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Abstract

In the field of metaheuristics, evolutionary computation (EC) embodies some of the most relevant

optimization algorithms for dealing with continuous problems, namely, Evolution Strategies (ESs),

Differential Evolution (DE) and Particle Swarm Optimization (PSO). Many of these algorithms have

been traditionally applied to different test suites to assess their respective performance. However,

many of these test suites include (or are used with) only low dimensional problems which many state-

of-the-art algorithms are capable of solving. For that reason, more complex and higher dimensional

test suites have been recently proposed (e.g., the test suite proposed for the Special Session on Large

Scale Global Optimization at the 2008 IEEE Congress on Evolutionary Computation). Ant Colony

Optimization (ACO) algorithms have a long tradition as effective solvers of combinatorial optimiza-

tion problems. However, several proposals of ACO algorithms for continuous problems have also

∗On leave of absence from LIDIC - Universidad Nacional de San Luis, San Luis, Argentina.
†The second author is also affiliated to the UMI LAFMIA 3175 CNRS at CINVESTAV-IPN.
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been successfully applied to both academic and real-world problems in the field of constrained and

unconstrained continuous optimization. This paper aims atshowing the behavior of a well-known

ACO algorithm for continuous problems (the so-called ACOR) for large scale unconstrained contin-

uous problems by considering a recently proposed test suite. In addition, we propose and study a

simple mechanism to escape from local optima. Our results are compared with respect to those ob-

tained by highly competitive algorithms that have been assessed with the previously mentioned test

suite.

1 Introduction

The Ant Colony Optimization (ACO) metaheuristic [4, 5] embodies a class of algorithms derived

from the main concepts involved in the behavior of real ant colonies. These algorithms imple-

ment a colony of artificial ants aimed at finding good solutions to a problem. The ants in the

colony cooperate among them by indirect communication mediated by the environment (stig-

mergy). The most representative instantiations of the ACO metaheuristic are: the Ant System

(AS), AS with anelitist strategy for updating the pheromone trail levels, ASrank (a rank-based

version of Ant System),MAX -MIN Ant System (MMAS), and the Ant Colony System

(ACS) [5]. All of them were originally designed to operate oncombinatorial optimization prob-

lems (including some dynamic versions). There exist several extensions of the ACO metaheuris-

tic for solving continuous problems: the first ACO extensionto operate on continuous spaces

can be found in Bilchev et al. [2]. Since then, a number of other proposals have been intro-

duced, such as the algorithms of Monmarché et al. [17], Linget al. [14], Lei et al. [13], Dreo et

al. [6, 7], Qin Lin Chen et al. [15], Pourtakdoust et al. [18],Kong [11], Hu et al. [10], Socha [19]

and Socha & Dorigo [21]. The algorithm adopted here is an extension of the ACO metaheuristic
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for continuous domains introduced in [21].

It is also worth remarking some successful and recent applications of the ACO metaheuristic

for continuous problems: Leguizamón & Coello [12] proposed an extension of the ACO meta-

heuristic for constrained continuous optimization problems; Afshar and Madadgar [1] proposed

an application to solve reservoir operation problems; and Socha and Blum [20] proposed an

approach for training of neural networks.

In this work, we study the scalability of ACOR [21] when facing unconstrained continuous

optimization problems of large dimensionality. The experimental study includes a recently pro-

posed test suite of continuous problems which can help to assess the capacity of optimization

algorithms for dealing with large dimensional problems. Additionally, a simple mechanism to

escape from local optima is proposed. This pretends to be thefirst step towards improving the

ACOR in order to achieve a design of a more advanced and competitive ACO algorithm with

respect to other state-of-the-art metaheuristic algorithms for continuous problems.

The remainder of this paper is organized as follows. Section2 briefly describes the original

version of the ACOR algorithm and Section 3 presents the test problems adopted for our exper-

imental study. The section about our experimental study (Section 4) involves three important

subsections: Section 4.1 presents the results of a preliminary study of ACOR in the test suite

(this section is aimed to fine-tune the parameters of ACOR and observe its resulting behavior).

Section 4.2 describes a simplediversity mechanism to improve the performance of ACOR (Al-

gorithm ACOR-Div) and shows the corresponding results which are compared with those found

at a previous stage of the experimental study. In Section 4.3, our improved results for the test

suite considered are compared with those found by the set of metaheuristic algorithms presented
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at the CEC’08 competition. Finally, in Section 5 we present our conclusions based on the results

obtained by both ACOR and ACOR-Div. In addition, some possible lines of future research are

also outlined.

