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Abstract

In this paper, we argue that the original self-adaptation mechanism of the Evo-
lution Strategies is useful by itself to handle constraints in global optimization.
We show how using just three simple comparison criteria the simple Evolution
Strategy can be led to the feasible region of the search space and find the global
optimum solution (or a very good approximation of it). Different Evolution Strate-
gies including (µ+1)−ES and (µ +, λ)−ES with or without correlated mutation
were implemented. Such approaches have been tested using the well-known test
suit of Michalewicz and Schnoenauer and four engineering problems. The results
are discussed and some conclusions are drawn.

1 Introduction

Evolution Strategies (ES) have been widely used to solve global optimization problems
[32, 17, 16, 11, 24, 15, 9, 7, 5, 1, 2, 3]. Moreover, there is a theoretical background that
supports ES convergence [30, 6, 12, 8]. However, as other Evolutionary Algorithms
(Evolutionary Programming and Genetic Algorithms), ES lack an explicit mechanism
to deal with constrained search spaces. The recombination and mutation operators
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cannot distinguish between feasible and infeasible solutions. Therefore, several ap-
proaches have been suggested in the literature to allow Evolutionary Algorithms (EAs)
to deal with constrained problems [13].

The most common approach adopted to deal with constrained search spaces is the
use of penalty functions. When using a penalty function, the amount of constraint
violation is used to punish or “penalize” an infeasible solution so that feasible solutions
are favored by the selection process. Despite the popularity of penalty functions, they
have several drawbacks from which the main one is that they require a careful fine
tuning of the penalty factors that accurately estimates the degree of penalization to be
applied as to approach efficiently the feasible region [33, 13].

There are also studies about using multiobjective concepts to handle constraints in
EAs [22]. These approaches find or approximate the optimal solution with less fitness
function evaluations than other competitive approaches like the Homomorphous Maps
of Koziel and Michalewicz [21].

Two of the most recent techniques to handle constraints in EAs found in the lit-
erature, the Stochastic Ranking by Runarsson & Yao [28] and the Adaptive Segrega-
tional Contraint Handling Evolutionary Algorithm (ASCHEA) by Hamida & Schoe-
nauer [18, 19] are both based on an ES. The quality and consistency of the reported re-
sults of both approaches are very good. This suggests that ES’s original self-adaptation
mechanism might help the EA to deal with constrained search spaces. Thus, we de-
cided to compare three different types of ES ((µ + 1), (µ + λ) and (µ, λ)) using just
three simple comparison criteria to solve the well-known benchmark for global non-
linear optimization proposed by Michalewicz and Schoenauer [23] and extended by
Runarsson & Yao [28]. We also analyze the uselfulness of the correlated mutation in
population-based ES.

This paper is organized as follows: In Section 2 we briefly describe the main con-
cepts of ES. In Section 3, we provide an explanation of the simple constraint handling
approach adopted in this work. After that, in Section 4, we present the results obtained
of our experiments. The discussion of such results is on Section 5. Finally, in Section 6
we provide our conclusions and some possible paths of future research.

2 Evolution Strategies

ES were proposed by Bienert, Rechenberg and Schwefel. They used them to solve
hydrodynamical problems [26, 31]. The first ES version was the (1 + 1)-ES which
uses just one individual that is mutated using a normal distributed random number with
mean zero and an identical standard deviation for each decision variable. The best
solution between the parent and the offspring is chosen and the other one is eliminated.
Rechenberg derived a convergence rate theory and proposed a rule for changing the
standard deviation of mutations called the “1/5-success rule” [27].

The first multimembered ES was the (µ+ 1)-ES, which was designed by Rechen-
berg and is described in detail in [8]. In this approach, µ parent solutions recombine to
generate one offspring. This solution is also mutated and, if it is better, it will replace
the worst parent solution. Note however that the (µ+1)-ES has not been too popular in
the literature. However, it provided the transition to the state-of-the-art multimembered
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ES.
The (µ+λ)-ES and the (µ, λ)-ES were proposed by Schwefel [29]. In the first one,

the best µ individuals out of the union of the µ original parents and their λ offspring
will survive for the next generation. On the other hand, in the (µ, λ)-ES the best µ will
only be selected from the λ offspring.

The (µ+ λ)-ES uses an implicit elitist mechanism and solutions can survive more
than one generation. Meanwhile, in the (µ, λ)-ES solutions only survive one genera-
tion. Instead of the “1/5-success rule”, each individual includes a standard deviation
value for each decision variable. Moreover, for each combination of two standard devi-
ation values, a rotation angle is included. These angles are used to perform a correlated
mutation. This mutation allows each individual to look for a search direction. The
standard deviations and the angles of each individual are called strategy parameters.
They are also recombined and mutated. A (µ + λ)-ES or (µ, λ)-ES individual can be
seen as follows: a(i)(~x, ~σ, ~θ), where i is the number of individual in the population,
~x ∈ <n is a vector of n decision variables, ~σ is a vector of n standard deviations and ~θ
is a vector of n(n− 1)/2 rotation angles where θi ∈ [−π, π] .

