objective problems with 3, 5, 7, and 10
objectives. Our experimental analysis showed that, in most problems, a
higher number of connections produces instability in the MOPSQO’s perfor-
mance. Moreover, the MOPSOs with a topology having the same number
of connections act similarly.

The remainder of this paper is organized as follows. Section 2 provides
the necessary background for understanding the rest of this paper. Then, in



Section 3, we present some related work. After that, in Section 4, we introduce
a MOPSO that is sensitive to swarm topologies and evaluate its performance.
Using this algorithm, we present in Section 5 a study on the influence of the
number of connections among particles using random regular graphs. Finally, in
Section 6, we present our conclusions and some possible paths for future work.

2. Background

2.1. Multi-objective optimization

In multi-objective optimization, the aim is to solve problems of the type!:

minimize f(x) := [f1(x), fo(x), ..., fr(x)] (1)
subject to:
gile) <0 i=1,2,...,m (2)
hj(x)=0 j=1,2,...,p (3)
where = [£1, 22, ... ,xn]T is the vector of decision variables, f; : R" — IR,

i = 1,...,k are the objective functions and g;,h; : R" — R, i = 1,...,m,
j =1,...,p are the constraint functions of the problem.

In a multi-objective optimization problem, we aim to find the best possible
trade-offs among objectives defined in terms of Pareto optimality. In order to
describe this concept, we need to introduce first the following definitions:

Definition 1. We say that a vector x € R" dominates vector y € R"
(denoted by & < wy), if and only if f;(z) < fi(y) for all i« = 1,...,k, and
fi(x) < f;(y) in at least one j € {1,...,k}.

Definition 2. A vector z* € Q C R™ (where Q is the feasible region) is Pareto
optimal if there does not exist an x € € such that x < z*.

Definition 3. The Pareto Optimal Set P* is defined by: P* = {x € Q |
x is Pareto optimal}.

Definition 4. The Pareto Front PF* is defined by: PF* = {f(x) € R" |
x e P}

Therefore, our aim is to obtain the Pareto optimal set from the set  of
all the decision variable vectors that satisfy (2) and (3). Note however that in
practice, not all the Pareto optimal set is normally desirable or achievable, and
decision makers tend to prefer certain types of solutions or regions of the Pareto
front [16].

IWithout loss of generality, we will assume only minimization problems.



2.2. Multi-objective particle swarm optimizers

The main idea of PSO is that of flying a set of potential solutions throughout
the search space, accelerating towards the best solutions in their neighborhood.
PSO updates a particle’s position @;(t) at generation t using the following ex-
pression:

wz(t+1) :ml(t)+’vz(t+1) (4)

where v;(t + 1) is known as velocity and is defined by:
vi(t +1) = woi(t) + Crri(zp, — (1)) + Cora (@, — x4(1)) (5)

The term v;(t) is the previous velocity of the particle; w is a positive constant
known as inertia weight; r1,72 € U(0,1); C1 and Cy are two positive constants
known as cognitive and social factors, respectively; xp, is the best position
that the particle has found so far, and x;; is the best position found by the
particles’ neighbors (called leader). The connections among particles (the swarm
topology) determine the particles’ neighborhood. Experimental studies have
shown that swarm topologies do influence PSO’s behavior [2, 3, 4, 5]. We will
discuss this topic more in-depth in the following section.

In a single-objective PSO, the particle’s leader is determined by evaluating
the objective function in each neighbor’s best position and selecting the particle
with the best value. However, in a multi-objective problem, each particle may
have more than one leader due to the problem’s nature (let’s keep in mind that,
in multi-objective optimization, we aim to obtain a set of solutions representing
the best possible trade-offs among the objectives). For this reason, many MOP-
SOs store the best positions found so far in an independent set called external
archive and take the leaders from it [17, 18, 19, 20]. The external archive is
a set that stores the non-dominated solutions found during the search process.
Its size is usually bounded; therefore, an additional criterion is used to decide
which solutions to retain when the archive is full.

