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A B S T R A C T
The Nurse Rostering Problem (NRP) aims to create an efficient and fair work schedule that balances
both the needs of employees and the requirements of hospital operations. Traditional local search-
based metaheuristic algorithms, such as adaptive neighborhood search (ANS) and variable neighbor-
hood descent (VND), mainly focus on optimizing the current solution without considering potential
long-term consequences, which may easily get stuck in local optima and limit the overall performance.
Thus, we propose a multi-agent deep Q-network-based metaheuristic algorithm (MDQN-MA) for
NRP to harness the strengths of various metaheuristics. Each agent encapsulates a metaheuristic
algorithm, where its available actions represent different perspectives of the problem environment.
By combining their strengths and various perspectives, these agents can work collaboratively to
navigate and search for a broader range of potential solutions effectively. Furthermore, to improve
the performance of an individual agent, we model its neighborhood search as a Markov model and
integrate a trained deep Q-network to consider long-term impacts for its neighborhood sequential
decision-making. The experimental results clearly show that an individual agent in MDQN-MA can
outperform ANS and VND, and multiple agents in MDQN-MA even perform better, achieving the
best results among metaheuristic algorithms on the Second International Nurse Rostering Competition
dataset.

1. Introduction
The Nurse Rostering Problem (NRP) is a classical com-

binatorial optimization problem (COP), which aims to opti-
mize the work schedules of nurses [1]. Scientific and reason-
able nurse scheduling needs to consider both the medical ser-
vice demands of the hospital and the individual needs of the
nurses. Moreover, well-planned scheduling also contributes
to providing high-quality healthcare services for patients
[2]. However, due to various constraints such as restricted
working hours and the preferences of nurses, solving the
NRP is a challenging task that has been proven to be NP-
hard. Over the past few decades, extensive research has been
dedicated to tackling the NRP, resulting in two primary
solution categories: exact algorithms [3–6] and heuristic
algorithms [7–10].

Exact algorithms employ mathematical techniques such
as integer programming [11] and branch-and-price [12] to
swiftly produce optimal or near-optimal solutions, which
are particularly effective for small-scale NRP instances.
However, their computational complexity becomes a limi-
tation as the problem size increases, making them inefficient
for a large number of nurses [13], which has spurred the
development of heuristic algorithms. In contrast, heuristic
algorithms utilize optimization strategies based on intuition
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or experience to find near-optimal solutions, which are well-
suited for tackling large-scale NRP instances. Individual-
based algorithms such as adaptive neighborhood search
(ANS) [14–16], and variable neighborhood descent (VND)
[17–20] often outperform population-based algorithms such
as genetic algorithm (GA) [21] and particle swarm optimiza-
tion (PSO) [22] because they can exploit the search space
efficiently.

However, the traditional heuristics focus mainly on im-
mediate solution improvements during neighborhood selec-
tion for local search, potentially leading to getting stuck in
local optima due to their ’myopic’ view. To address the lim-
itations, this paper explores the potential of reinforcement
learning (RL), which can consider long-term returns in tack-
ling the NRP. The agent we proposed employs a metaheuris-
tic algorithm that models the neighborhood selection process
as a Markov decision process (MDP) and leverages the Deep
Q-Network (DQN) for neighborhood selection decision-
making. This method aims to generate promising solutions
with sustained performance improvements. In addition, it is
difficult for traditional single heuristic algorithms to compre-
hensively explore the solution space, while the multi-agent
framework allows collaboration between different heuristic
algorithms. This structure makes the system more adaptable
to different characteristics of the problem, thereby improving
the robustness and applicability of the algorithm. Further-
more, this paper proposes a multi-agent deep Q-network-
based metaheuristic algorithm (MDQN-MA) for NRP to
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harness the collective strengths of multiple agents. The main
contributions of this paper can be summarized as follows:

1. This paper introduces a novel MDP-based model of
the neighborhood selection process in local search for
solving the NRP, enabling the first attempt to apply the
DQN to the neighborhood search process. The DQN
can learn from past experiences and make decisions
that maximize long-term rewards, enhancing the effi-
ciency of solution exploration.

2. This paper is the first attempt to employ a multi-agent
framework to tackle the NRP. Multiple agents col-
laborate in this framework for a more comprehensive
exploration and exploitation of the solution space.

3. This paper conducts extensive experiments on the
Second International Nurse Rostering Competition
(INRC-II) dataset to validate the effectiveness and
efficiency of MDQN-MA. The results demonstrate
that MQDN-MA outperforms the performance of in-
dividual agents and the state-of-the-art metaheuristic
algorithms [23–25], showing promising potential for
improving upon previous methods for tackling the
NRP.

The remainder of this paper is organized as follows:
Section 2 provides an overview of the related work on the
NRP and multi-agent systems for combination optimization
problems. Section 3 introduces the mathematical model of
NRP in the INRC-II, which serves as the foundation of
this paper. Section 4 presents a detailed introduction of our
proposed MDQN-MA. In Section 5, we perform an in-depth
analysis and discussion of the experimental results obtained
from comparative experiments. Finally, Section 6 highlights
the contributions of our study and suggests future research
directions.

2. Related work
In this section, we provide a concise overview of the

research on NRP over the past two decades, with a spe-
cific focus on metaheuristic algorithms. We elaborate on
the motivations for applying the DQN in the neighborhood
selection process, which aims to overcome the limitations
of traditional metaheuristic algorithms. Then we list the
applications of multi-agent in the field of combinatorial
optimization and elaborate on the significance of applying
a multi-agent framework to NRP.
2.1. Methods for nurse rostering problem

The NRP represents a complex combinatorial optimiza-
tion problem with great practical significance that involves
generating high-quality schedules for nurses [3]. It has at-
tracted widespread attention since it was proposed in the
1960s, and especially in the past decade, two international
competitions [26, 27] further stimulated the interest of re-
searchers. Various algorithms have been devised to tackle
the NRP, broadly categorized into two groups: exact algo-
rithms [3–6] and heuristic algorithms [7–10]. In recent years,

hybrid algorithms [28–30] that combine the strengths of
various methods, have gained prominence. Furthermore, A
new trend in solving the NRP is to combine it with RL to
take advantage of the power of RL to optimize the scheduling
processes [31].

Exact algorithms typically employ mathematical opti-
mization techniques such as integer programming, branch-
and-price, and column generation. For example, Zenda et
al. [11] applied integer linear programming to solve a real-
world NRP at an Italian hospital, utilizing the CPLEX [32]
solver. Burke and Curtois [33] proposed a Branch-and-Price
algorithm to address the NRP, which achieved competitive
results on the INRC-I dataset. These exact approaches often
yield optimal solutions for small-scale instances but exhibit
computational complexity challenges with larger problem
sizes. In contrast, heuristic algorithms can find near-optimal
solutions in a relatively short time. Consequently, heuristic
algorithms have gained popularity for addressing large-scale
NRPs.

Heuristic algorithms, inspired by natural processes, can
be divided into two major categories: population-based
algorithms and individual-based algorithms. Examples of
population-based algorithms include genetic algorithms
(GA) [21], particle swarm optimization (PSO) [22] and ant
colony optimization (ACO) [34]. These algorithms employ
mechanisms such as selection, crossover, mutation, and
adaptation to guide the search process and drive the popula-
tion toward promising regions of the search space. Simulated
annealing [35, 36], tabu search [37], adaptive neighborhood
search (ANS) [14, 25] and iterative local search [38], which
are individual-based algorithms, are frequently applied to
NRP. These algorithms iteratively explore solution spaces,
utilizing neighborhood operators for solution improvement
and modification. For instance, The Hust. Smart group [25]
achieved remarkable results by combining the ANS and
Tabu search in the INRC-II. Wickert et al. [39] compared
VND with exact methods for INRC-II, revealing VND’s
superiority in handling large-scale instances.