There are two types of recombination: sexual (two individuals) and panmictic
(more than two solutions). There is a variety of recombinations forms for both types:
discrete, intermediate and generalized [6].

The mutation operator works on the decision variables and also on the strategy
parameters. The mutation is calculated in the following way:

σ′i = σi · exp(τ ′ ·N(0, 1) + τ ·Ni(0, 1)) (1)

θ′j = θj + β ·Nj(0, 1) (2)

~x′ = ~x+ ~N(~0, C(~σ′, ~θ′)) (3)

where τ and τ ′ are interpreted as “learning rates” and are defined by Schwefel [6]
as: τ = (

√
2
√
n)−1 and τ ′ = (

√
2n)−1 and β ≈ 0.0873.

Some authors use correlated mutation, whereas others prefer to use a non-correlated
mutation. In this way, the computational effort and the memory space used by each
individual gets lower.

If a non-correlated mutation is used, the mutation expressions are:

σ′i = σi · exp(τ ′ ·N(0, 1) + τ ·Ni(0, 1)) (4)

x′i = xi + σ′i ·Ni(0, 1) (5)

The general ES algorithm is detailed in figure 1.

3 Constraint-Handling Approach

As it was discussed in Section 1, we argue that the natural self-adaptation mechanism
of the ES is useful to bias a evolutionary search through a constrained space. In this
way, just three comparison criteria are used to select the best individuals from one
generation:
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Begin
t=0
Create µ random solutions for the initial population.
Evaluate all u individuals
Assign a fitness value to all µ individuals
For t=1 to MAX GENERATIONS Do

Produce λ offspring by recombination of the µ parents
Mutate each child
Evaluate all λ offspring
Assign a fitness value to all λ individuals
If Selection = “+” Then

Select the best µ individuals from the µ+ λ individuals
Else

Select the best µ individuals from the λ individuals
End If

End For
End

Figure 1: ES general algorithm

• Between 2 feasible solutions, the one with the higher fitness value is preferred.

• If one solution is feasible and the other one is infeasible, the feasible one is
preferred.

• If both solutions are infeasible, the one with the lowest sum of constraint viola-
tion is preferred.

4 Experiments and Results

To evaluate the performance of the techniques selected, we decided to use the well-
known benchmark proposed in [23] plus four engineering design problems used in [14].
The full description of the seventeen test functions is the following:

1. Problem 1: (g01):

Minimize:

f(~x) = 5
4∑

i=1

xi − 5
4∑

i=1

x2
i −

13∑

i=5

xi (6)

subject to:
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g1(~x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(~x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(~x) = 2x2 + 2x3 + x10 + x12 − 10 ≤ 0

g4(~x) = −8x1 + x10 ≤ 0

g5(~x) = −8x2 + x11 ≤ 0

g6(~x) = −8x3 + x12 ≤ 0

g7(~x) = −2x4 − x5 + x10 ≤ 0

g8(~x) = −2x6 − x7 + x11 ≤ 0

g9(~x) = −2x8 − x9 + x12 ≤ 0 (7)

where 0 ≤ xi ≤ 1 (i = 1, . . . , 9) 0 ≤ xi ≤ 100 (i = 10, 11, 12) and 0 ≤
x13 ≤ 1. The global optimum is at x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) where
f(x∗) = −15. Constraints g1, g2, g3, g4, g5 and g6 are active.

2. Problem 2: (g02):

Maximize:

f(~x) =

∣∣∣∣∣

∑n
i=1 cos4(xi)− 2

∏n
i=1 cos2(xi)√∑n

i=1 ix
2
i

∣∣∣∣∣ (8)

subject to:

g1(~x) = 0.75−
n∏

i=1

xi ≤ 0

g2(~x) =
n∑

i=1

xi − 7.5n ≤ 0 (9)

where n = 20 and 0 ≤ xi ≤ 10 (i = 1, . . . , n). The global maximum is
unknown; the best reported solution is [28] f(x∗) = 0.803619. Constraint g1 is
close to being active (g1 = −10−8).

3. Problem 3: (g03):

Maximize:

f(~x) =
(√
n
)n n∏

i=1

xi (10)

subject to:

h(~x) =
n∑

i=1

x2
i − 1 = 0 (11)

where n = 10 and 0 ≤ xi ≤ 1 (i = 1, . . . , n). The global maximum is at
x∗i = 1/

√
n (i = 1, . . . , n) where f(x∗) = 1.
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4. Problem 4: (g04):

Minimize:

f(~x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141 (12)

subject to:

g1(~x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0

g2(~x) = −85.334407− 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0

g3(~x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2
3 − 110 ≤ 0

g4(~x) = −80.51249− 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x2
3 + 90 ≤ 0

g5(~x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0

g6(~x) = −9.300961− 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0

(13)

where: 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45 (i = 3, 4, 5). The opti-
mum solution is x∗ = (78, 33, 29.995256025682, 45, 36.775812905788) where
f(x∗) = −30665.539. Constraints g1 y g6 are active.