In our experimental analysis, we adopted a standard Pareto-based MOPSO
that operates with an external archive: the Speed-constrained Multi-objective
Particle Swarm Optimizer (SMPSO) [21]. The SMPSO incorporates Clerc and
Kennedy’s constriction factor x [22] to control the particles’ velocity. This co-
efficient contracts the velocity in order to avoid large values. Furthermore, it
guarantees convergence of the swarm under certain assumptions. The constric-
tion factor is defined as follows:

B 2
2—p—p?—dp

b% (6)

where
. Ci1+Cy fCi+Cy>4 (7)
B 0 ifCi+Cy <4
In addition, the SMPSO sets a bound on the accumulated velocity of each
particle ¢ in the dimension j using the equation:



(5j if V4,5 (t) > (Sj
vig(t)=q—0;  ifv;(t) <-4 (8)
v;,;(t) otherwise

where 0; = (Tmaz,j — Tmin,;)/2, and the 4t decision variable is in the range
[xmin,jy Tmaz,j)-

Moreover, the SMPSO uses the Crowding Distance (CD) of NSGA-II [23]
as the pruning criterion of its external archive. The CD of a solution is an
approximation of the perimeter of the cuboid whose vertices are the solution’s
nearest neighbors. A solution with a smaller CD implies a solution in a more
crowded region of objective function space. Therefore, solutions with higher
values are preferred.

In summary, the SMPSO works as follows. First, the swarm is initialized,
and the external archive is created with the non-dominated solutions from the
swarm. Then, the main loop of the algorithm is executed during a pre-defined
number of generations. In the first step of this loop, the velocity of each particle
is computed using equation (5). The leader of a particle is selected by randomly
taking two elements from the external archive and selecting the one with the best
CD. The resulting velocity is multiplied by the constriction coefficient defined
in equation (6), and the final value is bounded using expression (8). After that,
the new positions of the particles are computed employing expression (4), and
the polynomial-based mutation operator [24] is applied with a probability p,,.
Finally, the resulting particles are evaluated, and the particles’ best position
and the external archive are updated. Algorithm 1 summarizes the behavior of
SMPSO.

2.3. Swarm topologies

A swarm topology defines which neighbors a particle has to examine when
selecting its leader. In other words, it defines how the particles will influence
each other. A topology is represented by a graph whose vertices symbolize
the particles, and there is an edge between two particles if they influence each
other [2]. The formal definition is the following [25]:

Definition 5. A swarm topology at generation i is a graph T; = (P;, E;)
where the vertex set P; = {po,p1,...,Pn—1} is a set of particles.

A topology can remain fixed during the execution (i.e., a static topology) or
change during the generations (i.e., a dynamic topology). We limit this work to
static topologies; therefore, we describe the most representative static topologies
next:

e Star (gbest). It represents a fully connected graph in which there is an
edge between every pair of vertices so that each particle will be influenced
by the whole swarm (see Fig. 1a). This topology resembles a small com-
munity where the decisions are taken involving everyone [3]. Furthermore,



Algorithm 1 SMPSO

Require: Polynomial-based mutation parameters (p,, and 7,,), Maximum
number of generations (maxGenerations), Swarm size, Archive size
Ensure: Pareto set approximation
1: Initialize the swarm
2: Initialize the external archive
3: generation =0
4: while generation < maxGenerations do
5: Compute the CD of the archive’s elements
6
7
8
9

for each particle x; in the swarm do
x1, 22 < Randomly take two solutions from the external archive
if 21.CD > 22.CD then

x, 1
10: else
11: Ty, — T2
12: end if
13: Compute the velocity using equation (5) and multiply it by equa-
tion (6)
14: Set a bound on the resulting velocity using equation (8)
15: Compute the new position using equation (4)
16: Apply polynomial-based mutation
17: Evaluate the new particle
18: end for
19: Update the particle’s memory and the external archive
20: generation = generation + 1

21: end while
22: return External archive




it has been shown that PSO converges faster with this topology. However,
when using this topology, PSO can get easily trapped in local optima [5].

e Ring (lbest). In the graph representing this topology, each vertex is con-
nected to its k nearest neighbors (usually & = 2). The information travels
slowly through this topology. Hence, particles can explore different re-
gions of the search space, and the best information will eventually spread
in the graph [4, 3]. The convergence speed of PSO handling this topology
is slow [3]. Figure 1b shows an example of a ring topology.