To tackle the NRP more effectively, researchers have
been exploring hybrid algorithms that aim to leverage the
strengths of various algorithms. A hybrid algorithm that
combines integer programming (IP) and the variable neigh-
borhood search (VNS) was proposed in [29], outperforming
the state-of-the-art algorithms in NRP. It starts with a greedy
heuristic for the initial solution and then refines it using VNS
and IP within a ruin-and-recreate framework.
2.2. RL-based multi-agent systems for COP

However, the popular heuristics mentioned above may
fall into suboptimal results due to the lack of global infor-
mation. If we can improve the "short-sightedness" problem,
the effectiveness of the algorithm can be further improved.
To overcome these limitations, many researchers explore the
potential of RL in addressing NRP. RL aims to maximize cu-
mulative rewards through trial and error, emphasizing long-
term optimization [40]. When a problem can be formulated
as a sequential decision-making task, involving well-defined
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states, actions, and rewards, RL represents a promising
approach. RL has been applied in various combinatorial
optimization problems [41], including the vehicle routing
problem [42–44], satellite scheduling problem [45], and job
shop scheduling [46–49].

To fully exploit the advantages of different metaheuristic
algorithms, RL-based multi-agent systems (RL-MAS) have
been proposed to solve the COP due to their potential to
address complex problems by coordinating the actions of
multiple agents [50]. This system utilizes a multi-agent
framework with meta-heuristic optimization, and agents
use the concept of RL to modify their actions, achieving
competitive results in multiple COP. This method has been
successfully applied in many fields, including multi-agent
path finding [51], resource-constrained project scheduling
problem [52] and vehicle routing problem [53], which vali-
dates that embedding a single metaheuristic agent into MAS
is an effective strategy for solving COPs. Furthermore, many
multi-agent frameworks that integrate multiple metaheuris-
tic algorithms have been proposed in many papers [54, 55],
which validate that this method is promising for tackling the
NRP.

3. Problem formulation
The NRP is a complex combinatorial optimization chal-

lenge, which involves allocating qualified nurses with appro-
priate skills for shifts over a certain period of time, consid-
ering a set of constraints. The solution to this problem is an
effective nurse shift schedule, as shown in Fig. 1. The rows
of the schedule represent different nurses, and the columns
represent a specific period, usually a week. In Figure 1, the
letter codes E, L, and N are used to represent early shift, late
shift, and night shift respectively, while C, T, and H are used
to identify caretakers, trainees, and head nurses, respectively.
In the real world, due to the varying demands and limitations
of different hospitals, NRP lacks a standardized problem
definition and consistent examples. To address this issue,
the International Nurse Rostering Competition (INRC) was
established. The INRC-I was the first competition to pro-
vide a standardized dataset and benchmark for NRP. Since
hospitals have uncertain demands for nurses, long-term shift
schedules can easily need to be readjusted due to changes in
workload. The INRC-II divided the entire scheduling period
into multiple shorter stages, recognizing the complexities of
long-term scheduling with uncertainties. When scheduling
the current stage, the personnel needs of subsequent stages
cannot be known, and it is impossible to alter the schedule
of previous stages. In addition, balancing the workload of
all nurses still needs to be considered throughout the entire
time. The overall flow chart is shown in Fig. 2.

There are three types of input files: scenario, history, and
week data.

• Scenario: Information that is global to all weeks of
the entire planning horizon, such as nurse contracts
and shift types.

• History: Information that must be passed from one
week to the other to properly compute constraint
violations. It includes border information and global
counters.

• Week data: Specific data from a single week, such as
daily coverage requirements and nurse preferences for
specific days.

For the initial stage, labeled as 𝑆𝑡𝑎𝑔𝑒0, the history file is
provided by the competition organizers. However, for sub-
sequent stages, the history file is generated by the simulator
based on the optimal solution obtained in the previous week,
along with any custom files created to pass information to the
next stage. The constraints are categorized into two types:
hard constraints that must be satisfied, and soft constraints
that can be violated but with a penalty. The solution must
satisfy all the hard constraints to be considered feasible and
should aim to minimize the weighted sum of soft constraint
violations. To fully elaborate on this problem, we provide
the mathematical formulation in the following.

• Scenario Information: which is global to all weeks
(stages).

– The list of nurses 𝑁 = {𝑛1,… , 𝑛
|𝑁|

}.
∗ 𝑛1 represents the nurse with index 1.
∗ |𝑁| nurses in total.

– The list of weeks 𝑊 = {𝑤1,… , 𝑤
|𝑊 |

}.
∗ 𝑤1 represents the first week.
∗ |𝑊 | weeks in total.
∗ Make the schedules for 𝑤1 to 𝑤𝑛 in turn.

– The list of days 𝐷 = {𝑑1,… , 𝑑
|𝐷|

}, |𝐷| =
7 × |𝑊 |.

– The list of shifts 𝑆 = {𝑠1,… , 𝑠
|𝑆|}.

∗ 𝑠1 represents the shift with index 1, i.e.,
Early.

∗ |𝑆| shifts in total.
∗ 𝐺𝑚𝑖𝑛

𝑠 , 𝐺𝑚𝑎𝑥
𝑠 : The minimum and the maxi-

mum numbers of consecutive assignments
for shift type 𝑠.

∗ 𝐹 : A list of forbidden shift type succes-
sions.

– The list of skills 𝐾 = {𝑘1,… , 𝑘
|𝐾|

}.
∗ 𝑘1 represents the skill with index 1, i.e.,

Trainee.
∗ |𝐾| skills in total.
∗ Each nurse 𝑛 ∈ 𝑁 is associated with a set

of skills 𝐾𝑛 ⊂ 𝐾 .
– List of contracts 𝐶 = {𝑐1,⋯ , 𝑐

|𝐶|

}.
∗ 𝑐1 represents the contract with index 1, i.e.,

Part-time.
∗ |𝐶| contracts in total.
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Fig. 1: The solution of NRP

Fig. 2: The overall process of INRC-II

∗ 𝐴𝑚𝑖𝑛
𝑐 , 𝐴𝑚𝑎𝑥

𝑐 : The minimum and maximum
total numbers of assignments in the plan-
ning horizon for nurses with contract 𝑐.

∗ 𝑊 𝑚𝑖𝑛
𝑐 ,𝑊 𝑚𝑎𝑥

𝑐 : The minimum and maximum
numbers of consecutive working days for
nurses with contract 𝑐.

∗ 𝑂𝑚𝑖𝑛
𝑐 , 𝑂𝑚𝑎𝑥

𝑐 : The minimum and maximum
numbers of consecutive days-off for nurses
with contract 𝑐.

∗ 𝐵𝑚𝑎𝑥
𝑐 : The maximum number of working

weekends in the planning horizon for nurses
with contract 𝑐.

∗ 𝑊𝑐 : A Boolean value representing the pres-
ence of the complete weekend constraint
to the nurse, which states that the nurses
with contract 𝑐 should work both days of the
weekend or none of them.

∗ Each nurse 𝑛 ∈ 𝑁 is associated with a
single contract 𝑐𝑛 ⊂ 𝐶 .

• Week data information: which is specific to a single
week, including requirements and preferences.

– 𝜉𝑜𝑝𝑡(𝑑,𝑠,𝑘): The optimal number of nurses with skill
𝑘 at shift 𝑠 on day 𝑑.

– 𝜉𝑚𝑖𝑛(𝑑,𝑠,𝑘): The minimum number of nurses with
skill 𝑘 at shift 𝑠 on day 𝑑.

– 𝑈(𝑛,𝑑,𝑠) = 1: Nurse 𝑛 hopes not to work at shift 𝑠
on day 𝑑.

– 𝑉(𝑛,𝑑) = 1: Nurse 𝑛 hopes to take a day off on day
𝑑.

• History information: which is carried over from one
week to the following one.

– 𝑠𝑛: Last assigned shift of nurse 𝑛.
– 𝑙𝑛: The number of consecutive worked shifts of

nurse 𝑛 in history.
– 𝑓𝑛: The number of consecutive days-off of nurse

𝑛 in history.
– 𝑙𝑠𝑛 : The number of consecutive worked shifts of

the last shift type 𝑠𝑛.
The problem contains four types of hard constraints (𝐻)

and eight types of soft constraints (𝑆). Hard constraints must
be satisfied, otherwise the generated solutions are infeasible.
Our goal is to minimize the objective function: the weighted
sum of the soft constraint violations. We use 𝑊𝑆𝑖

to indicate
the weight associated with constraint 𝑆𝑖, and 𝑉𝑆𝑖

to indicate
the amount of violation of constraint 𝑆𝑖. The weight values
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of soft constraints are provided in Table 1. To describe the set
of hard and soft constraints with mathematical definitions,
we define variables 𝑥(𝑛,𝑠,𝑑,𝑘) as follows:

𝑥𝑛,𝑑,𝑠,𝑘 =

⎧

⎪

⎨

⎪

⎩

1 if nurse 𝑛 is assigned shift 𝑠
on day 𝑑 using skill 𝑘;

0 otherwise
Minimize:

∑

𝑖={1,2,…,8}
𝑊𝑆𝑖

× 𝑉𝑆𝑖
=

∑

𝑖={1,2,…,8}
𝑊𝑆𝑖

× 𝑓𝑖 (1)

Subject to:
H1 (Single assignment per day): A nurse can cover at

most one shift per day.