5. Problem 5: (g5)

Minimize:

f(~x) = 3x1 + 0.000001x3
1 + 2x2 + (0.000002/3)x3

2 (14)

subject to:

g1(~x) = −x4 + x3 − 0.55 ≤ 0

g2(~x) = −x3 + x4 − 0.55 ≤ 0

h3(~x) = 1000 sin(−x3 − 0.25) + 1000 sin(−x4 − 0.25) + 894.8− x1 = 0

h4(~x) = 1000 sin(x3 − 0.25) + 1000 sin(x3 − x4 − 0.25) + 894.8− x2 = 0

h5(~x) = 1000 sin(x4 − 0.25) + 1000 sin(x4 − x3 − 0.25) + 1294.8 = 0

(15)

where 0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200, −0.55 ≤ x3 ≤ 0.55, and −0.55 ≤
x4 ≤ 0.55. The best known solution is x∗ = (679.9453, 1026.067, 0.1188764,
−0.3962336) where f(x∗) = 5126.4981.

6. Problem 6: (g6)

Minimize:
f(~x) = (x1 − 10)3 + (x2 − 20)3 (16)

subject to:
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g1(~x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

g2(~x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0 (17)

where 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The optimum solution is x∗ =
(14.095, 0.84296) where f(x∗) = −6961.81388. Both constraints are active.

7. Problem 7: (g7)

Minimize:

f(~x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2

+(x10 − 7)2 + 45 (18)

Subject to:

g1(~x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

g2(~x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(~x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(~x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0

g5(~x) = 5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(~x) = x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(~x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0

g8(~x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0 (19)

where−10 ≤ xi ≤ 10 (i = 1, . . . , 10). The global optimum is x∗ = (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 1.321644,
9.828726, 8.280092, 8.375927) where f(x∗) = 24.3062091. Constraints g1, g2,
g3, g4, g5 and g6 are active.

8. Problem 8: (g8)

Maximize:

f(~x) =
sin3(2πx1) sin(2πx2)

x3
1(x1 + x2)

(20)

subject to:

g1(~x) = x2
1 − x2 + 1 ≤ 0

g2(~x) = 1− x1 + (x2 − 4)2 ≤ 0 (21)

where 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10. The optimum solution is located
at x∗ = (1.2279713, 4.2453733) where f(x∗) = 0.095825. The solutions is
located within the feasible region.
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9. Problem 9: (g9)

Minimize:

f(~x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2

+10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7 (22)

subject to:

g1(~x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0

g2(~x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(~x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0

g4(~x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0 (23)

where−10 ≤ xi ≤ 10 (i = 1, . . . , 7). The optimum solution is x∗ = (2.330499, 1.951372,−0.4775414, 4.365726,−0.6244870, 1.038131, 1.594227)
where f(x∗) = 680.6300573. Two constraints are active (g1 and g4).

10. Problem 10: (g10) Minimize:

f(~x) = x1 + x2 + x3 (24)

Subject to:

g1(~x) = −1 + 0.0025(x4 + x6) ≤ 0

g2(~x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0

g3(~x) = −1 + 0.01(x8 − x5) ≤ 0

g4(~x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0

g5(~x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0

g6(~x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0 (25)

where 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000, (i = 2, 3), 10 ≤ xi ≤ 1000,
(i = 4, . . . , 8). The global optimum is: x∗ = (579.3167, 1359.943, 5110.071,
182.0174, 295.5985, 217.9799, 286.4162, 395.5979), where f(x∗) = 7049.3307.
g1, g2 and g3 are active.

11. Problem 11: (g11)

Minimize:
f(~x) = x2

1 + (x2 − 1)2 (26)

subject to:

h(~x) = x2 − x2
1 = 0 (27)

where: −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1. The optimum solution is x∗ =
(±1/

√
2, 1/2) where f(x∗) = 0.75.

8



12. Problem 12: (g12)

Maximize:

f(~x) =
100− (x1 − 5)2 − (x2 − 5)2 − (x3 − 5)2

100
(28)

Subject to:

g1(~x) = (x1 − p)2 + (x2 − q)2 + (x3 − r)2 − 0.0625 ≤ 0 (29)

where 0 ≤ xi ≤ 10 (i = 1, 2, 3) and p, q, r = 1, 2, . . . , 9. The feasible region of
the search space consists of 93 disjointed spheres. A point (x1, x2, x3) is feasible
if and only if there exist p, q, r such the above inequality (29) holds. The global
optimum is located at x∗ = (5, 5, 5) where f(x∗) = 1. The solution lies within
the feasible region.

13. Problem 13: (g13)

Minimize:
f(~x) = ex1x2x3x4x5 (30)

subject to:

h1(~x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 = 0

h2(~x) = x2x3 − 5x4x5 = 0

h3(~x) = x3
1 + x3

2 + 1 = 0 (31)

where −2.3 ≤ xi ≤ 2.3 (i = 1, 2) and −3.2 ≤ xi ≤ 3.2 (i = 3, 4, 5). The opti-
mum solution is x∗ = (−1.717143, 1.595709, 1.827247,−0.7636413,−0.763645)
where f(x∗) = 0.0539498.