e Lattice. This topology is also known as square or von Neumann [5, 3]. Tt
is represented by a rectangular lattice where each vertex has four neigh-
bors, wrapping the edges like a torus (see Fig. 1¢). The lattice topology is
commonly used in other areas such as in cellular automata [3]. Moreover,
an experimental analysis showed that this topology performs consistently
well in many global optimization problems, so its use has been highly
recommended [5].

e Tree. In this topology, the particles are ordered hierarchically, resembling
a tree. Initially, this topology was dynamic. A particle was influenced by
itself and its parent. Besides, if the personal best position of the particle
was better than the parent, both particles were exchanged [26]. However,
in order to make this topology static, we eliminated the exchange of par-
ticles and included the children nodes in the neighborhood. Fig. 1d shows
an example of a tree topology.

e Wheel. It consists of a graph with a vertex connected to all the other
vertices in the graph and viceversa (see Fig. le). Therefore, each particle
is isolated from the others in the swarm, and they can only communicate
through a focal particle. This focal particle compares the performance
of all particles and adjusts its trajectory to the best position. If the ad-
justment is good enough, this information is communicated to the other
particles. Therefore, the focal particle serves as a filter of the informa-
tion [4]. Kennedy suggested in [4] that this topology could perform well
in multimodal single-objective problems because the focal particle slows
down the swarm’s attraction to the current best position. The graph used
to represent this topology is called Star in the graph theory community.

3. Previous Work

In this section, we will describe some previous studies of the influence of
swarm topologies in MOPSOs. These studies differ in the topologies adopted,
how they handle them, and the multi-objective problems they use.

Yamamoto et al. in 2012 [15] proposed a topology handling scheme where
(in addition to an external archive) each i** particle has a sub-archive A* with-
out limited size. Each A? stores the non-dominated solutions found by the "
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(a) Star topology. Each particle is connected
to every other particle in the swarm.

(b) Ring topology. Each particle is connected
to its two nearest neighbors.

(c) Lattice topology. The particles are con-
nected to the neighbors above, below, and
two on each side.
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(d) Tree topology. The particles are arranged
in hierarchical order, resembling a tree.

(e) Wheel topology. A focal particle is con-
nected to every other particle in the swarm,
and they are connected to the focal particle.

Figure 1: Most representative static topologies



particle and its neighbors. Moreover, the i*" particle will select its leader consid-
ering its sub-archive and the neighbors’ sub-archives. This scheme improves the
diversity of the swarm because some sub-archives may contain solutions dom-
inated by members of other sub-archives. Nevertheless, the sub-archives also
increase the computational complexity of the algorithm because they must be
updated and inspected at every generation. Moreover, the computational cost
may increase with the number of objectives because of the associated growth in
the number of non-dominated solutions.

The authors applied the topology selection scheme to o-MOPSO [27] and
performed an experimental analysis using random-regular graphs. They adopted
the ZDT1, ZDT2, and ZDT3 problems from the Zitzler-Deb-Thiele (ZDT) [28]
test suite with two objective functions. The experimental results showed that
the performance of the MOPSO improves when the number of connections in-
creases. However, we can see that this analysis does not consider problems with
different characteristics and with more than three objectives.

On the other hand, Yue et al. proposed in 2018 [13] a topology handling
scheme that also adopts sub-archives. In this case, each particle has a Personal
Best Archive (PBA), which contains a set of non-dominated solutions found by
the particle. Moreover, each neighborhood has a Neighborhood Best Archive
(NBA), which contains the non-dominated solutions of the neighbors’” PBAs.
Therefore, the leader of each particle is chosen considering the PBA and NBA.
In particular, they use the non-dominated sorting and Special Crowing Dis-
tance [13] as the criteria to choose the leader. This scheme allows the informa-
tion recollected by a particle to be preserved without external interaction, while
the NBAs allow recollecting the best solutions from the neighbors. Therefore,
we can fully exploit cognitive and social information. Nevertheless, this topol-
ogy handling scheme also increases the computational cost of the algorithms
because of the archives’ maintenance.

The authors performed an experimental analysis using a MOPSO (called the
MO _Ring PSO_SCD) with the latter scheme and the ring topology. These stud-
ies are limited to multi-modal multi-objective problems. The experimental re-
sults showed that the MO_Ring_PSO_SCD outperforms a simple multi-objective
PSO without a topology. Moreover, it showed that the algorithm outperforms
state-of-the-art Multi-Objective Evolutionary Algorithms in the solution space
but does not perform well in objective function space.

