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Abstract

An empirical study about the features that prevent an Evolutionary Algorithm
to reach the feasible region or even get the global optimum when it is used to
solve global optimization constrained optimization problems is presented. For the
experiments we use a Simple Multimembered Evolution Strategy which provides
very competitive results in the well known benchmark of 13 test functions. Also,
we add 11 new problems which have features we hypothesize that decrease the
performance of the algorithm (nonlinear equality constraints and dimensionality).
The results seems to agree with our idea and they give some insights to develop
more robust EA’s for global optimization mainly for real world problems which
have the features analyzed in this work.

1 Introduction

Evolutionary algorithms (EAs) have been successfully used to solve different types of
optimization problems [1]. However, in their original form, they lack an explicit mech-
anism to handle the constraints of a problem. This has motivated the development of a
considerable number of approaches to incorporate constraints into the fitness function
of an EA [11, 2]. Particularly, in this paper we are interested in the general nonlinear
programming problem in which we want to:Find ~x which optimizes f(~x) subject to:
gi(~x) ≤ 0, i = 1, . . . , n hj(~x) = 0, j = 1, . . . , p where ~x is the vector of solutions
~x = [x1, x2, . . . , xr]

T , n is the number of inequality constraints and p is the number of
equality constraints (in both cases, constraints could be linear or nonlinear). This work
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Problem n Function ρ LI NI LE NE

g01 13 quadratic 0.0003% 9 0 0 0
g02 20 nonlinear 99.9973% 1 1 0 0
g03 10 nonlinear 0.0026% 0 0 0 1
g04 5 quadratic 27.0079% 0 6 0 0
g05 4 nonlinear 0.0000% 2 0 0 3
g06 2 nonlinear 0.0057% 0 2 0 0
g07 10 quadratic 0.0000% 3 5 0 0
g08 2 nonlinear 0.8581% 0 2 0 0
g09 7 nonlinear 0.5199% 0 4 0 0
g10 8 linear 0.0020% 3 3 0 0
g11 2 quadratic 0.0973% 0 0 0 1
g12 3 quadratic 4.7697% 0 93 0 0
g13 5 nonlinear 0.0000% 0 0 1 2

Table 1: Values of ρ for the first 13 test problems.

covers a first approach to empirically find out what features of a problem, which are
not fully covered in the most used benchmark to test constraint handling techniques in
EAs, decrease the good performance of one of them. Our study starts by using an EA
which actually provides a very competitive performance on the benchmark previously
mentioned. 11 new test functions that include characteristics that the current bench-
mark lack, like nonlinear equality constraints and a high dimensionality is presented.
The algorithm is tested on them and the results provided are analyzed and discussed.
This paper is organized as follows: In Section 2 we describe previous work of analysis
of features of constrained problems. In Section 3 we show our empirical experiments
and we detail the 11 new test functions proposed; also, we list the features analyzed
in this study. Section 4 provides the results obtained and a discussion of them. We
conclude and enumerate our future work in Section 5.

2 Previous Work

The idea of having a set of problems with different characteristics to test evolution-
ary algorithms to solve constrained problems was initially proposed by Michalewicz
& Schoenauer [11]. This set consisted on eleven problems with different features, like
type of type of objective function (linear, quadratic, nonlinear), type of constraints (lin-
ear, nonlinear, equality or inequality) and dimensionality. Besides, they proposed a
metric to approximate the proportion of the feasible region with respect to the whole
search space called “ρ”. Koziel & Michalewicz [8] added one function to the original
benchmark. The main feature of this new function is its disjoint feasible region. Run-
narson & Yao proposed another function to the benchmark [12]. This function has three
equality constraints (two of them are nonlinear) and the objective function is also non-
linear. These two new functions [8, 12] addressed two features the benchmark lacked
(disjoint feasible region and combination of linear and nonlinear equality constraints).
The goal of this benchmark is to have a reliable mean to test the quality and robustness
of constraint handling techniques in evolutionary algorithms. Michalewicz [10] pro-
posed a Test Case Generator for constrained parameter optimization techniques. This
Generator allows to generate test problems by varying several features like: dimen-
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Problem n Type of function ρ LI NI LE NE

g14 10 nonlinear 0.00% 0 0 3 0
g15 3 quadratic 0.00% 0 0 1 1
g16 5 nonlinear 0.0204% 4 34 0 0
g17 6 nonlinear 0.00% 0 0 0 4
g18 9 quadratic 0.00% 0 12 0 0
g19 15 nonlinear 33.4761% 0 5 0 0
g20 24 linear 0.00% 0 6 2 12
g21 7 linear 0.00% 0 1 0 5
g22 22 linear 0.00% 0 1 8 11
g23 9 linear 0.00% 0 2 3 1
g24 2 linear 79.6556% 0 2 0 0