14. Problem 14: (Design of a Welded Beam)

A welded beam is designed for minimum cost subject to constraints on shear
stress (τ ), bending stress in the beam (σ), buckling load on the bar (Pc), end de-
flection of the beam (δ), and side constraints [25]. There are four design variables
as shown in Figure 2 [25]: h (x1), l (x2), t (x3) and b (x4).

The problem can be stated as follows:

Minimize:

f(~x) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2) (32)
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Figure 2: The welded beam used for problem 14 .

Subject to:

g1(~x) = τ(~x)− τmax ≤ 0

g2(~x) = σ(~x)− σmax ≤ 0

g3(~x) = x1 − x4 ≤ 0

g4(~x) = 0.10471x2
1 + 0.04811x3x4(14.0 + x2)− 5.0 ≤ 0

g5(~x) = 0.125− x1 ≤ 0

g6(~x) = δ(~x)− δmax ≤ 0

g7(~x) = P − Pc(~x) ≤ 0 (33)

where

τ(~x) =

√
(τ ′)2 + 2τ ′τ ′′

x2

2R
+ (τ ′′)2

τ ′ =
P√

2x1x2

, τ ′′ =
MR

J
,M = P

(
L+

x2

2

)

R =

√
x2

2

4
+

(
x1 + x3

2

)2

J = 2

{
√

2x1x2

[
x2

2

12
+

(
x1 + x3

2

)2
]}

σ(~x) =
6PL

x4x2
3

, δ(X) =
4PL3

Ex3
3x4

Pc(~x) =
4.013E

√
x2

3x
6
4

36

L2

(
1− x3

2L

√
E

4G

)
(34)

P = 6000 lb, L = 14 in, E = 30× 106 psi, G = 12× 106 psi
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Figure 3: Center and end section of the pressure vessel used for problem 15.

τmax = 13, 600 psi, σmax = 30, 000 psi, δmax = 0.25 in

where 0.1 ≤ x1 ≤ 2.0, 0.1 ≤ x2 ≤ 10.0, 0.1 ≤ x3 ≤ 10.0 y 0.1 ≤ x4 ≤ 2.0.

15. Problem 15: (Design of a Pressure Vessel)

A cylindrical vessel is capped at both ends by hemispherical heads as shown in
Figure 3. The objective is to minimize the total cost, including the cost of the
material, forming and welding. There are four design variables: Ts (thickness
of the shell), Th (thickness of the head), R (inner radius) and L (length of the
cylindrical section of the vessel, not including the head). Ts and Th are inte-
ger multiples of 0.0625 inch, which are the available thicknesses of rolled steel
plates, and R and L are continuous. Using the same notation given by Kannan
and Kramer [20], the problem can be stated as follows:

Minimize :

f(~x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3 (35)

Subject to :

g1(~x) = −x1 + 0.0193x3 ≤ 0

g2(~x) = −x2 + 0.00954x3 ≤ 0

g3(~x) = −πx2
3x4 −

4

3
πx3

3 + 1, 296, 000 ≤ 0

g4(~x) = x4 − 240 ≤ 0 (36)

where 1 ≤ x1 ≤ 99, 1 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200 y 10 ≤ x4 ≤ 200.

16. Problem 16: (Minimization of the Weight of a Tension/Compression String)
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Figure 4: Tension/compression string used for problem 16.

This problem was described by Arora [4] and Belegundu [10], and it consists
of minimizing the weight of a tension/compression spring (see Figure 4) subject
to constraints on minimum deflection, shear stress, surge frequency, limits on
outside diameter and on design variables. The design variables are the mean coil
diameterD (x2), the wire diameter d (x1) and the number of active coilsN (x3).

Formally, the problem can be expressed as:

Minimize:
(N + 2)Dd2 (37)

Subject to:

g1(~x) = 1− D3N

71785d4
≤ 0

g2(~x) =
4D2 − dD

12566(Dd3 − d4)
+

1

5108d2
− 1 ≤ 0

g3(~x) = 1− 140.45d

D2N
≤ 0

g4(~x) =
D + d

1.5
− 1 ≤ 0 (38)

where 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3 y 2 ≤ x3 ≤ 15.

17. Problem 17: (Design of a 10-bar plane truss)

Consider the 10-bar plane truss shown in Figure 5 [10]. The problem is to find
the moment of inertia of each member of this truss, such that we minimize its
weight, subject to stress and displacement constraints. The weight of the truss is
given by:

f(x) =
10∑

j=1

ρAj Lj (39)
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360"

   360"                      360"

 5                            3                          1

Figure 5: 10-bar plane truss used for problem 17.

where x is the candidate solution, Aj is the cross-sectional area of the jth mem-
ber, Lj is the length of the jth member, and ρ is the weight density of the mate-
rial.