Agarwal et al. [29] inserted two new mechanisms (Levy’s flight and the
gamma parameter) into MO_Ring PSO_SCD to improve its performance in
multi-modal multi-objective problems. The resulting algorithm is called En-
hanced Multi-Objective Particle Swarm Optimization (EMOPSO). The exper-
imental analysis showed that the EMOPSO performs better in solution space
than MO_Ring PSO_SCD and some state-of-the-art algorithms. However, it
did not obtain a good performance in objective space. In addition, the authors
mentioned that the computational time of EMOPSO needs to be improved.

Finally, Valencia-Rodriguez and Coello Coello [12] proposed two new topol-
ogy handling schemes that try to avoid the computational burden of the sub-
archives. Scheme 1 simulates the behavior of a single-objective PSO. Namely,



it analyzes the personal best positions of the particle’s neighbors to select the
leader and does not consider any external archive information. In contrast,
Scheme 2 exploits the global information in the external archive. For this pur-
pose, it associates each element of the archive to each particle of the swarm. If
the archive size is less than the swarm size, the archive’s elements are assigned
anew. Then, a particle will select its leader by examining the external archive’s
elements assigned to the particle’s neighbors.

The authors included Scheme 1 and Scheme 2 in SMPSO. The resulting
MOPSOs were called SMPSO-E1 and SMPSO-E2, respectively. In SMPSO-E1,
the leader is the first non-dominated personal best position in the neighborhood.
While in SMPSO-E2, the leader is chosen by randomly taking two assigned ele-
ments from the neighborhood and picking the one with the best CD. The exper-
imental analysis showed that SMPSO-E2 outperformed SMPSO-E1 regardless
of the topology, suggesting that incorporating the external archive elements in
the topology promotes the particles moving in better directions [12]. Moreover,
further experiments revealed that SMPSO-E2 with the wheel topology outper-
forms the canonical SMPSO in multi- and many-objective problems [12, 14].
However, we can see in the experiments that the difference between the per-
formance of the topologies is statistically significant, but the gap between the
indicator values are insignificant.

In summary, the work from Yamamoto et al. [15] and Yue et al. [13] only
studied the performance of swarm topologies using problems with limited char-
acteristics. Moreover, their topology handling schemes are computationally
expensive because of the sub-archives maintenance. Regarding the Valencia-
Rodriguez and Coello Coello work [12, 14], their SMPSO-E2 is not so sensitive
to swarm topologies. Furthermore, they used state-of-the-art topologies with
which we cannot easily identify an attribute that most influences the MOPSQO’s
performance.

In the following sections, we propose a more sensitive version of the SMPSO-
E2 to swarm topologies. In addition, we perform an experimental analysis of
the influence of the number of connections between particles in the MOPSQO’s
performance using random regular graphs as topologies.

4. A multi-objective particle swarm optimizer which is more sentitive
to its topology

Despite the good results of SMPSO-E2, it is worth noticing that the dif-
ference between the performance of topologies in SMPSO-E2 is statistically
significant but not remarkable [12, 14]. One reason for this could be that the
algorithm only considers two random elements from the neighborhood. Con-
sequently, part of the topology information is omitted. In this work, we want
to examine the influence of the number of connections between particles in the
MOPSO’s performance. Therefore, it is required a MOPSO that could detect
modifications to its topology. Hence, SMPSO-E2 needs to be more sensitive to
its topology.
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In order to amplify the effect of the topology in SMPSO-E2, we modified
its leader selection scheme. Instead of comparing only two random neighbors,
we evaluated the entire neighborhood and selected the element with the best
CD. The computational complexity of the SMPSO-M increases compared to
SMPSO-E2 because each neighbor has to be examined instead of only two.
However, this situation could make the MOPSO more sensitive to its topology.
The final version of SMPSO-E2 with the new modification (called SMPSO-M)
is described in Algorithm 2.

The source code of SMPSO-M and SMPSO-E2 can be downloaded from the
following link:
https://computacion.cs.cinvestav.mx/~dvalencia/Implementations/jMetal_
SMPSOM_SMPSOE2. zip.