Table 2: Values of ρ for new 11 test problems.

sionality, multimodality, number of constraints, connectedness of the feasible region,
size of the feasible region with respect to the whole search space and ruggedness of the
objective function. This first version had some problems because the generated func-
tions were very symmetric. Therefore a new version called TCG-2 was proposed [13].
Both versions were used to test a steady-state EA with real representation using a static
penalty function to deal with constraints. The results obtained in both TCG’ versions
share some similarities and also have differences. The similarities are that the high
dimensionality and multimodality are parameters that decrease the performance of the
EA with the static penalty function. For the first TCG, decreasing the connectivity of
the feasible region also affected the good performance of the algorithm. For the TCG-2
the width of peaks had the same undesired effect. Among the parameters with no effect
in the performance of the EA for both versions were the size of the feasible region with
respect to the whole search space. For the first TCG, the parameters with no effect were
the number of constraints and the ruggedness of the objective function. Finally, for the
TCG-2 the complexity of the function and the number of active constraints presented
little importance in the performance of the EA.

3 Our Empirical Study

The motivation of this work is to determine which characteristics of a global non-
linear optimization constrained problem makes it difficult to solve by an EA. It can
help researches to develop even more robust and more applicable to real world prob-
lems. We then hypothesized that the current benchmark lack of two main important
features: high dimensionality and a considerable (more than three) nonlinear equality
constraints. As a second set of features we include the number of nonlinear inequality
constraints (more than ten at least), nonlinear objective function and a disjoint feasible
region (only one function with this feature is included in the current benchmark [12].
The detail of this benchmark is shown in Table 1 where n is the number of decision
variables, LI is the number of linear inequalities, NI the number of nonlinear inequali-
ties, LE is the number of linear equalities and NE is the number of nonlinear equalities.
To get a measure of the difficulty of solving each of these problems, a ρ metric (as sug-
gested by Koziel and Michalewicz [8]) was computed using the following expression:
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j 1 2 3 4 5

ej −15 −27 −36 −18 −12

c1j 30 −20 −10 32 10

c2j −20 39 −6 −31 32

c3j −10 −6 10 −6 −10

c4j 32 −31 −6 39 −20

c5j −10 32 −10 −20 30

dj 4 8 10 6 2

a1j −16 2 0 1 0

a2j 0 −2 0 4 2

a3j −3.5 0 2 0 0

a4j 0 −2 0 −4 −1

a5j 0 −9 −2 1 −2.8

a6j 2 0 −4 0 0

a7j −1 −1 −1 −1 −1

a8j −1 −2 −3 −2 −1

a9j 1 2 3 4 5

a10j 1 1 1 1 1

Table 3: Data set for test problem g19

ρ = |F |/|S| where |F | is the number of feasible solutions and |S| is the total number
of solutions randomly generated. In this work, S = 1, 000, 000 random solutions.

Unlike Michalewicz TCG approach, we do not want to provide the user the best
EA to use depending of his problem. We want to detect features that difficult an EA to
find the feasible region of a search space an even more, the feasible global optimum.

Our experiment design was the following: (1) First, we selected test functions (ei-
ther artificial or from real world problems) that have at least one of the features men-
tioned before. We selected seven functions from Himmelblau’s book [7] (g14, g15,
g16, g17, g18, g19, g20) two are from heat exchanger network problems detailed in
[3] and tested in [4] (g21, g22). One more was proposed by Xia [15] (g23) and the last
one was taken from Floudas et al. Handbook [5] (g24). Problems selected with high
dimensionality were: g19, g20 and g22. Test functions with more than three nonlinear
equality constraints were: g17, g20, g21 and g22. For the secondary set of features
problems with more than ten nonlinear inequality constrains were problem g16 and
g18. Problems with a nonlinear objective function were g14, g16, g17 and g19. Fi-
nally, a test function with a feasible region consisting on two disconnected sub-regions
was g24. For completeness, we also included two functions that seems to be easy to
solve because they have only one nonlinear equality constraint and a quadratic and
linear objective function (g15and g23). The characteristics of each problem is summa-
rized in Table 2