2 The ACOR algorithm

Taking into account that the ACO metaheuristic works by incrementally building the solutions

according to a biased (by pheromone trail) probabilistic choice of solution components, the

ACOR algorithm was designed with the aim of obtaining a set ofprobability density functions

(PDFs). Each PDF is obtained from the search experience and is used to incrementally build a

solutionx ∈ R
D considering in turn each componentxi (∀i = 1 . . .D).

To approximate a multimodal PDF, Socha & Dorigo [21] proposed a Gaussian kernel which

is defined as a weighted sum of several one-dimensional Gaussian functionsgi
l(x) as follows:

Gi(x) =
k

∑

l=1

ωlg
i
l(x) =

k
∑

l=1

ωl

1

σi
l

√
2π

e
−

(x−µi
l
)2

2(σi
l
)2 (1)

wherei ∈ {1, . . . , D} identifies the number of dimension, i.e., ACOR uses as many Gaussian

kernel PDFs as the number of dimensions of the problem. In addition, Gi is parameterized with

three vectors:ω, the vector of weights associated with the individual Gaussian functions;µi,

the vector of means; andσi, the vector of standard deviations. All these vectors have cardinality

k, which constitutes the number of Gaussian functions involved. Figure 1 shows a superposition

of k = 5 Gaussian functions which are intended to approximate a hypothetical multimodal

Gaussian function withk = 5 kernels.

In ACOR, a solution archive calledT is used to keep track of a number of solutions anal-
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Figure 1: A possible set ofk = 5 Gaussian functions (dashed line) to achieve, by superposition, a Gaus-

sian kernel (solid line) which approximates a hypotheticalmultimodal Gaussian function.xj
1, x
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2, x

j
3, x

j
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andx
j
5 are respectively the values of the solutions at positionj (i.e., the mean values for each Gaussian

function). l(j) andu(j) are the respective lower and upper limits for dimensionj.

ogously to the Population Based ACO (PBACO) proposed by Guntschet al. [8]. The cardi-

nality of archiveT is k, that is, the number of kernels that conform the Gaussian kernel. For

each solutionxl ∈ R
D, ACOR maintains the corresponding values of each problem dimension,

i.e., x1
l , . . . , x

D
l , and the value of the objective functionf(xl) which are stored satisfying that

f(x1) ≤ . . . ≤ f(xl) ≤ . . . f(xk). For example, Figure 1 could representk = 5 ranked solutions

in structureT , wherex
j
1 represents the mean value corresponding to the Gaussian distribution

with the highest probability of being chosen in the next stepof solution construction. On the

other hand, the vector of weightsω should satisfy thatω1 ≥ . . . ≥ ωl ≥ . . . ≥ ωk.

The solutions inT are, therefore, used to dynamically generate probability density functions

involved in the Gaussian kernels. More specifically, for obtaining the Gaussian kernelGi, the

three parametersω, µ
i, andσ

i need to be calculated. Thus, for eachGi, the values of the

i-th variable of thek solutions inT become part of the elements of vectorµi, that is,µi =

{µi
1, . . . , µ

i
D} = {xi

1, . . . , x
i
D}. On the other hand, each component of the deviation vector
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Algorithm 1 Outline of ACOR algorithm
1: Init(T ,ω);

2: Get(σ );

3: for t ∈ 1 : tmax do

4: A = BuildSols(T , σ);

5: T = Firstk(rank(T ⊕ A));

6: Update(σ);

7: end for

σ
i = {σi

1, . . . , σ
i
k} is obtained as:

σi
l = ξ

k
∑

e=1

|xi
e − xi

l|
k − 1

(2)

wherel ∈ {1, . . . , k} is the kernel number with respect to which the deviation is calculated

andξ > 0 which is the same for all dimensions, has an effect similar tothat of the pheromone

evaporation rate in ACO. Thus, the higher the value ofξ, the lower the convergence speed of the

algorithm.