Algorithm 2 SMPSO-M

Require: Polynomial-based mutation parameters (p,, and 7,,), Maximum
number of generations (maxGenerations),
Swarm size, Archive size
Ensure: Pareto set approximation
1: Initialize the swarm

2: Initialize the external archive
3: generation =0
4: while generation < maxGenerations do
5: Compute the CD of the archive’s elements
6: Assign the archive’s elements to the particles
7 for each particle x; in the swarm do
8: N; < get particles in the neighborhood of x; > Starts a new
selection scheme
9: best « N;[1].assigned_element
10: for j < 2 to N;.size do
11: if N;[j].assigned_element.CD > best.CD then
12: best < N;[j].assigned_element
13: end if
14: end for
15: x;, + best > Ends new selection scheme
16: Compute the velocity using equation (5) and multiply it by equa-
tion (6)
17: Set a bound on the resulting velocity using equation (8)
18: Compute the new position using equation (4)
19: Apply polynomial-based mutation
20: Evaluate the new particle
21: end for
22: Update the particle’s memory and the external archive
23: generation = generation + 1

24: end while
25: return External archive
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4.1. Ezxperimental analysis

In this section, we compare the performance of SMPSO-M with respect to
SMPSO-E2 and SMPSO. In addition, we verify if SMPSO-M is more sensitive
to its swarm topology than SMPSO-E2.

4.1.1. Experimental setup

We performed 30 independent runs of SMPSO, SMPSO-M, and SMPSO-E2
using five state-of-the-art topologies: star, tree, wheel, lattice, and ring.

We adopted the DTLZ1-DTLZ7 problems from the Deb-Thiele-Laumanns-
Zitzler (DTLZ) test suite [30] and the WFEG1-WFG9 problems from the Walking
Fish Group (WFG) test suite [31]. We selected these test suites for all the exper-
iments because they offer problems with a wide range of different characteristics.
For example, they contain Pareto Front shapes like convex, concave, linear, and
disconnected. Moreover, they include multi-modal, unimodal, and deceptive
problems.

The number of objectives was set to m = 3. In the DTLZ problems, we set
the number of variables (as suggested in [30]) to n = m + k — 1 where k = 5
for DTLZ1, k = 10 for DTLZ2-DTLZ6, and k = 20 for DTLZ7. Regarding the
WEFG test problems, the position-related parameters were set to k = 2x (m —1)
since they must be divisible by m — 1, the distance-related parameters to [ = 20,
and the number of variables to n = k 4 [.

We set the mutation parameters as in the original SMPSO [21], i.e., p,, =
1/n and n,, = 20. Moreover, we set the inertia weight to w = 0.1. In addition,
the number of generations was set to 500, the swarm size to 100, and the archive
size to 100.

We evaluated the algorithms’ performance by computing the following ratio:

IHV (A) (9)

I =—
NHV Ty (PF)

where A is the approximated set, PF is the real Pareto Front, and Iy is the
hypervolume indicator which measures the size of the objective space covered
by the given set [32]. Iygy measures the relation of the approximated set’s hy-
pervolume over the real Pareto Front’s hypervolume. Therefore, values close to
1.0 are preferred. We chose the hypervolume indicator because it assesses both
the convergence and the maximum spread of the Pareto Front. Furthermore,
the hypervolume is the only known indicator that is fully Pareto compliant [33],
i.e., this indicator is strictly monotonic with respect to Pareto dominance.

4.1.2. Experimental results and discussion

Table 1 displays the mean and the standard deviation (shown in brackets)
of the 30 independent runs of the Iy gy indicator. The best mean is highlighted
in dark gray, and the second-best is highlighted in light gray. Furthermore, in
the last row of each cell, we include the identifiers of the algorithms that have a
worse performance than the current algorithm according to the Wilcoxon rank-
sum test with a significance level of 5%. The identifier of each algorithm is
located next to its name in the table header.
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In Table 1, we can observe that SMPSO-M has the best mean values in 10
out of 16 problems. Moreover, we can see that most of the first and second
places are on the SMPSO-M side.