The details of each functions are presented below below below below below below
below below:

• g14:

Minimize: f(~x) =
∑10
i=1 xi

(
ci − ln xi∑10

j=1 xj

)

subject to:
h1(~x) = x1 + 2x2 + +2x3 + x6 + x10 − 2 = 0
h2(~x) = x4 + 2x5 + x6 + x7 − 1 = 0
h3(~x) = x3 + x7 + x8 + 2x9 + x10 − 1 = 0
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where the bounds are 0 ≤ xi ≤ 10 (i = 1, . . . , 10), and c1 = −6.089, c2 = −17.164,
c3 = −34.054, c4 = −5.914, c5 = −24.721, c6 = −14.986, c7 = −24.1, c8 =
−10.708, c9 = −26.662, c10 = −22.179,. A feasible local minimum is at x∗ =
(0.0350, 0.1142, 0.8306,
0.0012, 0.4887, 0.0005, 0.0209, 0.0157, 0.0289, 0.0751) where f(x∗) = −47.751.

• g15:
Minimize: f(~x) = 1000− x2

1 − 2x2
2 − x2

3 − x1x2 − x1x3

subject to:
h1(~x) = x2

1 + x2
2 + +x2

3 − 25 = 0
h2(~x) = 8x1 + 14x2 + 7x3 − 56 = 0

where the bounds are 0 ≤ xi ≤ 10 (i = 1, . . . , 10). A feasible local minimum is at
x∗ = (3.512,0.217,3.552) where f(x∗) = 961.715.

• g16:
Maximize: f(~x) = 0.0000005843y17 − 0.000117y14 − 0.1365− 0.00002358y13

− 0.0000011502y16 − 0.0321y12 − 0.004324y5 − 0.0001 c15
c16
− 37.48 y2

c12

subject to:
g1(~x) = y4 − 0.28

0.72
y5 ≥ 0

g2(~x) = 1.5x2 − x3 ≥ 0
g3(~x) = 21− 3496 y2

c12
≥ 0

g4(~x) = 62,212
c17

− 110.6− y1 ≥ 0
g5(~x), g6(~x) = 213.1 ≤ y1 ≤ 405.23
g7(~x), g8(~x) = 17.505 ≤ y2 ≤ 1053.6667
g9(~x), g10(~x) = 11.275 ≤ y3 ≤ 35.03
g11(~x), g12(~x) = 214.228 ≤ y4 ≤ 665.585
g13(~x), g14(~x) = 7.458 ≤ y5 ≤ 584.463
g15(~x), g16(~x) = 0.961 ≤ y6 ≤ 265.916
g17(~x), g18(~x) = 1.612 ≤ y7 ≤ 7.046
g19(~x), g20(~x) = 0.146 ≤ y8 ≤ 0.222
g21(~x), g22(~x) = 107.99 ≤ y9 ≤ 273.366
g23(~x), g24(~x) = 922.693 ≤ y10 ≤ 1286.105
g25(~x), g26(~x) = 926.832 ≤ y11 ≤ 1444.046
g27(~x), g28(~x) = 18.766 ≤ y12 ≤ 537.141
g29(~x), g30(~x) = 1072.163 ≤ y13 ≤ 3247.039
g31(~x), g32(~x) = 8961.448 ≤ y14 ≤ 26844.086
g33(~x), g34(~x) = 0.063 ≤ y15 ≤ 0.386
g35(~x), g36(~x) = 71084.33 ≤ y16 ≤ 140000
g37(~x), g38(~x) = 2802713 ≤ y17 ≤ 12146108

where:
y1 = x2 + x3 + 41.6
c1 = 0.024x4 − 4.62
y2 = 12.5

c1
+ 12
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c2 = 0.0003535x2
1 + 0.5311x1 + 0.08705y2x1