∑

𝑠∈𝑆

∑

𝑘∈𝐾
𝑥𝑛,𝑑,𝑠,𝑘 ≤ 1,∀𝑛 ∈ 𝑁, 𝑑 ∈ 𝐷 (2)

H2 (Under-staffing): For a shift 𝑠 on day 𝑑, it minimally
needs 𝜉𝑚𝑖𝑛𝑑,𝑠,𝑘 nurses with skill 𝑘.

∑

𝑛∈𝑁
𝑥𝑛,𝑑,𝑠,𝑘 ≥ 𝜉𝑚𝑖𝑛𝑑,𝑠,𝑘,∀𝑑 ∈ 𝐷, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾 (3)

H3 (Shift type successions): The shift type assignments
of one nurse in two consecutive days must belong to the legal
successions provided in the scenario.

∑

𝑘∈𝐾
(𝑥𝑛,𝑑−1,𝑠1,𝑘 + 𝑥𝑛,𝑑,𝑠2,𝑘) ≤ 1,

∀𝑛 ∈ 𝑁, 𝑑 ∈ 𝐷, (𝑠1, 𝑠2) ∈ 𝐹
(4)

H4 (Missing required skill): A shift 𝑠 of a given skill 𝑘
must necessarily be fulfilled by a nurse 𝑛 having that skill.

𝑥𝑛,𝑑,𝑠,𝑘 = 0,∀𝑛 ∈ 𝑁, 𝑑 ∈ 𝐷, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾∖𝐾𝑛 (5)
S1 (Insufficient staffing for optimal coverage): For a shift

𝑠 on day 𝑑, it optimally needs 𝜉𝑜𝑝𝑡𝑑,𝑠,𝑘 nurses with skill 𝑘.

𝑓1 =
∑

𝑑∈𝐷

∑

𝑠∈𝑆

∑

𝑘∈𝐾
max{𝜉𝑜𝑝𝑡𝑑,𝑠,𝑘 −

∑

𝑛∈𝑁
𝑥𝑛,𝑑,𝑠,𝑘, 0} (6)

S2 (Consecutive assignments): the minimum and maxi-
mum numbers of consecutive working days. If there exists 𝑖
that ∑𝜏

𝑡=0
∑

𝑠∈𝑆
∑

𝑘∈𝐾 𝑥𝑛,𝑑=𝑖+𝑡,𝑠,𝑘 = 𝜏, then the number of
consecutive working days is the maximum value of 𝜏,.

𝑓2 =
∑

𝑛∈𝑁
max(0,𝑊 𝑚𝑖𝑛

𝑐𝑛 − 𝜏) +
∑

𝑛∈𝑁
max(0, 𝜏 −𝑊 𝑚𝑎𝑥

𝑐𝑛 ) (7)

S3 (Consecutive assignments per shift type): Similar to
S2 but considering the number of consecutive assignments
per shift type.

S4 (Consecutive days off): The minimum and maximum
numbers of consecutive days-off should be respected. If
there exists 𝑖 that ∑𝜏

𝑡=0
∑

𝑠∈𝑆
∑

𝑘∈𝐾 𝑥𝑛,𝑑=𝑖+𝑡,𝑠,𝑘 = 0, then
consecutive days off is the maximum value of 𝜏.

𝑓4 =
∑

𝑛∈𝑁
max(0, 𝑂𝑚𝑖𝑛

𝑐𝑛 − 𝜏) +
∑

𝑛∈𝑁
max(0, 𝜏 − 𝑂𝑚𝑎𝑥

𝑐𝑛 ) (8)

S5 (Preferences): Each assignment to an undesired shift
is penalized.

𝑓5 =
∑

𝑛∈𝑁

∑

𝑑∈𝐷
(𝑉𝑛,𝑑 ×

∑

𝑘∈𝐾

∑

𝑠∈𝑆
𝑥𝑛,𝑑,𝑠,𝑘

+
∑

𝑛∈𝑁

∑

𝑑∈𝐷

∑

𝑠∈𝑆
(𝑈𝑛,𝑑,𝑠 ×

∑

𝑘∈𝐾
𝑥𝑛,𝑑,𝑠,𝑘)

(9)

S6 (Complete weekend): Every nurse that has the com-
plete weekend value set to true must work both weekend days
or none.

𝑓6 =
∑

𝑛∈𝑁

∑

𝑑∈ 𝐷1

(𝑊𝑐𝑛 × |

∑

𝑘∈𝐾

∑

𝑠∈𝑆
𝑥𝑛,𝑑,𝑠,𝑘 −

∑

𝑘∈𝐾

∑

𝑠∈𝑆
𝑥𝑛,𝑑−1,𝑠,𝑘|),

𝐷1 = {𝑑 ∣ 𝑑 = 7 ×𝑤,𝑤 ∈ 𝑊 }
(10)

S7 (Total assignments): For each nurse, the total number
of assignments (working days) must be included within
the limits (minimum and maximum) enforced by her/his
contract.

𝑓7 =
∑

𝑛∈𝑁
max{

∑

𝑠∈𝑆

∑

𝑑∈𝐷

∑

𝑘∈𝐾
𝑥𝑛,𝑠,𝑑,𝑘 − 𝐴𝑚𝑎𝑥

𝑐𝑛 , 0}

+
∑

𝑛∈𝑁
max{𝐴𝑚𝑖𝑛

𝑐𝑛 −
∑

𝑠∈𝑆

∑

𝑑∈𝐷

∑

𝑘∈𝐾
𝑥𝑛,𝑠,𝑑,𝑘, 0}

(11)

S8 (Total working weekends): For each nurse, the num-
ber of working weekends must be less than or equal to the
maximum.

𝑓8 =
∑

𝑛∈𝑁
max{

∑

𝑑∈𝐷1

max(
∑

𝑠∈𝑆

∑

𝑘∈𝐾
𝑥𝑛,𝑠,𝑑,𝑘,

∑

𝑠∈𝑆

∑

𝑘∈𝐾
𝑥𝑛,𝑠,𝑑−1,𝑘)

−𝐵𝑚𝑎𝑥
𝑐𝑛 , 0}, 𝐷1 = {𝑑 ∣ 𝑑 = 7 ×𝑤,𝑤 ∈ 𝑊 }

(12)

4. Proposed algorithm
In this section, we first introduce the overall frame-

work of our proposed algorithm MDQN-MA. In MDQN-
MA, each agent executes the DQN-based neighborhood tabu
search (DQN-NTS) heuristic algorithm. During each search
phase, the four agents operate in parallel, competing with
each other to place the best solutions obtained into the
solution pool. The starting point for the next search phase is
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Table 1
Weight values of the soft constraints

Soft Constraint Weight
𝑆1 𝑊𝑆1

= 30
𝑆2 𝑊𝑆2

= 30
𝑆3 𝑊𝑆3

= 15
𝑆4 𝑊𝑆4

= 30
𝑆5 𝑊𝑆5

= 10
𝑆6 𝑊𝑆6

= 30
𝑆7 𝑊𝑆7

= 20
𝑆8 𝑊𝑆8

= 30

Algorithm 1: The framework of MDQN-MA.
Input: Scenario, History, WeekData,

ActionSpaces:{𝑎1, 𝑎2, 𝑎3, 𝑎4},SolutionPool:
𝑆𝑜𝑙𝑃 𝑜𝑜𝑙

Output: Optimal schedule set 𝑋
1 Initialize 𝑋 as an empty set;
2 ℎ0 ← History, 𝑖 ← 0;
3 while 𝑖 < |𝑊 | do
4 𝑠𝑜𝑙 ← Initialization(Scenario, ℎ𝑖,WeekData𝑖);
5 𝑡 ← 0;
6 while 𝑡 < 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 do