We can also see that both algorithms (SMPSO-M and SMPSO-E2) are ade-
quate since the original SMPSO has the best mean only in the WFG9 problem.
Furthermore, in the remaining problems, SMPSO is statistically superior to no
more than three algorithms.

It is worth noticing that the SMPSO-M with the lattice topology has the
most consistent performance, having five best and four second best means.
Moreover, when comparing the statistical significance, the SMPSO-M with the
lattice topology outperforms many MOPSOs. This result is similar to the one
found for the single-objective PSO, where the lattice topology is recommended
for unknown problems.

Finally, we analyze the sensitivity of the MOPSOs to their topology. Ac-
cordingly, for each MOPSO and problem, we found the best and the worst mean
among the five topologies and computed their difference. For example, consid-
ering SMPSO-M, the best mean in the DTLZ1 problem is 9.266x10~!, and
the worst is 8.306x10~!. Hence, their difference is 0.096. On the other hand,
the best mean in the SMPSO-E2 is 9.3319x 107!, and the worst is 9.210x 1071,
Therefore, their difference is 0.01219. We can observe that the difference of
SMPSO-M is more significant than the one of SMPSO-E2. This may suggest
more variation in performance between the best and the worst topology of the
SMPSO-M. Hence, we can infer that SMPSO-M is more sensitive to its topology
in the DTLZ1 problem.

We continued this process for the remaining problems, and the results are
displayed in Fig. 2. The squares correspond to the differences of SMPSO-M and
the circles to the differences of SMPSO-E2. We can see that in 13 out of 16
problems, the difference of SMPSO-M is more significant or at least bigger than
SMPSO-E2. Therefore, SMPSO-M shows a greater sensitivity to its topology
than SMPSO-E2.

In conclusion, the experimental results have shown that SMPSO-M had a
better performance than both SMPSO-E2 and SMPSO. In addition, the ex-
periments have shown that SMPSO-M is more sensitive to its topology than
SMPSO-E2, making SMPSO-M an excellent option for our experimental anal-
ysis.

5. Influence of random regular graphs in the performance of a multi-
objective particle swarm optimizer

This work aims to grasp the influence of swarm topologies in MOPSOs.
Therefore, we present in this section an experimental analysis of the effect of
the number of connections among particles in the SMPSO-M’s performance.
This section is organized as follows. We first define the swarm topologies that
we adopted to make this analysis: the random regular graphs. Then, we describe
the experimental setup. Finally, we present the experimental results and the
discussion.
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Figure 3: Example of a 3-regular graph

5.1. Random regular graphs as topologies

A regular graph is a graph where each vertex has the same number of incident
edges (i.e., it has the same degree) [34]. A graph where each vertex has degree
k is called k-regular. Fig. 3 displays an example of a 3-regular graph. Due to
its properties, the regular graph allows us to control the number of connections
in each vertex. Therefore, they are suitable for our experiments.

There are some methods to create regular graphs with a fixed pattern (see,
for example, [15]); however, we decided to create them randomly to avoid skew-
ing the experiments to a fixed shape. For simplicity, we generate these random
regular graphs using the Steger and Wormald algorithm [35] included in the
NetworkX Python package [36].

5.2. Experimental setup

We adopted the DTLZ1-DTLZ4 and DTLZ7 problems from the DTLZ test
suite and the WFG1-WFG9 problems from the WFG test suite. We omitted
the DTLZ5 and DTLZ6 problems because their behavior is unknown in more
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than three dimensions. As we mentioned, the DTLZ and WFG test suites offer
problems with many characteristics. Moreover, they are scalable in the number
of objectives. Therefore, we selected them for our analysis. We used the same
configuration as in Section 4.1.1, but in this case, we set the number of objectives
tom =3,5,7,10.

Regarding SMPSO-M, we used the same inertia weight and mutation param-
eters from Section 4.1.1. For 3 and 5 objectives, the swarm size and archive size
were set to 100. Moreover, for 7 and 10 objectives, these parameters were set
to 200. We increased the archive and swarm'’s size on seven and ten objectives
because there is more space to cover on higher dimensionality. In all cases, we
used 500 generations as the stopping criterion.