c3 = 0.052x1 + 78 + 0.002377y2x1

y3 = c2
c3

y4 = 19y3

c4 = 0.04782(x1 − y3) + 0.1956(x1−y3)2

x2

c5 = 100x2

c6 = x1 − y3 − y4

c7 = 0.950− c4
c5

y5 = c6c7
y6 = x1 − y5 − y4 − y3

c8 = (y5 + y4)0.995
y7 = c8

y1

y8 = c8
3798

c9 = y7 − 0.0663y7
y8

− 0.3153

y9 = 96.82
c9

+ 0.321y1

y10 = 1.29y5 + 1.258y4 + 2.29y3 + 1.71y6

y11 = 1.71x1 − 0.452y4 + 0.580y3

c10 = 12.3
752.3

c11 = (1.75y2)(0.995x1)
c12 = 0.995y10 + 1998
y12 = c10x1 + c11

c12

y13 = c12 − 1.75y2

y14 = 3623 + 64.4x2 + 58.4x3 + 146.312
y9+x5

c13 = 0.995y10 + 60.8x2 + 48x4 − 0.1121y14 − 5095
y15 = y13

c13

y16 = 148000− 331000y15 + 40y13 − 61y15y13

c14 = 2324y10 − 28740000y2

y17 = 14130000− 1328y10 − 531y11 + c14
c12

c15 = y13
y15
− y13

0.52

c16 = 1.104− 0.72y15

c17 = y9 + x5

and where the bounds are 704.4148 ≤ x1 ≤ 906.3855, 68.6 ≤ x2 ≤ 288.88, 0 ≤
x3 ≤ 134.75,
193 ≤ x4 ≤ 287.0966 and 25 ≤ x5 ≤ 84.1988. A feasible local minimum is at
x∗ = (705.06, 68.6,
102.9, 282.341, 35.627) where f(x∗) = 1.905.

• g17:
Minimize: f(~x) = f(x1) + f(x2)

subject to:

f1(x1) =

{
30x1 0 ≤ x1 < 300
31x1 300 ≤ x1 < 400

f2(x2) =





28x2 0 ≤ x2 < 100
29x2 100 ≤ x2 < 200
30x2 200 ≤ x2 < 1000

h1(~x) = x1 = 300− x3x4
131.078

cos (1.48477− x6) +
0.90798x2

3
131.078

cos (1.47588)

h2(~x) = x2 = − x3x4
131.078

cos ((1.48477 + x6) +
0.90798x2

4
131.078

cos (1.47588)
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h3(~x) = x5 = − x3x4
131.078

sin ((1.48477 + x6) +
0.90798x2

4
131.078

sin (1.47588)

h4(~x) = 200− x3x4
131.078

sin ((1.48477− x6) +
0.90798x2

3
131.078

sin (1.47588)

where the bounds are 0 ≤ x1 ≤ 400, 0 ≤ x2 ≤ 1000, 340 ≤ x3 ≤ 420, 340 ≤ x4 ≤
420,
−1000 ≤ x5 ≤ 1000 and 0 ≤ x6 ≤ 0.5236. A feasible local minimum is at x∗ =
(107.81, 196.32,
373.83, 420, 21.31, 0.153) where f(x∗) = 8927.5888.

• g18:
Maximize: f(~x) = 0.5(x1x4 − x2x3 + x3x9 − x5x9 + x5x8 − x6x7)

subject to:
g1(~x) = 1− x2

3 − x2
4 ≥ 0

g2(~x) = 1− x2
9 ≥ 0

g3(~x) = 1− x2
5 − x2

6 ≥ 0
g4(~x) = 1− x2

1 − (x2 − x9)2 ≥ 0
g5(~x) = 1− (x1 − x5)2 − (x2 − x6)2 ≥ 0
g6(~x) = 1− (x1 − x7)2 − (x2 − x8)2 ≥ 0
g7(~x) = 1− (x3 − x5)2 − (x4 − x6)2 ≥ 0
g8(~x) = 1− (x3 − x7)2 − (x4 − x8)2 ≥ 0
g9(~x) = 1− x2

7 − (x8 − x9)2 ≥ 0
g9(~x) = x1x4 − x2x3 ≥ 0
g10(~x) = x3x9 ≥ 0
g11(~x) = −x5x9 ≥ 0
g12(~x) = x5x8 − x6x7 ≥ 0

where the bounds are −10 ≤ xi ≤ 10 (i = 1, . . . , 8) and 0 ≤ x9 ≤ 20. A feasible local
minimum is at x∗ = (0.9971,−0.0758, 0.5530, 0.8331, 0.9981,−0.0623,
0.5642, 0.8256, 0.0000024) where f(x∗) = 0.8660.