// Algorithm2

7 Thread_1 𝑠𝑜𝑙1 ← DQN-NTS(𝑠𝑜𝑙, 𝑎1);// Agent1

8 Thread_2 𝑠𝑜𝑙2 ← DQN-NTS(𝑠𝑜𝑙, 𝑎2);// Agent2

9 Thread_3 𝑠𝑜𝑙3 ← DQN-NTS(𝑠𝑜𝑙, 𝑎3);// Agent3

10 Thread_4 𝑠𝑜𝑙4 ← DQN-NTS(𝑠𝑜𝑙, 𝑎4);// Agent4

11 𝑆𝑜𝑙𝑃 𝑜𝑜𝑙 ← 𝑆𝑜𝑙𝑃 𝑜𝑜𝑙 ∪ {𝑠𝑜𝑙1, 𝑠𝑜𝑙2, 𝑠𝑜𝑙3, 𝑠𝑜𝑙4};
12 𝑠𝑜𝑙best ← Select-Best-Solution(𝑆𝑜𝑙𝑃 𝑜𝑜𝑙);
13 𝑠𝑜𝑙 ← 𝑠𝑜𝑙best;
14 𝑡 ← 𝑡 + 1;
15 end
16 𝑋𝑖 ← 𝑠𝑜𝑙best;
17 𝑋 ← 𝑋

⋃

𝑋𝑖;
18 𝑖 ← 𝑖 + 1, ℎ𝑖+1 ← Generate-History(𝑠𝑜𝑙);
19 end

the best solution in the solution pool. Next, we delve into the
details of the implementation of the DQN-NTS, aiming to
address the issue of efficient neighborhood selection. Finally,
we discuss the differences among the four agents, primarily
manifested in their action spaces, as different action spaces
imply different functionalities.
4.1. General framework

A schematic diagram of the proposed algorithm for week
𝑖 is shown in Fig. 3. First, the initial legal solution 𝑠𝑜𝑙 of
𝑖-th weeks is generated as the starting point of the search,
and then each agent occupies a thread to search in different
spaces in parallel. Then the best solution searched by each
agent is put into the solution pool, and the best solution is
selected as the starting point for the next iterative search.

The overall framework of our proposed MDQN-MS is
presented in Algorithm 1. The MDQN-MS is designed
to tackle the NRP by making the schedule for each week

Fig. 3: Schematic diagram of the MDQN-MS during the week
𝑖-th

in stages, following the rules outlined in the INRC-II. At
each stage, it takes into account various inputs such as
the scenario, history from the previous stage, week data in
the current stage, and trained DQN for each agent. Finally,
MDQN-MA outputs the optimal schedule set denoted as 𝑋.

Algorithm 1 begins by initializing the required history
information for the current stage, the week index 𝑖, and the
iteration counter 𝑡 (line1). The optimization algorithm is then
executed until the week index 𝑖 reaches |𝑊 |. First, a feasible
initial solution 𝑠𝑜𝑙 is generated by a greedy algorithm (line
3). Next, an iterative search is performed until 𝑡 reaches
𝑖𝑡𝑒𝑟𝑚𝑎𝑥 (line 4). At the beginning of each iteration, four
concurrent threads are started simultaneously. An agent runs
on each thread, and then each agent starts searching and
obtains the best solution it finds (lines 5-8). The optimal
solutions found by the agents are placed into the 𝑆𝑜𝑙𝑃 𝑜𝑜𝑙,
and the best solution, denoted as 𝑠𝑜𝑙𝑏𝑒𝑠𝑡, is selected from the
𝑆𝑜𝑙𝑃 𝑜𝑜𝑙 as 𝑠𝑜𝑙 for the starting point of the next iteration
(lines 9-11). Increase the number of 𝑡 by one (line 14). After
the iteration ends, the global optimal solution of this week
𝑋𝑖 is updated by 𝑠𝑜𝑙𝑏𝑒𝑠𝑡 and put into the optimal schedule
set 𝑋 (lines 14-15). After optimization for the 𝑖-th week, the
history information for the (𝑖 + 1)-th week is generated by
the optimal solution 𝑋𝑖 obtained from the current stage (line
16).
4.2. DQN-based neighborhood tabu search

DQN is an RL algorithm based on deep learning that is
commonly used to solve MDP. It can learn the optimal policy
without prior knowledge. For each agent, we have adopted
the DQN-based neighborhood tabu search algorithm. We
integrate RL with neighborhood search, model the neigh-
borhood selection process as a Markov decision process,
and then apply the DQN to guide the selection of neigh-
borhoods. DQN integrates mechanisms such as experience
replay, enabling the system to learn from past choices and
enhance future neighborhood selection, thereby identifying
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Fig. 4: DQN-based neighborhood tabu search.

effective neighborhood transition sequences from a long-
term perspective. The pseudocode of this process is shown
in Algorithm 2, and its flow is presented in Fig. 4. The
difference between various agents lies in their action space.

Algorithm 2: DQN-based Neighborhood Tabu
Search (DQN-NTS)

Input: Initial solution 𝑠𝑜𝑙, Action space: 𝐴
Result: Improved solution 𝑖𝑚𝑝𝑆𝑜𝑙 in this stage

1 𝑖𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 ← 0, 𝑑𝑜𝑛𝑒 ← 0;
2 Encode 𝑠𝑜𝑙 into state 𝑠;
3 while iterCount < maxIter and done == 0 do
4 Select action 𝑎 from 𝐴 using 𝜖-greedy strategy;
5 (𝑖𝑚𝑝𝑆𝑜𝑙,Δ𝑖𝑚𝑝) ← ApplyAction(𝑎, 𝑠𝑜𝑙);
6 Add action 𝑎 To Tabu List ;
7 Reward 𝑟 ← Δ𝑖𝑚𝑝;
8 Encode 𝑖𝑚𝑝𝑆𝑜𝑙 into new state 𝑠′;
9 𝑑𝑜𝑛𝑒 ← (𝑟 == 0);

10 /* Experience Replay */
11 Store (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑𝑜𝑛𝑒) in replay buffer;
12 Sample mini-batch from buffer: (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑠′𝑗 , 𝑑𝑜𝑛𝑒𝑗);
13 𝑦𝑗 ← 𝑟𝑗 + 𝛾 max𝑎′ �̂�(𝑠′𝑗 , 𝑎

′; 𝜃−) ⋅ (1 − 𝑑𝑜𝑛𝑒𝑗);
14 Update network parameters: Perform gradient

descent on (𝑦𝑗 −𝑄(𝑠𝑗 , 𝑎𝑗 ; 𝜃))2 with respect to 𝜃;
15 Every 𝑁 steps update target network: 𝜃− ← 𝜃;
16 𝑖𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 ← 𝑖𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 + 1;
17 end

This process utilizes DQN for neighborhood selection
and integrates with tabu search. It initializes with a flag,
𝑑𝑜𝑛𝑒 set to 0, and a step counter, 𝑖𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡, set to 0, to
manage loop execution and monitor progress within each
episode (line 1). The current solution, 𝑠𝑜𝑙, is encoded into a
state 𝑠, serving as an input for the DQN model (line 2). The
main loop of the algorithm commences, with termination
conditions based on the completion of a maximum number
of steps𝑚𝑎𝑥𝐼𝑡𝑒𝑟 or reaching a terminal state (line 3). At each
iteration, an action 𝑎 is chosen using an 𝜖-greedy strategy
by DQN from the action space 𝐴. This strategy balances

exploration and exploitation by occasionally selecting ran-
dom actions (line 4). The selected action is applied to the
current solution through the ApplyAction function, yielding
an improved solution 𝑖𝑚𝑝𝑆𝑜𝑙 and a change in costΔ𝑖𝑚𝑝 (line
5). To prevent the immediate reversal of the action 𝑎, we
include it in the tabu list (line 6). Subsequently, the reward,
𝑟, is updated to reflect the improvement (line 7), and the
algorithm encodes the improved solution into a new state, 𝑠′
(line 8). During this critical phase, the algorithm stores the
transition tuple, (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑𝑜𝑛𝑒), in the replay buffer (line
11), which retains experiences for batch learning. A mini-
batch of transitions is then sampled from the replay buffer to
update the model (line 12). For each sampled transition, the
algorithm checks if it reaches a terminal state. If so, the target
value, 𝑦𝑗 , is set to the immediate reward, 𝑟𝑗 . Otherwise, 𝑦𝑗is calculated as the sum of the immediate reward and the
discounted estimate of future rewards, based on the target
network parameters (line 13). A gradient descent step is per-
formed to minimize the loss between the predicted Q-values
and the target values, updating the network parameters (line
14). In every 𝑁 steps, the target Q-network parameters
are synchronized with the Q-network to stabilize learning
(line 15), and the step counter, 𝑖𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡, is incremented,
advancing the algorithm through the episode (line 16). The
loop continues until either the maximum number of steps is
reached or a terminal state is identified, ensuring exploration
of the solution space within the episode’s constraints (line
17). By integrating experience replay and a dynamic action
selection strategy, DQNNS systematically explores the so-
lution space, aiming to iteratively improve upon the initial
solution provided.