The pheromone update is achieved by considering a setA1 of size Na which maintains

the newly generated solutions regarding Eq. 1. The newT (in the next algorithm iteration) is

obtained asT = Rank(T ⊕ A), i.e., the old solutions in the archiveT plus the set of newly

created solutionsA are ranked. In other words, the old solutions compete against the newly

generated ones to conform the updatedT which maintains its cardinality (k) through the whole

search process. Algorithm 2 describes a general outline of the ACOR algorithm, where Init() is in

charge of obtaining the initial set of kernels and sets the corresponding weights vector according
1The setA represents the set of ants according to Socha and Dorigo [21].
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to parameterq; Get() calculates theσ values according to the initial values ofT ; BuildSol()

obtains the new set of solutions; Firstk gives the bestk solutions from the old set of solutions

(T ) plus the new one (A); and Update() obtains a newσ that will bias the sampling of the new

set of solutions for the next iteration.

3 Benchmark Problems

To conduct the experimental study (next section) we have selected 6 problems from the bench-

mark functions prepared for the “Special Session and Competition on Large Scale Global Opti-

mization” at the2008 IEEE Congress on Evolutionary Computation (CEC’08) [22]. The prob-

lems (see Table 3) represent a set of scalable functions for high-dimensional optimization. Par-

ticularly, the objective of this special session was to bring to the research community newer and

challenging problems to assess current nature-inspired optimization algorithms as well as other,

novel optimization algorithms. In this way, their respective capacities to deal with complex and

high-dimensional problems can be better assessed and compared amongst them.

4 Experimental Study

This section presents the experimental study conducted to assess the performance of the ACOR

on high dimensional problems. We first present some preliminary results obtained from experi-

ments towards observing the behavior of ACOR under different parameters settings. This prelim-

inary study was designed to help us detecting the main weaknesses of this algorithm when facing

large scale problems. After that, we present the implemented proposal for dealing with the loss

of diversity and the corresponding results. The last part includes a comparison with recently
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Benchmark Problems Search Range f(x∗)

f1(x) =
∑D

i=1 zi + f bias1, z = x− o [-100,100] -450

o = (o1, o2, . . . , oD); the shifted global optimum

f2(x) = maxi{|zi|, 1 ≤ i ≤ D} + f bias2, z = x− o [-100,100] -450

o = (o1, o2, . . . , oD); the shifted global optimum

f3(x) =
∑D−1

i=1
(100 · (z2

i − zi)
2 + (zi − 1)2) + f bias3, z = x− o + 1 [-100,100] 390

o = (o1, o2, . . . , oD); the shifted global optimum

f4(x) =
∑D

i=1(z
2
i − 10 · cos(2πzi) + 10) + f bias4, z = x− o [-100,100] -330

o = (o1, o2, . . . , oD); the shifted global optimum

f5(x) =
∑D

i=1

z2
i

4000
− ∏D

i=1 cos( zi√
i
) + 1 + f bias5, z = x − o [-100,100] -330

o = (o1, o2, . . . , oD); the shifted global optimum

f6(x) = −20 exp(−0.2
√

1

D

∑D
i=1 z2

i ) [-100,100] -330

− exp( 1

D

∑D
i=1 cos(2πzi)) + 20 + f bias6),

z = x− o; o = (o1, o2, . . . , oD); the shifted global optimum

proposedad hoc algorithms for solving large dimensional problems. All theexperiments were

run on an Intel Pentium (R) 4, CPU 3.00Gz, and 1Gb RAM; OS Linuxversion 2.6.23.17-88.fc7

(Red Hat 4.1.2-27). The ACOR algorithm was implemented in the C programming language.

4.1 Preliminary Results on the Test Suite Problems

The experimental design for the ACOR included a variation of the main following parameters:

0 ≤ q ≤ 1 and0 ≤ ξ ≤ 1. The remaining parameters were kept fixed:k = 50 andNa = 50

which represent, respectively, the number of kernels and the number of ants, or, similarly, the
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sizes of the structuresT andA described in Algorithm 2.

The initial experimentation was aimed at detecting the regions of parameters values that

produced the best performance. In order to do that, we used Latin Hypercube Sampling (LHS)

to obtain a number of design points in a space filling way and considering problems of dimension

D = 100. From this study, we detected that typical values found in the literature for parameters

q andξ were the best settings for the problems considered. Thus, wechoseξ = 0.85 and small

values forq. In this case, we specifically chose the settingsq = 0.001 andq = 0.01. Both values

produced an algorithm that intensively exploits the information around the Gaussian kernel on

the top of the ranking of solutions, i.e, located at the first position of the structureT .