We used regular graphs with different degrees to analyze their influence on
the MOPSOs’ performance. For a swarm size of 100, we used graphs with
degrees 20, 40, 60, and 80. Moreover, for 200, we used graphs with degrees 40,
80, 120, and 160. We generated four random regular graphs for each degree and
swarm size. Hence, we performed 30 independent runs of SMPSO-M with 32
different regular graphs. For the performance assessment, we used the Inpgy
indicator as in Section 4.1.1.

5.3. Experimental results and discussion

We display the experimental results of the Iy indicator in boxplots graphs
of Appendix A (see Figures A.4 to A.17). Furthermore, the mean and standard
deviation of Iy are presented in Tables B.2, B.3, B.4, and B.5 of Appendix
B.

In 10 out of 14 problems, we observe that a higher graph degree produces a
higher dispersion of the Iy gy indicator values in at least one of the four tested
objectives. In particular, this happens in all the tested objectives of WFG1 and
WFG4 (see Figures A.9 and A.12). Higher dispersion of the Iy gy values implies
that the algorithm becomes unstable. Therefore, the algorithm could obtain a
good approximation in one run and a poor one in another. Furthermore, we
observe that in problems DTLZ3 and WFG3, this instability produces outliers
with good values when the performance of the rest of the algorithms decays
completely (see Figures A.6 and A.11). Thus, the instability can be beneficial
in some cases.

We believe that a higher number of connections increases the instability
of the algorithms because a topology with many connections can improve the
exploitation of the areas, which provokes that the algorithm gets easily trapped
in local fronts. Therefore, if the algorithm is close to the real Pareto front, it
will obtain a good approximation. On the other hand, it will obtain a poor
result.

It is also worth mentioning that the medians of the topologies with the
same degree are close to each other regardless of the number of objectives. In
contrast, if we compare two topologies with a different degree, they are likely to
have distant medians. This situation suggests that regular graph topologies with
the same degree have a similar behavior. Therefore, the number of connections
impacts the behavior of SMPSO-M.
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We do not observe a consistent behavior regarding the degree and the MOPSQO’s

performance. In the following problems, the topologies with the highest degree
have the best performance: DTLZ1, DTLZ2, WFG5, WFG6, and WFG9 with
three objectives; DTLZ2, DTLZ4, DTLZ7, and WFG5 with five objectives;
DTLZ2, DTLZ4, and DTLZ7 with seven objectives; DTLZ4 and DTLZ7 with
ten objectives. Moreover, the topologies with the lowest degree have the best
performance in the following problems: DTLZ3 with five objectives; WFG1 and
WEFG6 with five, seven, and ten objectives. Remarkably, in problem WFG6, the
MOPSO’s behavior changes depending on the number of objectives. For three
objectives, a higher degree is beneficial. However, for the remaining number
of objectives, the opposite happens (see Figure A.14). We did not find any
common characteristics in the problems with similar behavior. We think this
may happen because other graph aspects could influence MOPSQO’s behavior
more. Therefore, we can only say that the influence of the graph degree on the
MOPSOs’ performance depends on the problem and the number of objectives.

Finally, in the following three problems, we could not distinguish a varia-
tion in the performance of the topologies with different degrees: DTLZ1 with
ten objectives, DTLZ3 with three objectives, and WFG2 with two objectives.
Consequently, in the majority of the problems, the topologies change the be-
havior of SMPSO-M. This fact strengthens the idea that topologies influence
the performance of a MOPSO.

6. Conclusions and future work

This work analyzed the influence of the number of connections among parti-
cles in the performance of a MOPSO. For this sake, we first modified SMPSO-E2
(a MOPSO that implements a topology handling scheme) to be more sensitive to
its swarm topology. The resulting MOPSO was called SMPSO-M and was tested
using a variety of problems. The experimental results showed that SMPSO-M
is more sensitive to its topology than SMPSO and had a better performance
(using a lattice topology) than SMPSO and SMPSO-E2.

Due to these results, we continued the analysis using SMPSO-M. We tested
32 random regular graphs using many-objective problems. We observed that a
higher degree in many problems makes the algorithm’s performance unstable.
This phenomenon could be because topologies with higher degrees exploit areas
well, being trapped in local Fronts. Therefore, if the algorithm is close to the
real Pareto Front, it will perform satisfactorily. On the contrary, if it is far, it
will have a poor performance.