Fig. 4 provides a detailed depiction of the implemen-
tation specifications of the DQN model in neighborhood
search. This model encompasses the design of state, action,
and reward.

1. State: The design of the state aims to encompass rele-
vant information regarding the current shift schedule.
We encode the current solution 𝑠𝑜𝑙 to be treated as
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the current state 𝑠. As illustrated in Figure 4, numer-
ical values are assigned to represent the shifts and
skills of each nurse. Different numbers are used to
differentiate shifts and skills. For example, a value
of (0, 0) indicates that the nurse is not working on
that specific day. To facilitate generalization in DQN,
each solution is structured as a 2 × 7 × 120 matrix,
where 2 represents the shift and skill of each nurse,
7 represents the number of days in a week, and 120
denotes the maximum number of nurses in the INRC-
II dataset.

2. Action: The action space of each agent is defined as
a combination of the best moves in designed neigh-
borhoods. For a solution 𝑠𝑜𝑙, which is used to obtain a
new solution 𝑠𝑜𝑙′ after applying a neighborhood move
𝑚, the set of moves of the same type applied to 𝑠
is denoted as 𝑀(𝑠). Within each neighborhood, the
move that yields the most substantial improvement to
the current solution is selected as the action 𝑎. By
considering the current state 𝑠 and chosen action 𝑎,
the system transitions to a deterministic next state 𝑠′,
thereby navigating toward an optimal solution.

3. Reward: Designing an effective reward function is
crucial in RL, as it directly impacts the learning pro-
cess and the network’s performance. One advantage
of the NRP is that the objective function of Eq. 1 is
already known. Therefore, the reward value is defined
as the difference between the objective value of the
original solution 𝑠𝑜𝑙 and the objective value of the
solution 𝑠𝑜𝑙′ after the action is applied. This enables
the DQN agent to learn and prioritize actions that
lead to better solutions. It is important to note that the
infeasible solutions are assigned a significant negative
reward value (−100) which indicates our strong dis-
approval of executing actions that result in infeasible
solutions.

4.3. Action spaces for agents
The difference between each agent is that they have

various action spaces, i.e. a different combination of neigh-
borhoods, which enables the search for solutions in different
directions. The eight neighborhoods we designed are divided
into two types: basic neighborhoods and composite neigh-
borhoods. The first type includes four basic neighborhoods,
denoted as 𝑀1 to 𝑀4, which perform single-step operations.
Each basic neighborhood focuses on a specific aspect of
the solution and modifies it accordingly. The second type
consists of two composite neighborhoods, denoted as 𝑀5to 𝑀8, which are composed of basic neighborhoods. These
composite neighborhoods combine the modifications pro-
posed by multiple basic neighborhoods to generate more
diverse and comprehensive changes to the solution.

𝑀1: Add-shift operator. Fig. 5 shows an example of
an add-shift operator, with the original schedule left and
the roster after the operation right. In this figure, Nurse1
originally has a day off on Saturday, but now she is assigned

to the late shift with the required skill set as a caretaker. The
add-shift neighborhood, i.e. the set of add-shift operators, is
defined as follows: 𝑀1(𝑠) = {𝑚1(𝑛, 𝑑, ℎ, 𝑘)|∀𝑛 ∈ 𝑁, 𝑑 ∈
𝐷𝑖, ℎ ∈ 𝐻, 𝑘 ∈ 𝐾, 𝑥𝐻𝑖,𝑛,𝑑 = ShiftOff and ℎ ≠ ShiftOff}.

𝑀2: Remove-shift operator. Fig. 6 illustrates an exam-
ple of a remove-shift operator, with the original schedule left
and the roster after the operation right. In this figure, Nurse2
is originally scheduled for the night shift on Saturday, but
now she is changed to have a day off on that day. The remove-
shift neighborhood, i.e., the set of remove-shift operators,
is defined as follows: 𝑀2(𝑠) = {𝑚2(𝑛, 𝑑)|∀𝑛 ∈ 𝑁, 𝑑 ∈
𝐷, 𝑥𝐻𝑖,𝑛,𝑑 ≠ ShiftOff}.

𝑀3: Change-shift operator. Fig. 7 illustrates an exam-
ple of a change-shift operator, with the original schedule
left and the roster after the operation right. In this figure,
Nurse3 is originally scheduled for the late shift on Tuesday,
but now she is changed to the early shift. The change-
shift neighborhood, i.e., the set of change-shift operators, is
defined as follows: 𝑀3(𝑠) = {𝑚3(𝑛, 𝑑, 𝑠, 𝑘)|∀𝑛 ∈ 𝑁, 𝑑 ∈
𝐷, 𝑥𝐻𝑖,𝑛,𝑑 = ShiftOff∩ℎ ≠ ShiftOff∩(𝑥𝐻𝑖,𝑛,𝑑 ≠ ℎ∪𝑥𝐾𝑖,𝑛,𝑑 ≠ 𝑘)}.

𝑀4: Swap-shift operator. Fig. 8 illustrates an example
of a swap-shift operator, with the original schedule left
and the roster after the operation right. Nurse1 is originally
scheduled for the late shift on Monday with the skill of
Caretaker, while Nurse2 is scheduled for the early shift with
the skill of Trainee. Now Nurse1 is changed to the early
shift with the skill of Trainee, and Nurse2 is changed to the
late shift with the skill of Caretaker on Monday. The swap-
shift neighborhood, i.e., the set of swap-shift operators, is
defined as follows: 𝑀4(𝑠) = {𝑚4(𝑛1, 𝑛2, 𝑑)|∀𝑛 ∈ 𝑁, 𝑑 ∈
𝐷, 𝑥𝐻𝑖,𝑛1,𝑑 = 𝑥𝐻𝑖,𝑛2,𝑑 , 𝑥

𝐾
𝑖,𝑛1,𝑑

= 𝑥𝐾𝑖,𝑛2,𝑑}.
Although the single-move basic neighborhoods have

lower computational complexity, they may miss out on the
potential for achieving more considerable improvements
through combined actions. To address this limitation, it is
imperative to incorporate composite neighborhoods during
the neighborhood search process. These composite neigh-
borhoods offer a more comprehensive approach by consid-
ering multiple actions simultaneously. By expanding the
search space with composite neighborhoods, we can effec-
tively explore a broader range of solutions, which allows for
the discovery of more advantageous combinations of actions
to achieve significant enhancements.

𝑀5: Group-swap operator. The group-swap operator
functions as follows: for two selected nurses, we swap their
shifts from 𝑑1 to 𝑑2. The set of neighboring operators for the
group-swap neighborhood is defined as follows: 𝑀5(𝑠) =
{𝑚5(𝑛1, 𝑛2, 𝑑) ∣ ∀𝑛1, 𝑛2 ∈ 𝑁, 𝑑 ∈ [𝑑1, 𝑑2]}.

𝑀6: Add-and-remove-shift operator. The add-and-
remove operator functions as follows: for a selected nurse,
if the nurse does not have any scheduled work on day 𝑑,
we perform an add-shift operator by assigning the nurse to
a shift ℎ on day 𝑑. Conversely, if the nurse has already been
assigned on day 𝑑, we perform a remove-shift operator by
assigning the nurse a day off on day 𝑑. The set of neighboring
operators for the add-and-remove neighborhood is given by:
𝑀6(𝑠) = {𝑚1(𝑛, 𝑑, ℎ, 𝑘) ∣ ∀𝑛 ∈ 𝑁, 𝑑 ∈ 𝐷, ℎ ∈ 𝐻, 𝑘 ∈
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Fig. 5: Example of the add-shift operator.