In the following, we present the results of ACOR in the set of functionsf1 to f6 for dimen-

sionsD = 100, 500, and1000, respectively in Tables 3, 4, and 5 (see Appendix). The style

adopted for the presentation of the results is similar to that followed in the Special Session at

CEC’08. For example, our tables include three different parts according to the number of func-

tion evaluations (FES) which varies depending on the problem’s dimension. The variation of

FES will allow us to determine if the algorithm is capable of continuing the exploration of the

search space as more evaluations are allowed. All the numerical results displayed in the tables

represent the Error Values (i.e.,f(x) − f(x∗), wherex andx
∗ are, respectively, the solution

found and the optimal solution). The two possible settings for the parameterq are also included

(second column). Additionally, at the end of each group determined by FES, the respectivep-

values are displayed. These values are obtained by applyingthe non-parametric Mann-Whitney-

Wilcoxon test to assess the significance on the differences on the respective medians. When the

differences between the results obtained by ACOR with q = 0.001 andq = 0.01 are significant
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at a level of 5% of confidence, the correspondingp-values are displayed in boldface.

Table 3 (dimensionD = 100) shows that ACOR performs fairly well on the different func-

tions. For example, the best values are close to the optimal one for FES =5.00e + 4 and FES

= 5.00e + 5. However, for FES =5.00e + 3, ACOR shows a poor performance (the number of

function evaluations is, certainly, insufficient). For this dimension, clearly the best performance

is achieved withq = 0.01 (2nd and 3rd groups). In the first group (FES =5.00e + 3), there is

only one case in whichq = 0.001 outperformsq = 0.01. In this group, for functionsf2,f3, and

f4, no significant differences were detected. Particularly for functionf6, in all groups, no sig-

nificant differences were found for this parameters setting. The situation is similar forD = 500

andD = 1000 (Tables 4 and 5) with respect to the performance of ACOR as the number of

evaluation is increased, i.e., the solutions quality is improved but not as much as whenD = 100.

Also, it can observed here that ACOR does not show a consistent behavior running under the two

selected values for parameterq. For the largest number of dimensions considered (D = 1000,

Table5) the quality of the results are farther away from the optimal values.

It is clear, from this set of results, that ACOR needs an extra mechanism to better explore

high-dimensional search spaces. At this point, it is important to highlight the influence of param-

eterq in the behavior of ACOR . It is well known that small values for this parameter intensify

the exploitation around the best solution found at each iteration. The settingq = 0.001 induces

a high level of exploitation, whereasq = 0.01, although still small, allows the algorithm to be

more exploratory (it must be recalled that ACOR showed the best behavior when studying the

whole space of the design points). Therefore, withq = 0.001 the algorithm could suffer of

premature convergence andq = 0.01 will better avoid getting trapped in local optima, but it will
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lose the possibility of better exploiting good quality solutions.

To finish this section, we show in Table 1 a summary of the influence of the parameterq

on the behavior of ACOR for all problems, dimensions, and FES studied. The meaning of the

symbols are the following:>, <, and=; which indicate whether or not there exist significant

statistical differences in the results achieved by the setting q = 0.01 with respect toq = 0.001.

Table 1: Summary of the influence of parameterq, where> <, and= establish a ranking relation between

q = 0.01 with respect toq = 0.001 based on the statistical test.

FES =5.00e + 3 FES =5.00e + 4 FES =5.00e + 5

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

D = 100 > = = < > = > > > > > = > > > > > =

FES =2.50e + 4 FES =2.50e + 5 FES =2.50e + 6

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

D = 500 = = < = < = > > = > = < > < = > = <

FES =5.00e + 4 FES =5.00e + 5 FES =5.00e + 6

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

D = 1000 < = < < < = = = = > = = = = = > = <

4.2 Proposed Mechanism to Deal with the Loss of Diversity

In ACOR, the loss of diversity will produce a multi-modal Gaussian distribution where all the

mean values tend to be the same or very close to each other, i.e., will be almost equivalent to a

unimodal Gaussian distribution. When this scenario is observed, ACOR will produce once and

again the same sampling in the search space since the values of the vectorσ are closer and closer
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to 0. One possible mechanism to detect and maintain the kernels’diversity (i.e., the diversity

of the solutions in structureT ) is to first measure the degree of diversity and then control the