• g19:
Maximize: f(~x) =

∑10
i=1 bixi −

∑5
j=1

∑5
i=1 cijx(10+i)x(10+j) − 2

∑5
j=1 djx

3
(10+j)

subject to:
gj(~x) = 2

∑5
i=1 cijx(10+i) + 3djx

2
(10+j) + ej −

∑10
i=1 aijxi ≥ 0 j = 1, . . . , 5

where ~b = [−40,−2,−.25,−4,−4,−1,−40,−60, 5, 1] and the remaining data is on
Table 3. The bounds are 0 ≤ xi ≤ 10 (i = 1, . . . , 15). A feasible local minimum is at
x∗ = (0, 0, 5.1740, 0, 3.0611, 11.8395, 0, 0,
0.1039, 0, 0.3, 0.3335, 0.4, 0.4283, 0.2240) where f(x∗) = −32.386.

• g20:
Minimize: f(~x) =

∑24
i=1 aixi

subject to:
hi(~x) =

x(i+12)

b(i+12)
∑24
j+13

xj
bj

− cixi

40bi
∑12
j=1

xj
bj

= 0 i = 1, . . . , 12
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h13(~x) =
∑24
i=1 xi − 1 = 0

h14(~x) =
∑12
i=1

xi
di

+ f
∑24
i=13

xi
bi
− 1.671 = 0

gi(~x) =
−(xi+x(i+12))
∑24
j=1 xj+ei

≥ 0 i = 1, 2, 3

gi(~x) =
−(x(i+3)+x(i+15))

∑24
j=1 xj+ei

≥ 0 i = 4, 5, 6

where f = (0.7302)(530)( 14.7
40

) and the data set is detailed on Table 4. The bounds
are 0 ≤ xi ≤ 10 (i = 1, . . . , 24). A feasible local minimum is at x∗ = (9.53E −
7, 0, 4.21eE − 3, 1.039E − 4, 0, 0, 2.072E − 1, 5.979E − 1, 1.298E − 1, 3.35E −
2, 1.711E−2, 8.827E−3, 4.657E−10, 0, 0, 0, 0, 0, 2.868E−4, 1.193E−3, 8.332E−
5, 1.239E − 4, 2.07E − 5, 1.829E − 5) where f(x∗) = 0.09670.

• g21:
Minimize: f(~x) = x1

subject to:
g1(~x) = −x1 + 35x0.6

2 + 35x0.6
3 ≤ 0

h1(~x) = −300x3 + 7500x5 − 7500x6 − 25x4x5 + 25x4x6 + x3x4 = 0
h2(~x) = 100x2 + 155.365x4 + 2500x7 − x2x4 − 25x4x7 − 15536.5 = 0
h3(~x) = −x5 + ln (−x4 + 900) = 0
h4(~x) = −x6 + ln (x4 + 300) = 0
h5(~x) = −x7 + ln (−2x4 + 700) = 0

where the bounds are 0 ≤ x1 ≤ 1000, 0 ≤ x2, x3 ≤ 40, 100 ≤ x4 ≤ 300, 6.3 ≤
x5 ≤ 6.7, 5.9 ≤ x6 ≤ 6.4 and 4.5 ≤ x7 ≤ 6.25. A feasible local minimum is at
x∗ = (193.7783493, 0, 17.3272116, 100.0156586,
6.684592154, 5.991503693, 6.214545462) where f(x∗) = 193.7783493.

• g22:
Minimize: f(~x) = x1

subject to:
g1(~x) = −x1 + x0.6

2 + x0.6
3 + x0.6

4 ≤ 0
h1(~x) = x5 − 100000x8 + 1× 107 = 0
h2(~x) = x6 + 100000x8 − 100000x9 = 0
h3(~x) = x7 + 100000x9 − 5× 107 = 0
h4(~x) = x5 + 100000x10 − 3.3× 107 = 0
h5(~x) = x6 + 100000x11 − 4.4× 107 = 0
h6(~x) = x7 + 100000x12 − 6.6× 107 = 0
h7(~x) = x5 − 120x2x13 = 0
h8(~x) = x6 − 80x3x14 = 0
h9(~x) = x7 − 40x4x15 = 0
h10(~x) = x8 − x11 + x16 = 0
h11(~x) = x9 − x12 + x17 = 0
h12(~x) = −x18 + ln (x10 − 100) = 0
h13(~x) = −x19 + ln (−x8 + 300) = 0
h14(~x) = −x20 + ln (x16) = 0
h15(~x) = −x21 + ln (−x9 + 400) = 0
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h16(~x) = −x22 + ln (x17) = 0
h18(~x) = −x8 − x10 + x13x18 − x13x19 + 400 = 0
h19(~x) = x8 − x9 − x11 + x14x20 − x14x21 + 400 = 0
h20(~x) = x9 − x12 − 4.60517x15 + x15x22 + 100 = 0