Fig. 6: Example of the remove-shift operator.

𝐾, 𝑥𝐻𝑖,𝑛,𝑑 = ShiftOff ∧ ℎ ≠ ShiftOff} ∪ {𝑚2(𝑛, 𝑑) ∣ ∀𝑛 ∈
𝑁, 𝑑 ∈ 𝐷, 𝑥𝐻𝑖,𝑛,𝑑 ≠ ShiftOff}.

𝑀7: Add-or-remove-shift operator. The add-or-
remove operator functions as follows: it randomly selects
the best move from the 𝑀1 or 𝑀2. The set of neighboring
operators for the add-or-remove neighborhood is given by:
𝑀7(𝑠) = {𝑀1(𝑠)|𝑟𝑎𝑛𝑑 < 0.5} ∪ {𝑀2(𝑠)|𝑟𝑎𝑛𝑑 > 0.5}. In
this definition, 𝑟𝑎𝑛𝑑 refers to a random number between 0
and 1.

𝑀8: Add-loop-remove-shift operator. The add-loop-
remove operator functions as follows: 𝑀2 is executed only
after the best move in the 𝑀1 neighborhood does not im-
prove the solution and vice versa. The set of neighboring
operators for the add-loop-remove neighborhood is given by:
𝑀8(𝑠) =

{

𝑀1(𝑠), if 𝑓𝑙𝑎𝑔 = true
𝑀2(𝑠), otherwise .

In this definition, the 𝑓𝑙𝑎𝑔 changes according to the function
we want to achieve.

It is crucial to balance exploration and exploitation when
developing an effective search strategy. To achieve this goal,
we devised four agents with distinct neighborhood operator
combinations based on experimental results and theoretical
basis. The action spaces of the four agents we designed are

combinations of the above eight types of neighborhoods.
The specific details are shown in Table 2. In the algorithm
we proposed, these four agents cooperate and reach the
approximate optimal solution.

1. Agent1-Comprehensive Exploration Agent:Agent1
integrates six neighborhood operators (𝑀1 − 𝑀6),
which is the agent with the largest number of neigh-
borhoods among four agents. This shows that it em-
ploys multiple neighborhoods including single neigh-
borhoods and composite neighborhoods and to con-
duct a diversified search strategy, which can improve
the exploration of the search space.

2. Agent2-Focused Exploitation Agent:Agent2 em-
ploys three small single-step neighborhood operators
(𝑀1−𝑀3), which allow it to focus on perturbation in
a narrow range of the solution space. This contributes
to a more thorough exploitation of that specific region
around the current best solution.

3. Agent3-Swap Exploitation Agent:Agent3 employs
two swapping neighborhood operators (𝑀4,𝑀5) to
optimize the solution by swapping the shift of nurses,

Fig. 7: Example of the change-shift operator.

Fig. 8: Example of the swap-shift operator.
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Table 2
The combination of neighborhoods for each agent

Agents Role Combination of neighborhoods

Agent1 Comprehensive Exploration Agent 𝑀1, 𝑀2, 𝑀3, 𝑀4, 𝑀5, 𝑀6
Agent2 Focused Exploitation Agent 𝑀1, 𝑀2, 𝑀3
Agent3 Swap Exploitation Agent 𝑀4, 𝑀5,
Agent4 Disruptive Exploration Agent 𝑀6, 𝑀7, 𝑀8

which can keep the total number of shifts per day un-
changed. This improves the exploitation of the current
solution.

4. Agent4-Disruptive Exploration Agent: Agent4
combines three neighborhood operators (𝑀6 − 𝑀8),
all of which employ a strategy of partially ruining
and then recreate the current solution. This disruptive
strategy helps to jump out of the local optimal solution
and provides a powerful exploration mechanism.

The neighborhood combination strategies of these four
agents have their advantages, which ensure comprehensive
exploration in the vast solution space while exploiting and
optimizing high-quality solutions once identified. The MAS
we designed effectively merges the strengths of exploration
and exploitation, greatly increasing the quality of the solu-
tion.

5. Experimental study
In this section, we first enumerate the characteristics

of the data set and the corresponding instances generated.
Then we present a concise overview of the computational
outcomes achieved by MDQN-MA on a set of instances and
verify its effectiveness by comparing it with state-of-the-
art algorithms. Finally, we conduct ablation experiments to
further demonstrate the effectiveness of our proposed DQN
and multi-agent framework.
5.1. Dataset analysis and experimental parameter

settings
The INRC-II organizers coordinated benchmark tests

comprising a collection of 17 datasets. Each dataset con-
tained one scenario file, three initial history files, and ten
weekdata files. The weekdata files were reusable within
the same instance, enabling the creation of different test
instances of the same dataset. Table 3 presents an analysis
of the dataset characteristics and the instances generated by
this dataset. An instance is a specific scenario, an initial
history, and a sequence of 4 (or 8) week data files, all of
which belong to the same dataset. For example, the instance
n030w4_0_8-8-3-6 is one with 30 nurses over 4 weeks,
where the index for the history file is 0, and the indices
for the four week data files are 8, 8, 3, and 6 respectively.
To ensure a fair comparison between algorithms, we es-
tablished a standardized approach. We set the number of
searches to 4500 for one iteration on all algorithms and a
total of 20 iterations were performed. Implementing a fixed
number of searches allowed each algorithm to have an equal

Table 3
Characteristics of the 17 datasets and corresponding instances.

Dataset |𝑁| |𝑘| |𝑆| |𝑊 | |𝐶| Problem Instance

D1 5 2 3 4 2 𝑃1 n005w4_0_1-2-3-3
D2 12 2 4 8 2 𝑃2 n012w8_1_7-7-0-8-9-3-2-6
D3 21 4 4 4 3 𝑃3 n021w4_0_5-5-1-5
D4 30 4 4 4 3 𝑃4 n030w4_0_8-8-3-6
D5 30 4 4 8 3 𝑃5 n030w8_1_2-8-3-5-7-0-0-3
D6 40 4 4 4 3 𝑃6 n040w4_0_3-8-5-2
D7 40 4 4 8 3 𝑃7 n040w8_2_2-3-3-4-2-9-8-1
D8 50 4 4 4 3 𝑃8 n050w4_0_3-1-8-5
D9 50 4 4 8 3 𝑃9 n050w8_0_8-8-7-5-5-3-4
D10 60 4 4 4 4 𝑃10 n060w4_0_9-9-4-9
D11 60 4 4 8 3 𝑃11 n060w8_0_2-0-2-6-5-9-6-1
D12 80 4 4 4 4 𝑃12 n080w4_1_6-1-9-8
D13 80 4 4 8 4 𝑃13 n080w8_1_2-6-5-8-2-2-6-3
D14 100 4 4 4 4 𝑃14 n100w4_0_7-3-7-9
D15 100 4 4 8 4 𝑃15 n100w8_1_0-8-0-6-1-1-5-3
D16 120 4 4 4 3 𝑃16 n120w4_0_1-0-4-9
D17 120 4 4 8 3 𝑃17 n120w8_2_6-2-5-4-1-3-6-2

Fig. 9: The average values for 10 independent runs obtained
by MDQN-MA and ITS on 17 instances.