evolution of the kernel’s population. We adopted the following function [24] to measure the

diversity ofT :

div(T ) =
1

Ndiag · k
k

∑

i=1

√

√

√

√

√

D
∑

j=1

(xi
j − x̄j)2 (3)

whereNdiag is the length of the diagonal of the search space determined by the corresponding

upper and lower limits for each decision variable,k is the number of kernels inT , xi
j is the

value at dimensionj of the solution at positioni in T , andx̄
j is the average of all the values in

dimensionj. Functiondiv (Eq. 3) returns a value in the range[0.0, 0.5]. Therefore, the higher

the values returned, the more diversity is detected in the set of kernels. Based on this measure-

ment of diversity, our mechanism keeps control of the degreeof diversity at each algorithm’s

iteration. When a certain threshold (divmin) is reached, it means that the populations of kernels

will not produce any further exploratory sampling. In Figure 2 (upper left handside) we show

a hypothetical population of kernels clustered aroundx1, the best point in the current set of

kernels. The multimodal Gaussian kernel will have a similarshape to that displayed in Figure 2

(lower left handside). To deal with the clustered population, a percentagepsol of solutions inT

(the worst ones) are replaced by a new set of solutions which are randomly generated (Figure 2,

upper right handside). This new set of points will increase the values of vectorσ and, conse-

quently, will produce a more exploratory sampling in the following iterations. It must be noticed

that this mechanism keeps the best current point(x1) as the main attractor. However, a much

more extended region around this point can be further explored since the Gaussian multimodal
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distribution will now look like the one displayed in Figure 2(lower right handside). After the re-

placement of the new randomly generated solutions, we additionally considered a time window

(tdiv) that allows ACOR to proceed with the exploration of the search space without applying

the diversity mechanism. This time window is included because the current population is not

completely replaced and a low degree of diversity could rapidly be achieved.

x1

x1x1

x1

Figure 2: When the algorithm converges (i.e., the degree of diversity is low) the kernel structure is

partially re-initialized. However, the best current solution (x1) still behaves as the main attractor for the

following iterations, at least until a new best solution is found in the following samplings.

Figure 4.2 shows the evolution for the Error Values (EV) and Diversity Values (DV) when

running respectively ACOR and ACOR-Div (i.e., ACOR incorporating the diversity mechanism)

with valuesq = 0.0001 andq = 0.01. In order to do that, we have chosen functionsf1 and

f5. Let us first analyze the influence of the diversity mechanismon the error values for both

values ofq. It can be observed a direct influence on the error values at the moment in which
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(a) Functionf1 with q = 0.001.
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(b) Functionf1 with q = 0.01
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(c) Functionf5 with q = 0.001.
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(d) Functionf5 with q = 0.01.

Figure 3: Evolution of the Error Values (EV) and Diversity Values (DV) for functionsf1 andf5 when

running ACOR and ACOR-Div with q = 0.001 (left handside) andq0.01 (right handside).

the diversity mechanism takes place. For both functions, ACOR gets stuck in a sub-optimal

solution at around iteration 2500. At around the same time, the diversity mechanism is triggered

in ACOR-Div since the threshold on the lowest allowable diversity value for this algorithm has

been triggered. It is also interesting to compare the shapesof the plots displaying the evolution

of the diversity values.

Forq = 0.001 (both functions), the diversity values increase immediately after the respective

mechanism incorporates the new set of randomly generated solutions. Particularly, a more clear
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effect of this mechanism is observed when applied the first time. However, as the number of

iterations increases, the effect of the diversity mechanism decreases. It must be recalled that

when applied, the diversity mechanism maintains a percentage of the current solutions inT

(the best ones) which makes the algorithm less exploratory at this stage. However, several

improvements in subsequent iterations are still possible as shown in the respective EV plots for

ACOR-Div. On the other hand, when comparing the diversity valuesof ACOR and ACOR-Div

with q = 0.01, it can be seen that the diversity plots for both algorithms are similar (mainly

for functionf1). This explains the exploratory capacity of the algorithms(ACOR and ACOR-

Div) when increasing the values of parameterq. Nevertheless, better improvements are achieved

through the diversity mechanism when considering the quality of the best solutions found.