where the bounds are 0 ≤ x1 ≤ 20000, 0 ≤ x2, x3, x4 ≤ 1 × 106, 0 ≤ x5, x6, x7 ≤
4 × 107, 100 ≤ x8 ≤ 299.99, 100 ≤ x9 ≤ 399.99, 100.01 ≤ x10 ≤ 300, 100 ≤
x11 ≤ 400, 100 ≤ x12 ≤ 600, 0 ≤ x13, x14, x15 ≤ 500, 0.01 ≤ x16 ≤ 300,
0.01 ≤ x17 ≤ 400, −4.7 ≤ x18, x19, x20, x21, x22 ≤ 6.25. A feasible local minimum
is at x∗ = (12812.5, 722.1602494, 8628.371755, 2193.749851, 9951396.436,
18846563.16, 11202040.4, 199.5139644, 387.979596, 114.8336587, 27.30318607,
127.6585887, 52.020404, 160, 4.871266214, 4.610018769, 3.951636026,
2.486605539, 5.075173815) where f(x∗) = 12812.5.

• g23:
Minimize: f(~x) = −9x5 − 15x8 + 6x1 + 16x2 + 10(x6 + x7)

subject to:
h1(~x) = x1 + x2 − x3 − x4 = 0
h2(~x) = 0.03x1 + 0.01x2 − x9(x3 + x4) = 0
h3(~x) = x3 + x6 − x5 = 0
h4(~x) = x4 + x7 − x8 = 0
g1(~x) = x9x3 + 0.02x6 − 0.025x5 ≤ 0
g2(~x) = x9x4 + 0.02x7 − 0.015x8 ≤ 0

where the bounds are 0 ≤ x1, x2, x6 ≤ 300, 0 ≤ x3, x5, x7 ≤ 100, 0 ≤ x4, x8 ≤ 200
and 0.01 ≤ x9 ≤ 0.03.

• g24:
Minimize: f(~x) = −x1 − x2

subject to:
g1(~x) = −2x4

1 + 8x3
1 − 8x2

1 + x2 ≤ 0
g2(~x) = −4x4

1 + 32x3
1 − 88x2

1 + 96x1 + x2 − 36 ≤ 0

where the bounds are 0 ≤ x1 ≤ 3 and 0 ≤ x2 ≤ 4. The feasible global minimum is at
x∗ = (2.3295, 3.17846) where f(x∗) = −5.50796.

(2) We selected an algorithm that provides very good results for the 13 test functions
of the current benchmark. It is a Simple Multimembered Evolution Strategy (SMES)
proposed by Mezura & Coello [9]. The SMES does not use a penalty function. Instead
of using a penalty function, SMES uses simple feasibility rules and an also simple
diversity mechanism to maintain infeasible solutions close to the boundaries of the
feasible region to bias the search to find the global optimum of a problem. The results
were competitive compared to those provided by three state-of-the-art approaches [9].
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i ai bi ci di ei
1 0.0693 44.094 123.7 31.244 0.1

2 0.0577 58.12 31.7 36.12 0.3

3 0.05 58.12 45.7 34.784 0.4

4 0.2 137.4 14.7 92.7 0.3

5 0.26 120.9 84.7 82.7 0.6

6 0.55 170.9 27.7 91.6 0.3

7 0.06 62.501 49.7 56.708

8 0.1 84.94 7.1 82.7

9 0.12 133.425 2.1 80.8

10 0.18 82.507 17.7 64.517

11 0.1 46.07 0.85 49.4

12 0.9 60.097 0.64 49.1

13 0.0693 44.094

14 0.0577 58.12

15 0.05 58.12

16 0.2 137.4

17 0.26 120.9

18 0.55 170.9

19 0.06 62.501

20 0.1 84.94

21 0.12 133.425

22 0.18 82.507

23 0.1 46.07

24 0.09 60.097

Table 4: Data set for test problem g20

(3) After that, we solved the new set of 11 problems using the SMES and exactly the
same parameters previously defined to solve the first 13 test functions.

We performed 30 independent runs for each test function. The learning rates values
were calculated using the formulas proposed by Schwefel [14] (where n is the number
of decision variables of the problem): τ = (

√
2
√
n)−1 and τ ′ = (

√
2n)−1. For the

experiments we used the following parameters: (100+300)-ES, number of generations
= 800, number of objective function evaluations = 240, 000. To deal with equality
constraints, a parameterless dynamic mechanism originally proposed in ASCHEA [6]
and used in [9] is adopted. The initial ε0 was set to 0.001.