The assumed data are: modulus of elasticity, E = 1.0× 104 ksi 68965.5 MPa),
ρ = 0.10 lb/in3 (2768.096 kg/m3), and a load of 100 kips (45351.47 Kg) in the
negative y-direction is applied at nodes 2 and 4. The maximum allowable stress
of each member is called σa, and it is assumed to be ±25 ksi (172.41 MPa).
The maximum allowable displacement of each node (horizontal and vertical) is
represented by ua, and is assumed to be 2 inches (5.08 cm).

There are 10 stress constraints, and 12 displacement constraints (we can really
assume only 8 displacement constraints because there are two nodes with zero
displacement, but they will nevertheless be considered as additional constraints
by the new approach). The moment of inertia of each element can be different,
thus the problem has 10 design variables.

To get a measure of the difficulty of solving each of these problems, a ρ metric (as
suggested by Koziel and Michalewicz [21]) was computed using the following expres-
sion:

ρ = |F |/|S| (40)

where |F | is the number of feasible solutions and |S| is the total number of solutions
randomly generated. In this work, S = 1, 000, 000 random solutions.
The different values of ρ for each of the functions chosen are shown in Table 1, where
n is the number of decision variables, LI is the number of linear inequalities, NI the
number of nonlinear inequalities, LE is the number of linear equalities and NE is the
number of nonlinear equalities. It can be clearly seen that problems 5, 7 and 13 should
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Problem n Type of function ρ LI NI LE NE
1 13 quadratic 0.0003% 9 0 0 0
2 20 non linear 99.9973% 2 0 0 0
3 10 non linear 0.0026% 0 0 0 1
4 5 quadratic 27.0079% 4 2 0 0
5 4 non linear 0.0000% 2 0 0 3
6 2 non linear 0.0057% 0 2 0 0
7 10 quadratic 0.0000% 3 5 0 0
8 2 non linear 0.8581% 0 2 0 0
9 7 non linear 0.5199% 0 4 0 0

10 8 linear 0.0020% 6 0 0 0
11 2 quadratic 0.0973% 0 0 0 1
12 3 quadratic 4.7697% 0 93 0 0
13 5 non linear 0.0000% 0 0 1 2
14 4 quadratic 2.6859% 6 1 0 0
15 4 quadratic 39.6762% 3 1 0 0
16 3 quadratic 0.7537% 1 3 0 0
17 10 non linear 46.8070% 0 22 0 0

Table 1: Values of ρ for the 17 test problems chosen.

be the most difficult to solve since they present the lowest value of ρ.

We implemented five different types of ES:

• (µ+ 1)-ES

• (µ+ λ)-ES without correlated mutation.

• (µ+ λ)-ES with correlated mutation.

• (µ, λ)-ES without correlated mutation.

• (µ, λ)-ES with correlated mutation.

The number of fitness function evaluations was fixed to 350000 in all our experi-
ments. We performed 30 runs for each problem and for each type of ES. Equality con-
straints were transformed into inequalities using a tolerance value of 0.0001 (see [13]
for details of this transformation).

For the (µ+ 1)-ES the initial values are:

• σ = 4.0.

• C = 0.99.

• µ = 5.

• Number of generations = 350000.
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(µ + 1)-ES
Problem Optimal Best Mean Median Worst St. Dev.

g01 −15.000000 −15.000000 −14.848614 −14.997996 −12.999997 0.410082

g02 0.803619 0.793083 0.698932 0.708804 0.576079 0.062927

g03 1.000000 1.000497 1.000486 1.000491 1.000424 0.000014

g04 −30665.539000 −30665.539062 −30665.441732 −30665.539062 −30663.496094 0.393918

*g05 5126.498000 1061.161621 3798.771277 3710.436401 7450.403320 1589.234278

g06 −6961.814000 −6961.813965 −6961.813965 −6961.813965 −6961.813965 0.000000

g07 24.306000 24.368050 24.702525 24.730650 25.516653 0.242956

g08 0.095825 0.095826 0.095826 0.095826 0.095826 0.000000

g09 680.630000 680.631653 680.673645 680.659271 680.915100 0.052483

*g10 7049.330700 5090.902832 11741.558219 11362.840820 19986.607422 3614.908836

g11 0.750000 0.749900 0.784395 0.776296 0.879522 0.037345

g12 1.000000 1.000000 1.000000 1.000000 1.000000 0.000000

g13 0.053950 0.060909 1.028332 0.929756 4.682147 0.852305

gpressure 6059.946000 6059.701660 6724.941455 6771.583984 7332.828613 460.417544

gbeam 1.728200 1.729834 1.782288 1.766287 1.881157 0.043994

gspring 0.012681 0.012679 0.013194 0.012849 0.015951 0.000820

gtruss10 5152.636000 5611.358887 6713.852327 6791.588379 7988.152832 613.365056

Table 2: Results obtained with the (µ + 1)-ES in the 17 test problems with 350000
fitness function evaluations (The “*” indicates that no feasible solutions were found)

Non-correlated (µ + λ)-ES
Problem Optimal Best Mean Median Worst St. Dev.