opportunity to explore the search space and discover optimal
or nearly optimal solutions. This approach minimizes the
impact of random fluctuations and guarantees an unbiased
performance comparison.
5.2. Comparison with the best metaheuristic

algorithm in the INRC-II
To demonstrate the effectiveness of our proposed

MDQN-MA, we selected the iterative tabu search algorithm
(ITS) proposed by the Hust.Smart group [25], which won
an award in the competition and ranked first in the category
of metaheuristic algorithms. By comparing our proposed
MDQN-MA with this highly successful metaheuristic algo-
rithm, we can validate the effectiveness and advancement of
MDQN-MA. For a fair comparison, we also set the stopping
condition of the two algorithms to perform 20 iterations,
with each iteration performing 4500 searches. The average
values of ten independent runs of MDQN-MA and ITS on
17 instances are plotted in Fig. 9. We can see that the two
algorithms only show similar performances on 𝑃1 and 𝑃2,
while MDQN-MA performs better than the ITS in subse-
quent instances. One interesting observation is that the per-
formance gap between MDQN-MA and ITS increases with
the increasing complexity of NRP. This is because DQN can
make more global decisions by learning knowledge during
training, and multi-agent systems can learn richer informa-
tion through interactions between agents, better guiding the
search process. This result demonstrates the effectiveness
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of MDQN-MA in tracking the NRP, especially in complex
instances.
5.3. Comparison with the state-of-the-art

metaheuristic algorithms
To further demonstrate the effectiveness of MDQN-MA,

we conducted comparative analyses with several competitive
metaheuristic algorithms recently proposed in the field of
COP. We selected three state-of-the-art algorithms: an adap-
tive large-scale neighborhood search framework with a sim-
ulated annealing acceptance mechanism (ALNS-SA) pro-
posed in [23], a hybrid tabu search - variable neighborhood
descent (HTS-VND) meta-heuristic algorithm introduced in
[24], and a smart general variable neighborhood search with
adaptive local search (SGVNSALS) proposed in [56]. We
adapted the neighborhoods of these three methods to suit
the NRP and compared them with the MDQN-MA under fair
conditions. Each algorithm performs 20 iterations, with each
iteration performing 4500 searches. Table 4 displays the best
and average values obtained by independently running the
four algorithms (ALNS-SA, HTS-VND, SGVNSALS, and
MDQN-MA) 10 times for each instance. The best result for
each instance is highlighted in bold font within the table.
Additionally, to ensure a statistically meaningful compar-
ison, we conducted the Wilcoxon rank-sum test at a 95%
confidence level on the experimental results. The symbols
+, ≈, and − indicate that the compared algorithm statisti-
cally outperforms, performs equally with, or underperforms
MDQN-MA, respectively.

From the experimental results, it is evident that MDQN-
MA outperformed ALNS-SA, HTS-VND, and SGVNSALS
in most instances. This suggests that MDQN-MA possesses
significant advantages over these state-of-the-art meta-
heuristic algorithms in tackling combinatorial optimization
problems. One explanation for the superior performance of
MDQN-MA could be its ability to leverage deep reinforce-
ment learning techniques, which enable it to make more in-
formed and adaptive decisions based on learned knowledge.
This adaptability allows MDQN-MA to effectively explore
the solution space and discover high-quality solutions even
in complex and challenging instances of the NRP. Further-
more, the multi-agent nature of MDQN-MA facilitates in-
formation sharing and collaborative learning among agents,
leading to a more comprehensive exploration of the solution
space. By leveraging the collective intelligence of multiple
agents, MDQN-MA can exploit synergies between different
search trajectories and avoid getting trapped in local optima,
thereby enhancing its search efficiency and effectiveness.
5.4. The effectiveness of the DQN

We have chosen the neighborhood selection methods
ANS and VND from two state-of-the-art algorithms ALNS-
SA [23] and HTS-VND [24] mentioned in section 5.3 to
replace the neighborhood selection method of each agent
(line 3 of algorithm 2). These two comparison algorithms
are named MANS-MA, and MVND-MA, corresponding to
two neighborhood selection strategies: ANS and VND. By

comparing MDQN-MA with these highly successful multi-
agent metaheuristic algorithms with state-of-the-art neigh-
borhood selection methods, we can assess the effectiveness
of DQN for neighborhood search in tackling the NRP.

We conduct experiments in 17 instances for the datasets
and list the best and average values in Table 5 obtained by
running the three algorithms (MDQN-MA, MANS-MA, and
MVND-MA) independently 10 times for each instance. The
best result of each instance is highlighted using the bold
font in the table. Moreover, to obtain a statistically sound
comparison, the Wilcoxon rank-sum test with 95% confi-
dence level was conducted on the experimental results. The
comparison results indicate that MDQN-MA outperforms
both MANS-MA and MVND-MA across all 17 instances of
the datasets. This suggests that the DQN-based approach for
neighborhood search in tackling the NRP is more effective
compared to the multi-agent metaheuristic algorithms with
ANS and VND neighborhood selection methods. DQN’s
ability to learn from experience and calculate long-term
reward expectations enables it to effectively guide the search
process, thus contributing to the superior performance ob-
served in experiments. These findings highlight the robust-
ness and strategic advantages of incorporating DQN into a
multi-agent framework.
5.5. The effectiveness of multi-agent

To verify the effectiveness of the multi-agent framework
we proposed, we run the single-agent algorithm for compara-
tive analysis. In addition, we ran a single agent (Agent5) with
all eight neighborhoods (𝑀1 −𝑀8) we designed, excluding
the four agents mentioned above, for comparative analysis.
We conduct experiments in 17 instances for the datasets and
list the average values in Table 6 obtained by running the
five algorithms (Agent1, Agent2, Agent3, Agent4, Agent5,
and Multi-Agent) independently 10 times for each instance.
We can see that Multi-Agent shows better performance in
all instances which validates that the cooperation between
agents can improve the performance of our algorithm. The
coordination among agents allows for a more comprehensive
exploration of the solution space, enabling the algorithm to
discover better solutions more efficiently.

Additionally, each agent’s performance and functionality
are different. The performance of Agent5 falls short of that
of Agent1 and the multi-agent, and in some cases, even
lags behind Agent4. This indicates that the performance of
the single agent encompassing all neighborhood structures
cannot surpass that of multi-agents, and sometimes even lags
behind agents such as Agent1 and Agent4, which include
only specific neighborhoods. This highlights the impor-
tance of neighborhood combinations and further validates
the effectiveness of designing multi-agent frameworks with
different neighborhood structures. While some agents may
excel in specific contexts, the collective effort of multiple
agents within the multi-agent framework ensures robust-
ness and adaptability across different problem instances. To
further validate the generality of our proposed multi-agent
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Table 4
Numerical results of ALNS-SA, HTS-VND, SGVNSALS, and MDQN-MA ("Ave" and "Best" respectively denote the average
cost and the best cost across 10 independent runs).

Problem NRP Instance ALNS-SA HTS-VND SGVNSALS MDQN-MA

Ave Best Ave Best Ave Best Ave Best

𝑃1 n005w4_0_1-2-3-3 1636.5(≈) 1615 1728.5(−) 1605 1645.5(≈) 1605 1615.5 1595

𝑃2 n012w8_1_7-7-0-8-9-3-2-6 3518.5(≈) 3415 3640.0(−) 3530 3535.0(≈) 3310 3550.0 3400

𝑃3 n021w4_0_5-5-1-5 2442.5(≈) 2315 2793.0(−) 2635 2354.5(≈) 2270 2317.0 2210

𝑃4 n030w4_0_8-8-3-6 2636.5(−) 2490 3413.0(−) 3265 2560.5(≈) 2440 2385.0 2290

𝑃5 n030w8_1_2-8-3-5-7-0-0-3 3619.5(−) 3420 5241.5(−) 5000 3447.0(≈) 3280 3319.0 3220

𝑃6 n040w4_0_3-8-5-2 2310.5(≈) 2160 3514.0(−) 3200 2257.0(≈) 2185 2180.0 2100

𝑃7 n040w8_2_2-3-3-4-2-9-8-1 4399.0(−) 4290 7046.5(−) 6675 4479.0(−) 4265 3887.5 3800

𝑃8 n050w4_0_3-1-8-5 2728.5(−) 2565 3980.5(−) 3750 2601.5(−) 2490 2298.0 2145

𝑃9 n050w8_0-8-8-7-5-5-3-4 7955.0(−) 7605 10439.0(−) 10125 8020.5(−) 7550 7043.5 6815

𝑃10 n060w4_0_9-9-4-9 4471.5(−) 4090 7468.0(−) 6785 4784.5(−) 4610 3983.5 3885

𝑃11 n060w8_0_2-0-2-6-5-9-6-1 5768.5(−) 5555 8420.5(−) 8105 5755.0(−) 5380 4454.0 4150

𝑃12 n080w4_1_6-1-9-8 5250.0(−) 5080 7490.0(−) 6675 5666.5(−) 5085 4463.0 4350

𝑃13 n080w8_1_2-6-5-8-2-2-6-3 8042.0(−) 7795 12060.0(−) 11510 9470.0(−) 8905 6360.0 6190