Since the preliminary results shown in Section 4.1 were not conclusive with respect to the

two studied values of the parameterq, we conducted experiments considering both values of this

parameter (i.e.,q ∈ {0.001, 0.01}) to study the effect of the diversity mechanism implemented

in ACOR (as metioned before, we call this new version, ACOR-Div). The added parameters for

ACOR-Div were set as:divmin = 0.01 , psol = 20%, andtdiv = 0.2tmax. The corresponding

experimental study is presented next.

Tables 6, 7, and 8 (see Appendix) display the results obtained from ACOR and ACOR-Div

(in each table, the results are grouped according to FES and the values of the parameterq).

In this case, we have reduced the data shown in the corresponding tables. More precisely, we

show the best values found from the25 trials performed by each algorithm. As for the former

experimental study, we also compare the performance of the algorithms based on the statistical

differences in their median values through the non-parametric Mann-Whitney-Wilcoxon test.
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Thus, when there exist statistical differences in the results from one algorithm with respect to

another, the respective best value is displayed in boldface. Let us proceed with the analysis

of the results from a global perspective, i.e., consideringdimensionsD = 100, 500, and1000.

It can be observed that:i) when there exist significant differences between ACOR and ACOR-

Div (either forq = 0.001 or q = 0.01), the statistical test indicates that ACOR-Div outperforms

ACOR; ii) when no statistical difference is reported, the best valuesfound are the same or ACOR-

Div achieved the best ones;iii) in general, for functionsf1, f3, andf5, ACOR-Div outperforms

ACOR for both values of parameterq. Also, this can be observed in some groups (with respect

to FES) for functionf2, however, only for dimensionsD = 500 andD = 1000; iv) for function

f6 no real differences were observed at all for ACOR and ACOR-Div using any of the two values

considered forq = 0.001 andq = 0.01; andv) when comparing ACOR-Div underq = 0.001

andq = 0.01, the best results are achieved by ACOR-Div with q = 0.001.

4.3 Comparison with some relevant algorithms

In this section we make an indirect comparison of the resultsachieved by ACOR-Div with the

results reported by the eight ranked algorithms2 that participated in the competition at CEC’08:

1) MTS[23], 2) LSDEA-gl [25], 3) jDEdynNP-F [3], 4) MLCC [26], 5) DMS-PSO [28], 6)

DEwSAcc [27], 7) UEP [16], and 8) EPUS-PSO [9]. Table 4.3 shows the best reported values

for the eight ranked algorithms and also, the best found values from the ACOR-Div algorithm

(in boldface). In this case, the results correspond to dimensionD = 1000 andFES = 5.00e+6

(i.e., the maximum number of dimensions and function evaluations regarding the respective

protocol given in [22]). The values in parentheses indicatethat ACOR-Div outperforms (from

2The ranking can be downloaded fromhttp://nical.ustc.edu.cn/papers/CEC2008 SUMMARY.pdf
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Table 2: Results achieved by the eight ranked algorithms that participated in the competition at CEC’08

and the results obtained by ACOR-Div with q = 0.001.

Test Functions

Algorithm 1 2 3 4 5 6

1) MTS 0.00e+00 4.72e-02 3.41e-04 0.00e+00 00.0e+00 1.24e-11

2) LSDEA-gl (3.22e-13) 1.04e-05 (1.73e+03) 5.45e+02 1.71e-13 4.26e-13

3) jDEdynNP-F (1.14e-13) 1.95+01 (1.31e+03) 2.17e-04 3.98e-14 1.47e-11

4) MLCC (8.46e-13) 1.09e+02 (1.80e+03) 1.37e-10 4.18e-13 1.06e-12

5) DMS-PSO 0.00e+00 9.15e+01 (8.98e+09) 3.84e+03 00.0e+00 7.76e+00

6) DEwSAcc (8.79e-03) 9.61e+01 (9.15e+03) 1.82e+03 (3.58e-03) 2.30e+00

7) UEP (5.37e-12) 1.05e+02 (1.96e+03) 1.03e+04 (8.87e-04) (1.99e+01)

8) EPUS-PSO (5.53e+02) 4.66e+01 (8.37e+05) 7.58e+03 (5.89e+00) 1.89e+01

ACOR-Div (q = 0.001) 00.0e+00 1.50e+02 1.29e+03 1.23e+04 8.00e-09 1.89e+01

the perspective of the best found values) the respective algorithm in the table. It can be seen

that ACOR-Div outperforms some of the compared algorithms in functions: f1 [outperforms 6

algorithms],f3 [outperforms 7 algorithms],f5 [outperforms 2 algorithms], andf6 [outperforms