Furthermore, our experiments showed that random regular graphs with dif-
ferent degrees have similar behavior. Moreover, we concluded that the influence
of the number of connections among particles on the MOPSQO’s performance
depends on the problem and the number of objectives. However, we could not
identify a specific number of connections that influenced the same type of prob-
lem. We think this may happen because other graph aspects could impact the
MOPSO’s behavior more.
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Finally, our experiments confirm that swarm topologies impact the MOPSQO’s
performance since the difference was not significant only in three of the problems
adopted.

As part of our future work, we will examine other properties of the topologies
that could change the performance of a MOPSO. For example, the distribution
degree or the diameter of a graph.
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Appendix A. Boxplots

a) 3 objectives b) 5 objectives

Emm
fes Tfo

1.0 o o

0.0 o o 0.0 o o o

20 40 60 80 20 40 60 80
Degrees Degrees

c) 7 objectives d) 10 objectives
SR it aﬁw il

o
o ©

o
o 0.0 ° o o o ° o o °

o —IOH

o
o —mmH
[
=

o
o o

o

°
o
o
0o oo
o
INHV
o o
[
— .

°
° o

40 80 120 160 40 80 120 160
Degrees Degrees

Figure A.4: Inpgy indicator values over 30 independent runs of the SMPSO-M using the
DTLZ1 problem in 3, 5, 7, and 10 objectives. In the figures found at the top, the regular
graph degrees used are 20, 40, 60, and 80. Moreover, the regular graph degrees used in the
figures found at the bottom are 40, 80, 120, and 160.
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Figure A.5: Inpgy indicator values over 30 independent runs of the SMPSO-M using the

DTLZ2 problem in 3, 5, 7, and 10 objectives.

In the figures found at the top, the regular
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Figure A.6: Inypgy indicator values over 30 independent runs of the SMPSO-M using the

DTLZ3 problem in 3, 5, 7, and 10 objectives.

In the figures found at the top, the regular

graph degrees used are 20, 40, 60, and 80. Moreover, the regular graph degrees used in the
figures found at the bottom are 40, 80, 120, and 160.
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Figure A.7: Inpgy indicator values over 30 independent runs of the SMPSO-M using the

DTLZ4 problem in 3, 5, 7, and 10 objectives.

In the figures found at the top, the regular

graph degrees used are 20, 40, 60, and 80. Moreover, the regular graph degrees used in the
figures found at the bottom are 40, 80, 120, and 160.
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Figure A.8: Inpgy indicator values over 30 independent runs of the SMPSO-M using the

DTLZ7 problem in 3, 5, 7, and 10 objectives.

In the figures found at the top, the regular

graph degrees used are 20, 40, 60, and 80. Moreover, the regular graph degrees used in the
figures found at the bottom are 40, 80, 120, and 160.
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Figure A.12: Inpgy indicator values over 30 independent runs of the SMPSO-M using the
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found at the bottom are 40, 80, 120, and 160.
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Figure A.14: Inpgy indicator values over 30 independent runs of the SMPSO-M using the
WFG6 problem in 3, 5, 7, and 10 objectives. In the figures found at the top, the regular graph
degrees used are 20, 40, 60, and 80. Moreover, the regular graph degrees used in the figures
found at the bottom are 40, 80, 120, and 160.
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Figure A.15: Inpgy indicator values over 30 independent runs of the SMPSO-M using the
WEFGT problem in 3, 5, 7, and 10 objectives. In the figures found at the top, the regular graph
degrees used are 20, 40, 60, and 80. Moreover, the regular graph degrees used in the figures
found at the bottom are 40, 80, 120, and 160.
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Figure A.16: Inpgy indicator values over 30 independent runs of the SMPSO-M using the
WEFGS problem in 3, 5, 7, and 10 objectives. In the figures found at the top, the regular graph
degrees used are 20, 40, 60, and 80. Moreover, the regular graph degrees used in the figures
found at the bottom are 40, 80, 120, and 160.
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Figure A.17: Inpgy indicator values over 30 independent runs of the SMPSO-M using the
WEFG9 problem in 3, 5, 7, and 10 objectives. In the figures found at the top, the regular graph
degrees used are 20, 40, 60, and 80. Moreover, the regular graph degrees used in the figures
found at the bottom are 40, 80, 120, and 160.
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