4 Results and Discussion

The statistical results of the SMES for the first set of 13 test functions are summarized
in Table 5 and for the new set of 11 functions they are presented in Table 6.

As described in Table 5, for the first 13 test problems the SMES was able to find the
global optimum in seven (g01, g03, g04, g06, g08, g11 and g12) and it found solutions
very close to the global optimum in the remaining six (g02, g05, g07, g09, g10, g13).
These results show a competitive approach based on the current benchmark.

Now we analyze the results for the new 11 test functions. The SMES had not
problem to solve problem g16 despite its low value of ρ, g16 involves a considerable
number of nonlinear inequalities (34) combined with 4 linear inequality constraints
and a nonlinear objective function. The problem has a low dimensionality (5 decision
variables). The SMES also solved quite well problems g14 and g18. In both problems
the algorithm found the optimum reported in Himmelblau’s book. Problem g14 has
a nonlinear objective function and 3 linear equality constraints. Problem g18 has a
quadratic objective function and 12 nonlinear inequality constraints. Both problems
have a value of ρ = 0% and a higher dimensionality (10 and 9 decision variables
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Statistical Results of the SMES for the first 13 Problems
Problem Optimal Best Mean Median Worst St. Dev.

g01 −15.000000 −15.000000 −15.000000 −15.000000 −15.000000 0.000000
g02 0.803619 0.803601 0.785238 0.792549 0.751322 0.016757
g03 1.000000 1.001038 1.000989 1.001017 1.000579 0.000209
g04 −30665.539000 −30665.539062 −30665.539062 −30665.539062 −30665.539062 0.000000
g05 5126.498000 5126.599609 5174.492301 5160.197754 5304.166992 50.057854
g06 −6961.814000 −6961.813965 −6961.283984 −6961.813965 −6952.481934 1.851141
g07 24.306000 24.326715 24.474926 24.426246 24.842829 0.132385
g08 0.095825 0.095826 0.095826 0.095826 0.095826 0.000000
g09 680.630000 680.631592 680.643410 680.641571 680.719299 0.015528
g10 7049.25 7051.902832 7253.047005 7253.603027 7638.366211 136.023716
g11 0.750000 0.749090 0.749358 0.749357 0.749830 0.000152
g12 1.000000 1.000000 1.000000 1.000000 1.000000 0.000000
g13 0.053950 0.053986 0.166385 0.061873 0.468294 0.176855

Table 5: Statistical results obtained by this new version of the SES for the 13 test
functions with 30 independent runs.

Statistical Results of the SMES for the new 11 Problems
Problem Optimal Best Mean Median Worst St. Dev.

g14 −47.656000 −47.534851 −47.367386 −47.385674 −47.053207 0.133386
g15 961.715000 ∗961.698120 963.921753 964.058350 967.787354 1.791314
g16 1.905000 1.905155 1.905155 1.905155 1.905155 0.000000
g17 8927.588800 ∗8890.182617 ∗8954.136458 ∗8948.685547 ∗9163.676758 40.826101
g18 0.866000 0.866002 0.715698 0.673722 0.647570 0.081901
g19 −32.386000 −34.222656 −37.208255 −36.429800 −41.251328 2.102102
g20 0.096700 ∗0.211364 ∗0.251130 ∗0.252439 ∗0.304414 0.023365
g21 193.778349 ∗347.980927 ∗678.392445 ∗711.847260 ∗985.782166 158.493960
g22 12812.500000 ∗2340.616699 ∗9438.254972 ∗9968.156250 ∗17671.535156 4360.887012
g23 0.000000 ∗ − 1470.152588 ∗ − 363.508270 ∗ − 333.251541 ∗177.252640 316.115639
g24 −5.507960 −5.508013 −5.508011 −5.508013 −5.507959 0.000010

Table 6: Statistical results for the SMES with the 11 new test functions “*” means
infeasible
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respectively).
A value close to the optimum and a low value of the standard deviation were give

by the SMES for problem g19. The algorithm was less robust to this problem with a
nonlinear objective function and 5 nonlinear inequality constraints. It is interesting to
note that, despite its ρ value of 33.4761% (which means a large feasible region), a low
number of constraints (5) and no equality constraints, the SMES could not find the best
solution reported. Nevertheless, this problem has 15 decision variables.