1 algorithm]. These results indicate that ACOR-Div is competitive with respect to otherad hoc

algorithms (some of which are quite elaborate) developed for solving continuous optimization

problems. However, an enhanced version of ACOR-Div (e.g., with a better diversity preservation

mechanism) and a direct comparison with state-of-the-art algorithms are still required to better

estimate the actual position of ACOR-Div in a possible ranking of optimization algorithms used

for solving large scale continuous problems.
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5 Conclusions and Future Work

In this paper we have presented a study of scalability of ACOR for large continuous optimiza-

tion problems. An early experimental study allowed us to detect some weaknesses of ACOR

when dealing with large dimensionality problems. Based on these results, we proposed a simple

mechanism that introduces diversity in the kernels’ population when it reaches a diversity value

under a certain minimum threshold. This new algorithm was called ACOR-Div and was capable

of significantly improving the performance of ACOR .

We have also shown that our proposed ACOR-Div approach is competitive with respect to

other bio-inspired metaheuristics that have been specifically designed to solve continuous opti-

mization problems.

As part of our future work, we intend to study more elaborate mechanisms to detect and/or

deal with the loss of diversity in ACOR. We also wish to perform a more comprehensive com-

parison of our approach with respect to state-of-the-art metaheuristics used for continuous opti-

mization. Finally, we are also interested in applyingad-hoc and automatic tools for calibrating

the parameter values of our approach.
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Appendix

Table 3: Errors values for problems 1-6 (D = 100) with q ∈ {0.001, 0.01} up to5.00e + 5 FES

FES q Stats 1 2 3 4 5 6

5.00e + 3

0.001

1st (Best) 1.9326e+4 9.8291e+1 0.2217e+10 8.0361e+2 1.6193e+2 2.0307e+1

13th (Median) 3.2087e+4 1.1651e+2 0.5655e+10 1.1896e+3 2.4576e+2 2.1173e+1

25th (Worst) 4.8736e+4 1.3220e+2 1.2903+e10 1.7577e+3 4.6825e+2 2.1312e+1

0.01

1st (Best) 1.3583e+4 9.5175e+1 3.3488e+9 8.6345e+2 1.5270e+2 1.9405e+1

13th (Median) 2.4099e+4 1.1402e+2 6.1663e+9 1.0506e+3 2.1619e+2 2.1178e+1

25th (Worst) 4.7441e+4 1.2397e+2 9.5319e+9 1.5163e+3 5.6468e+ 2.1337e+1

p-values 0.0179 0.4492 0.6554 0.0209 0.0209 0.9613

5.00e + 4

0.001

1st (Best) 6.0000e-6 7.3209e+1 4.5120e+2 6.6045e+2 1.7520e-1 0.1888e-1

13th (Median) 8.9597e+1 8.4065e-1 1.5690e+5 8.6218e+2 0.1623e-1 2.1065e+1

25th (Worst) 1.7527e+3 1.0279e+2 5.4189e+8 1.0859e+3 3.6405e+1 2.1269e+1

0.01

1st (Best) 6.0000e-6 5.4617e+1 2.5061e+2 5.5227e+2 1.0000e-5 1.8871e+1

13th (Median) 8.0000e-5 7.2852e+1 4.2594e+2 7.0988e+2 6.6830e-1 2.1065e+1

25th (Worst) 0.7562e+1 9.1319e+1 1.8281e+3 1.0275e+3 0.4357e+1 2.1269e+1

p-values 5.8405e-8 4.6094e-5 1.9973e-6 3.0245e-5 1.8141e-6 0.9923

5.00e + 5

0.001

1st (Best) 1.0000e-6 2.0334e+1 1.7257e+2 6.6045e+2 1.7460e-1 1.8884e+1

13th (Median) 4.0630e+1 2.6511e+1 1.5624e+5 8.6217e+2 0.1623e+1 1.9858e+1

25th (Worst) 1.742e+3 3.2984e+1 5.4189e+8 1.0859e+3 3.6405e+1 2.1175e+1

0.01

1st (Best) 0 1.5818e+1 2.0430e-1 5.5227e+2 0 1.7712e+1

13th (Median) 0 2.2484e+1 8.7483e+1 7.0987e+2 6.6830e-1 2.0944e+1

25th (Worst) 0.7562e+1 2.6203e+1 1.7667e+2 1.0275e+3 0.4357e+1 2.1158e+1

p-values 4.1391e-10 1.5127e-5 1.5967e-9 3.0245e-5 1.6377e-6 0.6871
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Table 4: Errors values for problems 1-6 (D = 500) with q ∈ {0.001, 0.01} up to25.00e + 6 FES