𝑃14 n100w4_0_7-3-7-9 3996.5(−) 3840 6296.0(−) 6025 6650.5(−) 5635 2958.0 2825

𝑃15 n100w8_1_0-8-0-6-1-1-5-3 7876.0(−) 7510 12852.0(−) 12210 12653.0(−) 12010 5758.5 5685

𝑃16 n120w4_0_1-0-4-9 4870.0(−) 4535 7472.0(−) 6920 9346.0(−) 8345 3631.5 3435

𝑃17 n120w8_2_6-2-5-4-1-3-6-2 8540.0(−) 8350 14824.0(−) 14615 18479.5(−) 15685 6702.5 6335

(+/≈/−) (0/4/16) (0/0/17) (0/6/11) —
(𝑏𝑒𝑠𝑡/𝑎𝑙𝑙) (1/17) (0/17) (1/17) (15/17)

Average Ranking 2.29 3.82 2.76 1.12

(a) (b)

Fig. 10: The average values for 10 independent runs obtained by MANS-MA, MVND-MA, Agent1-ANS, and Agent1-VND on 17
instances.

framework combined with metaheuristic algorithms, we em-
ploy the previously mentioned ANS and VND metaheuris-
tic algorithms to replace Algorithm 2. We integrate these
algorithms with our multi-agent framework and conduct a
comparative study with the best-performing single agent,
Agent1. Specifically, we compare MANS-MA and MVND-
MA with Agent1, which utilizes ANS or VND for neighbor-
hood selection with neighborhood combinations from 𝑀1 to
𝑀6. The average values of ten independent runs of MANS-
MA, MVND-MA, Agent1-ANS, and Agent1-VND on 17
instances are plotted in Fig. 10.

6. Conclusion
This paper has proposed MDQN-MA, a novel approach

for tackling the NRP. We have shown that leveraging a multi-
agent framework coupled with metaheuristics is a promising
strategy for tackling the NRP. This innovative approach
allows us to harness the collective intelligence of multiple
agents to solve complex scheduling problems efficiently.
Then, we introduce the concept of modeling the neighbor-
hood selection process as an MDP and integrating DQN into
this process. This integration has proven to be an effective
way to maximize long-term rewards, leading to improved
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Table 5
Numerical results of MDQN-MA, MANS-MA, AND MVND-MA ("Ave" and "Best" respectively denote the average cost and the
best cost across 10 independent runs).

Problem Instance MANS-MA MVND-MA MDQN-MA
Ave Best Ave Best Ave Best

𝑃1 n005w4_0_1-2-3-3 1641.5(≈) 1625 1687.5(≈) 1680 1615.5 1595
𝑃2 n012w8_1_7-7-0-8-9-3-2-6 3572.5(≈) 3510 3580.0(≈) 3515 3550.0 3400
𝑃3 n021w4_0_5-5-1-5 2360.0(≈) 2305 2450.0(−) 2415 2317.5 2215
𝑃4 n030w4_0_8-8-3-6 2437.5(−) 2380 2635.0(−) 2570 2385.0 2290
𝑃5 n030w8_1_2-8-3-5-7-0-0-3 3370.0(≈) 3335 3645.0(−) 3560 3319.0 3280
𝑃6 n040w4_0_3-8-5-2 2205.0(≈) 2105 2520.0(−) 2440 2180.0 2100
𝑃7 n040w8_2_2-3-3-4-2-9-8-1 4015.0(−) 4005 4385.0(−) 4375 3887.5 3800
𝑃8 n050w4_0_3-1-8-5 2412.5(−) 2355 2650.0(−) 2580 2298.0 2145
𝑃9 n050w8_0-8-8-7-5-5-3-4 7277.5(−) 7135 8292.5(−) 7935 7043.0 6815
𝑃10 n060w4_0_9-9-4-9 4135.0(−) 3925 4570.0(−) 4430 3983.5 3885
𝑃11 n060w8_0_2-0-2-6-5-9-6-1 4882.5(−) 4795 6510.0(−) 6130 4454.0 4150
𝑃12 n080w4_1_6-1-9-8 4782.5(−) 4770 5290.0(−) 5100 4463.0 4350
𝑃13 n080w8_1_2-6-5-8-2-2-6-3 6905.0(−) 6885 10770.0(−) 10490 6360.0 6190
𝑃14 n100w4_0_7-3-7-9 3500.0(−) 3420 3815.0(−) 3735 2958.0 2825
𝑃15 n100w8_1_0-8-0-6-1-1-5-3 6732.5(−) 6385 7350.0(−) 7200 5758.5 5685
𝑃16 n120w4_0_1-0-4-9 4460.0(−) 4260 5092.5(−) 5060 3631.5 3435
𝑃17 n120w8_2_6-2-5-4-1-3-6-2 7900.0(−) 7850 9127.5(−) 8880 6702.5 6335

(+/≈/−) (0/5/12) (0/2/15) —

Table 6
Numerical results of Agent1, Agent2, Agent3, Agent4, Agent5 and Multi-Agent

Problem Instance Agent1
(𝑀1 −𝑀6)

Agent2
(𝑀1 −𝑀3)

Agent3
(𝑀4,𝑀5)

Agent4
(𝑀6 −𝑀8)

Agent5
(𝑀1 −𝑀8)

Multi-Agent

𝑃1 n005w4_0_1-2-3-3 1620.5 2340.5 2567.5 1655.0 1626.5 1615.5
𝑃2 n012w8_1_7-7-0-8-9-3-2-6 3560.0 4462.5 7217.5 3552.5 3570.0 3550.0
𝑃3 n021w4_0_5-5-1-5 2335.5 6100.0 5742.5 2412.5 2371.0 2317.0
𝑃4 n030w4_0_8-8-3-6 2490.0 6797.5 5540.0 2545.0 2577.5 2385.0
𝑃5 n030w8_1_2-8-3-5-7-0-0-3 3380.0 13875.0 9142.5 3562.5 3523.5 3319.0
𝑃6 n040w4_0_3-8-5-2 2251.5 11725.0 7447.5 2302.5 2545.0 2180.0
𝑃7 n040w8_2_2-3-3-4-2-9-8-1 4100.0 25937.5 13377.5 5137.5 5021.5 3887.5
𝑃8 n050w4_0_3-1-8-5 2351.5 14232.5 7017.5 2620.0 2568.5 2298.0
𝑃9 n050w8_0-8-8-7-5-5-3-4 7373.5 32535.0 15817.5 7567.5 7730.0 7043.5
𝑃10 n060w4_0_9-9-4-9 4085.5 19600.0 13045.0 4837.5 4572.5 3983.5
𝑃11 n060w8_0_2-0-2-6-5-9-6-1 5022.0 24265.0 17215.0 5687.5 5725.0 4454.0
𝑃12 n080w4_1_6-1-9-8 4683.5 23342.5 13142.5 4897.5 4953.5 4463.0
𝑃13 n080w8_1_2-6-5-8-2-2-6-3 6903.5 55962.5 21917.5 7280.0 7222.5 6360.0
𝑃14 n100w4_0_7-3-7-9 3290.0 30185.0 10335.0 3652.5 3528.5 2958.0
𝑃15 n100w8_1_0-8-0-6-1-1-5-3 6514.5 65297.0 20675.0 7070.0 7266.0 5758.5
𝑃16 n120w4_0_1-0-4-9 3890.5 24295.0 15270.0 4705.0 4763.5 3631.5
𝑃17 n120w8_2_6-2-5-4-1-3-6-2 7325.0 48992.5 30440.0 9510.0 9503.0 6702.5

solution quality. Our extensive experiments and analyses
have consistently demonstrated the superior performance of
MDQN-MA when compared to state-of-the-art algorithms
such as MANS-MA, MVND-MA, and ITS. Notably, as the
complexity of the instances increases, the performance gap
between MDQN-MA and its competitors widens, further
emphasizing its suitability for addressing large-scale NRP
instances in real-world scenarios.

The promising results obtained from our experiments
highlight the potential for further improvements and ad-
vancements in this field. One avenue for future research is
to explore ways to improve communication and cooperation
between agents within the MAS that can potentially lead

to more efficient solutions and better scalability. Further-
more, we will explore other RL-based models to enhance
the algorithm’s performance. For instance, neural architec-
ture search (NAS) techniques could be employed to design
network models that are better suited for the NRP [57].
In addition, investigating the impact of different training
techniques on the performance of neural networks could
further improve our overall effectiveness.
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