g01 −15.000000 −14.985728 −14.973915 −14.974497 −14.954204 0.007794

g02 0.803619 0.803607 0.800743 0.803503 0.792375 0.004637

g03 1.000000 0.473893 0.238810 0.242793 0.026602 0.113800

g04 −30665.539000 −30664.837891 −30651.001497 −30653.474609 −30619.619141 13.160883

*g05 5126.498000 5107.174316 5212.373470 5181.369629 5543.031250 102.461263

g06 −6961.814000 −6961.813965 −6938.453255 −6961.810791 −6567.754395 83.160125

g07 24.306000 24.328295 24.390978 24.392672 24.478491 0.046711

g08 0.095825 0.095826 0.095823 0.095826 0.095771 0.000010

g09 680.630000 680.630554 680.640236 680.636139 680.666443 0.010440

g10 7049.330700 7075.010254 7802.033024 7531.348877 10083.971680 762.989363

g11 0.750000 0.750572 0.882165 0.901714 0.998691 0.085372

g12 1.000000 1.000000 1.000000 1.000000 0.999997 0.000001

*g13 0.053950 0.984104 0.998943 0.999955 0.999999 0.003019

gpressure 6059.946000 6059.988281 6654.801432 6771.587646 7294.079590 298.294833

gbeam 1.728200 1.746999 2.033031 2.036841 2.450664 0.182135

gspring 0.012681 0.013091 0.015934 0.015670 0.020273 0.001891

gtruss10 5152.636000 5142.048340 5147.212077 5145.235840 5167.502441 6.303789

Table 3: Results obtained with the non-correlated (µ + λ)-ES in the 17 test problems
with 350000 fitness function evaluations (The “*” indicates that no feasible solutions
were found)

For the (µ + λ)-ES and (µ, λ)-ES panmictic discrete recombination for strategy pa-
rameters and decision variables was used. The learning rates values were calculated as
shown in Section 2. The initial values for the standard deviations were 3.0 for all the
decision variables.

The initial values for the remaining ES are:

• µ = 100.

• λ = 300.

• Number of generations = 1166.

The results obtained for the (µ+1)-ES are in Tables 2 and 7. For the non-correlated
(µ+λ)-ES and (µ, λ)-ES the information is on Tables 3 and 4. Finally, Tables 5 and 6
correspond to results of the correlated (µ+ λ)-ES and (µ, λ)-ES approaches.
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Non-orrelated (µ, λ)-ES
Problem Optimal Best Mean Median Worst St. Dev.

g01 −15.000000 −14.994504 −14.971326 −14.975142 −14.931431 0.015573

g02 0.803619 0.792393 0.779795 0.784977 0.753796 0.011986

g03 1.000000 0.465430 0.165386 0.154534 0.007239 0.134065

g04 −30665.539000 −30432.130859 −30309.273307 −30297.312500 −30204.130859 52.561251

*g05 5126.498000 5041.400879 5162.947559 5157.134521 5336.575684 59.354507

g06 −6961.814000 −6916.589844 −6711.115853 −6789.253906 −6068.743164 206.012359

g07 24.306000 24.483683 24.928663 25.015615 25.484566 0.271122

g08 0.095825 0.095826 0.095826 0.095826 0.095821 0.000001

g09 680.630000 680.808533 681.351021 681.324066 682.871399 0.485906

g10 7049.330700 8024.879883 11721.520964 11677.316406 16982.537109 2319.203586

*g11 0.750000 0.783648 0.931193 0.940145 1.000796 0.053328

g12 1.000000 1.000000 1.000000 1.000000 1.000000 0.000000

*g13 0.053950 0.999126 0.999874 0.999993 1.000000 0.000240

gpressure 6059.946000 6470.276855 6909.340853 6943.404785 7417.326172 209.654662

gbeam 1.728200 2.329124 2.720000 2.699388 3.207800 0.213405

gspring 0.012681 0.014626 0.019007 0.018781 0.025735 0.002172

gtruss10 5152.636000 5153.757324 5356.443701 5373.206299 5696.909668 150.103553

Table 4: Results obtained with the non-correlated (µ, λ)-ES in the 17 test problems
with 350000 fitness function evaluations (The “*” indicates that no feasible solutions
were found)

Correlated (µ + λ)-ES
Problem Optimal Best Mean Median Worst St. Dev.

g01 −15.000000 −14.999541 −14.997859 −14.998640 −14.973085 0.004617

g02 0.803619 0.803594 0.796618 0.792588 0.785246 0.005864

g03 1.000000 0.471707 0.202341 0.185342 0.085943 0.100457

g04 −30665.539000 −30665.529297 −30665.519661 −30665.519531 −30665.507812 0.005166