For problem g15, the best value found by the SMES is better than the solution
reported by Himmelblau, but it is infeasible. Also, in about 35% of the 30 runs, the
SMES could not find feasible solutions. This problems has one linear and one nonlinear
equality constraints. The objective function is quadratic and the ρ values is 0%. The
problem has only 3 decision variables.

Problems g17, g20, g21 and g22 have one common aspect: they have more lin-
ear equality constraints than any other problems (4, 12, 5 and 11 respectively) and the
SMES could not find feasible solutions in any single run for all of them as well. The
dimensionality is different for each of these four problems (6, 24, 7 and 22 respec-
tively). For three problems the objective function is linear (g20, g21 and g22). Only
g17 has a nonlinear objective function. All this suggests that the difficult comes from
the number of nonlinear equality constraints. It is worth reminding that none of the
13 original test functions have more than 3 of them. Furthermore, none problem with
equality constraints have more than 5 decision variables.

The results suggest that the combination of an increasing dimensionality and and
high number of nonlinear equality constraints makes a problems more difficult to solve
by the SMES. In fact, just one feature is enough to give some problems like in function
g19 which does not have equality constraints, but it has 15 decision variables, the per-
formance of the SMES is degraded. A similar degradation of performance is observed
in problem g17, with a low dimensionality (6 decision variables) but with 4 nonlinear
equality constraints. The performance degrades the most when the problems combine
nonlinear equality constraints and a high dimensionality, as in problems g20 g22.

It is important to mention that the sum of constraint violation of the final results for
problems g17, g20, g21 and g23 is not high. For problem g23 the best results was far
from the feasible region.

There are two test problems that only have one nonlinear equality constraint: g15
and g23 with a quadratic and linear objective function respectively. The dimensional-
ity is different (3 and 9 decision variables). Both of them have a quite small feasible
region compared with the whole search space. Besides, both have linear equality con-
straints (1 for g15 and 3 for g23 which has 2 nonlinear inequality constraints). For g23
the dimensionality coupled with the combination of linear and nonlinear equality con-
straints and the nonlinear inequality constraints should influence the SMES to do not
reach the feasible region. For problem g15 it is important to remark that the best value
found is better than the solution reported by Himmelblau, but it is slightly infeasible.
Also, in about 35% out of the 30 runs, the SMES could not find feasible solutions.
However for the remaining runs, feasible solutions close to the global optimum were
found. Therefore, the dimensionality also plays a role of affecting the performance of
the algorithm.

Finally, Problem g24 with a disjoint and quite large feasible region but with a low
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dimensionality of 2 represented no problem for the SMES.
To summarize, the overall results suggest that the two main factors that affect the

performance of our EA is the dimensionality (like Michalewicz & Schmidt concluded
for the static penalty function approach [10, 13]) and the increasing number of non-
linear equality constraints. The factors that do not seem to decrease the performance
of our EA were a high number of inequality constraints (even nonlinear), and, quite
interesting, the type of objective function. For some problems, despite a linear one, the
problems resulted difficult to solve (even reach the feasible region). Finally, Disjoint
feasible regions with a considerable size with respect to the search space and a low
dimensionality seem to be not difficult to reach for an EA. We need to test other func-
tions with disjoint feasible regions but with a higher dimensionality and with nonlinear
constraints to get more information about. This small study is far from being conclu-
sive, but it gives some insights about the factors that difficult an EA to provide good
results solving global optimization constrained problems. This information may help
to develop even more robust and general EA’s.

5 Conclusions and Future Work

A preliminary empirical study about factors that difficult an EA to provide good results
when solving global optimization constrained problems was presented. The results
show that the number of nonlinear equality constraints as well as a high dimensionality
affects the performance of an evolutionary algorithm (in our case a Simple Multimem-
bered Evolution Strategy SMES) when solving global optimization constrained prob-
lems. These two features combined can prevent the EA to reach the feasible region of
the search space. This study started off from the premise that the SMES provided very
competitive results when tested in the well known benchmark of 13 test functions [12].
The features that did not show any mayor impact in the performance were a high num-
ber of inequality constraints and the type of objective function. Further and more deep
research is necessary to establish with more certainty the features that requires more
attention when developing EA’s for global optimization problems. Our future work in-
volves a deep analysis of each function and also to analyze other important aspects that
are not covered in this papers as nonconvex feasible regions and the size of the search
space defined by the bounds of each decision variable.
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