*g05 5126.498000 5125.168945 5233.366488 5163.475342 5697.309570 144.857450

g06 −6961.814000 −6961.760742 −6960.627539 −6960.971924 −6957.258789 1.145723

g07 24.306000 24.330238 24.422113 24.413397 24.563091 0.065209

g08 0.095825 0.095826 0.095826 0.095826 0.095826 0.000000

g09 680.630000 680.633423 680.638070 680.637848 680.644653 0.002704

g10 7049.330700 7294.707031 10857.807715 9929.192871 20743.082031 3355.115006

g11 0.750000 0.749904 0.752437 0.749950 0.812548 0.011315

g12 1.000000 1.000000 1.000000 1.000000 1.000000 0.000000

g13 0.053950 0.999998 1.000000 1.000000 1.000000 0.000000

gpressure 6059.946000 6090.513672 6661.626530 6771.584473 7332.829590 348.115280

gbeam 1.728200 1.725343 1.747797 1.737747 1.873749 0.032654

gspring 0.012681 0.012693 0.015069 0.014774 0.017993 0.001805

gtruss10 5152.636000 5146.706055 5323.578060 5364.495117 5526.920898 122.497753

Table 5: Results obtained with the Correlated (µ+ λ)-ES in the 17 test problems with
350000 fitness function evaluations (The “*” indicates that no feasible solutions were
found)

Correlated (µ, λ)-ES
Problem Optimal Best Mean Median Worst St. Dev.

g01 −15.000000 −14.931046 −14.914536 −14.914993 −14.888850 0.009784

g02 0.803619 0.797201 0.777913 0.784871 0.748130 0.012513

g03 1.000000 0.445308 0.107894 0.040774 *0.000001 0.140491

g04 −30665.539000 −30664.216797 −30662.855143 −30662.590820 −30661.169922 0.771625

*g05 5126.498000 5121.693848 5150.308952 5138.650879 5266.957031 30.488439

g06 −6961.814000 −6802.235352 −6538.025928 −6541.951172 −6277.650879 127.244717

g07 24.306000 24.650963 24.886861 24.915041 25.238083 0.142073

g08 0.095825 0.095826 0.095822 0.095823 0.095811 0.000004

g09 680.630000 680.774780 681.138582 681.135864 681.498230 0.142602

g10 7049.330700 12146.522461 17457.792025 18413.143555 29076.019531 4163.691375

g11 0.750000 0.879374 0.952082 0.956904 0.997581 0.027962

g12 1.000000 1.000000 1.000000 1.000000 1.000000 0.000000

*g13 0.053950 0.999966 0.999996 0.999998 1.000000 0.000007

gpressure 6059.946000 6410.579102 7003.140755 7047.459961 7333.625000 289.044574

gbeam 1.728200 1.756485 1.777969 1.776924 1.817196 0.012992

gspring 0.012681 0.014593 0.017754 0.018169 0.018615 0.001093

gtruss10 5152.636000 5241.848633 5614.898079 5656.644775 5897.667480 161.051255

Table 6: Results obtained with the Correlated (µ, λ)-ES in the 17 test problems with
350000 fitness function evaluations (The “*” indicates that no feasible solutions were
found)
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(µ + 1)-ES
Problem Optimal Best Mean Median Worst St. Dev.

g01 −15.000000 −15.000000 −14.915965 −14.993222 −14.578423 0.130738

g02 0.803619 0.794896 0.704833 0.727666 0.584765 0.064228

g03 1.000000 1.000497 1.000449 1.000488 0.999811 0.000141

g04 −30665.539000 −30665.539062 −30661.260612 −30665.539062 −30537.185547 23.040161

*g05 5126.498000 1243.262817 3780.308504 3537.221924 8152.663086 1896.802969

g06 −6961.814000 −6961.813965 −6961.813965 −6961.813965 −6961.813965 0.000000

g07 24.306000 24.362831 24.669716 24.697510 25.144272 0.195578

g08 0.095825 0.095826 0.095826 0.095826 0.095826 0.000000

g09 680.630000 680.631592 680.690181 680.665131 680.862244 0.069168

g10 7049.330700 *7098.121094 11695.400472 11155.280273 20063.314453 3732.664511

g11 0.750000 0.749900 0.783557 0.757834 0.892770 0.045494

g12 1.000000 1.000000 1.000000 1.000000 1.000000 0.000000

g13 0.053950 0.109717 1.480463 0.940179 20.088820 3.478791

gpressure 6059.946000 6059.701660 6644.890332 6590.829102 7332.828613 469.334608

gbeam 1.728200 1.727880 1.780659 1.758916 1.974485 0.061298

gspring 0.012681 0.012679 0.013414 0.013161 0.016459 0.000956

gtruss10 5152.636000 5516.977539 6620.212923 6587.030029 7373.917480 458.484033

Table 7: Results obtained with the (µ + 1)-ES in the 17 test problems with 700000
fitness function evaluations (The “*” indicates that no feasible solutions were found)

5 Discussion of results

In order to allow a more reasonable discussion of results, we performed the following
binary comparisons:

• Non-correlated (µ+ λ)-ES against correlated (µ+ λ)-ES.

• Non-correlated (µ, λ)-ES against correlated (µ, λ)-ES.

• “+” selection against “-” selection.

• Best overall approach in terms of offline performance.

• Best overall approach based on statistical measures.

5.1 Non-correlated (µ+ λ)-ES against correlated (µ+ λ)-ES

The results shown in Tables 3 and 5 show no evidence about the best overall perfor-
mance (measured in terms of offline performance) of any of approaches implemented.
The correlated version finds better results in problems 1, 4, 11, 15 and 16. Besides, this
approach obtains a lower standard deviation in seven problems (1, 3, 4, 6, 9, 11 and
12). However the difference is not very significant.

5.2 Non-correlated (µ, λ)-ES against correlated (µ, λ)-ES

Tables 4 and 6 show that the correlated version works better, regarding the quality of
the results, in only six problems (2, 4, 9, 14, 15 and 16). The standard deviation and
the rest of the statistical values are better in ten test problems (1, 4, 5, 6, 7, 9, 11, 13,
15 and 16) for this correlated mutation version.

We argue that these results suggest that the correlated mutation does not improve
the evolutionary search in constrained spaces in a significant way. This issue is im-
portant (computationally speaking), because there is an extra computational cost and
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storage associated with the implementation of this type of mutation. There is also ev-
idence indicating that the comparison criteria explained in Section 3 added to the “,”
selection causes the search to be consistently trapped in local optimal solutions.

5.3 “+” selection against “-” selection

Analyzing the four types of ES implemented and their results from Tables 3 and 4 we
can see that the implicit elitism of the “+” selection enhances the capacity of the ES
search to find better results (even optimal results or very close like problems 1, 2, 4, 6,
7, 8, 9, 11, 12, 15 and problem 16 where the best known solutions are improved). Also,
the “+” selection finds better results in all problems but in test function 1. Finally, the
standard deviation values for the “,” selection are better in problem 5 (where no feasible
solutions were found), 8 (but there is no significant difference with respect to the “+”
selection), 11, 12, 13 and 14.

Despite the fact that it is well known that the “,” selection is less sensitive to get
trapped in local optima [30, 6], in this experiment we can argue that elistism plays an
important role in constrained optimization.

5.4 Best Overall Approach in Terms of Offline Performance

An unexpected result can be clearly seen in Table 2. The (µ + 1)-ES outperforms the
remaining four approaches implemented. It finds the global optimum solution (or ap-
proximates it very well) in thirteen out of seventeen problems. The standad deviations
in only problems 6, 8, 14, 15 and 16 are better than the best of the four remaining
versions, the non-correlated (µ+ λ)-ES.

To analyze carefully this behavior, we performed another 30 runs with the (µ +
1)-ES but now using twice the number of fitness function evaluations adopted in our
original experiments (700,000). See Table 7 for the new results.

This new experiment slightly improves the results only in five problems (2, 7, 9, 15
and 17). The statistical values are also better, but they are still not superior than those
of the non-correlated (µ+ λ)-ES version.

5.5 Best Overall Approach based on Statistical Measures

In terms of average performance (based on our statistical measures), the best results
were found by the non-correlated (µ + λ)-ES. However, this approach was trapped in
local optima in most of the problems.

5.6 Remarks

The last two points suggest that the use of a large number of strategy parameters diffi-
cults convergence in constrained search spaces. The use of only one sigma value for all
the individuals during the evolutionary process seems to be enough to bias the search
to the global feasible optimum solution or its neighborhood. Nonetheless, another
mechanism is needed to improve the performance of the (µ + 1)-ES and its statistical
measures.
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It is also interesting to note that in test functions where the (µ + 1)-ES could not
find good results (2, 5, 10, 13 and 17), the (µ + λ)-ES found better solutions (if not
the optimum, either a better approximation to it or at least an almost-feasible solution).
This could mean that this types of problems needs more of the explorative power of an
evolutionary algorithm.

The current empirical study allows us to argue that a very simple ES approach, the
(µ + 1)-ES is enough to find competitive results in the seventeen test problems used
in the benchmark provided to evaluate evolutionary algorithms in constrained search
spaces. However, an additional mechanism must be added. It is also possible to have
an ES with a moderated number of strategy parameters and without correlated mutation
which may work reasonably well.

6 Conclusions and Future Work

An empirical study to analyze the usefulness of the natural self-adaptation mechanism
of the Evolution Strategies was presented. We also explore the difference of using or
not correlated mutation in ES adapted for constrained search spaces. Among the five
different ES implemented, the most simple of them, the (µ+ 1)-ES, outperformed the
other four in terms of the quality of the results found. The best statistical measures
were obtained, however, by the non-correlated (µ+ λ)-ES.

The use of elitism was also remarked as an important factor to bias the ES to the
feasible region of the search space and to find the optimum solution. Finally, it was
empirically shown that the use of just one strategy parameter can lead the search to
better solutions.

Our future work consists of:

• Suggesting a mechanism to improve the results obtained with the (µ + 1)-ES
(operators, short term memory or other than a Gaussian mutation operator).

• Exploring the use of a moderate number of strategy parameters in multimem-
bered ESs to improve the results obtained.

• Modify the comparison criteria in order to get more diversity in the population.

• Incorporate a multiobjective-based mechanism to handle constraints [22].
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[6] Thomas Bäck. Evolutionary Algorithms in Theory and Practice. Oxford Univer-
sity Press, New York, 1996.
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