FES q Stats 1 2 3 4 5 6

2.50e + 4

0.001

1st (Best) 2.3922e+5 1.5557e+2 9.4274e+10 7.2027e+3 2.8067e+3 2.1407e+1

13th (Median) 4.1694e+5 1.6275e+2 1.4279e+11 7.9304e+3 3.4474e+3 2.1451e+1

25th (Worst) 7.2040e+5 1.8704e+2 2.8528e+11 8.4763e+3 5.4779e+3 2.1474e+1

0.01

1st (Best) 2.8948e+5 1.5434e+2 1.2241e+11 6.8459e+3 2.8935e+3 2.1398e+1

13th (Median) 3.8390e+5 1.6051e+2 1.8207e+11 7.7979e+3 3.8204e+3 2.1450e+1

25th (Worst) 5.1286e+5 1.8704e+2 2.7521e+11 9.5348e+3 4.7482e+3 2.1475e+1

p-values 0.4728 0.7934 5.9408e-004 0.1160 0.0209 0.6139

2.50e + 5

0.001

1st (Best) 5.6686e+1 1.4508e+2 5.9546e+6 6.2038e+3 0.28101e-1 2.1357e+1

13th (Median) 1.2089e+4 1.5043e+2 1.7269e+9 6.9793e+3 5.5363e+1 2.1437e+1

25th (Worst) 5.4493e+4 1.5438e+2 9.6816e+10 7.5168e+3 6.3174e+2 2.1463e+1

0.01

1st (Best) 1.0082e+1 1.4187e+2 1.3680e+7 5.7009e+3 0.1095e-1 2.1398e+1

13th (Median) 6.5797e+2 1.4935e+2 5.3053e+8 0.65447e+1 2.6645e+2 2.1450e+1

25th (Worst) 6.7055e+4 1.5564e+2 2.9510e+10 7.1207e+3 5.0414e+2 2.1475e+1

p-values 3.0746e-004 0.0457 0.0808 1.6516e-005 0.1302 0.0328

2.50e + 6

0.001

1st (Best) 5.6633e+1 1.0641e+2 5.9496e+6 6.2038e+3 2.8098e+0 1.9923e+1

13th (Median) 1.2087e+4 1.1471e+2 1.7268e+009 6.9790e+3 5.5362e+1 2.1397e+1

25th (Worst) 5.4491e+4 1.2792e+2 9.6816e+10 7.5166e+3 6.3174e+2 2.1441e+1

0.01

1st (Best) 0.7395e+1 1.4508e+2 1.2545e+7 5.7009e+3 1.0643e+0 2.1357e+1

13th (Median) 6.5714e+2 1.5043e+2 5.3006e+8 6.5447e+3 2.6645e+1 21.4505

25th (Worst) 6.7053e+4 1.5438e+2 2.9509e+10 7.1207e+3 5.0414e+2 21.4755

p-values 2.8526e-004 0.0457 0.0808 1.6516e-5 0.1302 0.5094
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Table 5: Errors values (fi(x)−fi(x
∗)), for i = 1, . . . , 6; (D = 1000); q ∈ {0.001, 0.01} up to50.00e+6

FES
FES q Stats 1 2 3 4 5 6

5.00e + 4

0.001

1st (Best) 7.3434e+5 1.6856e+2 4.4900e+10 1.6311e+4 6.5600e+3 2.1470e+1

13th (Median) 8.7221e+5 1.7305e+2 4.3077e+11 1.7290e+4 8.0630e+3 2.1502e+1

25th (Worst) 1.4940e+6 1.9101e+2 7.1003e+11 1.8404e+4 1.2989e+4 2.1524e+1

0.01

1st (Best) 8.5456e+5 1.6800e+2 5.1477e+11 1.6573e+4 7.9829e+3 2.1465e+1

13th (Median) 1.0237e+6 1.7535e+2 6.2513e+11 1.7799e+4 9.7774e+3 2.1500+1

25th (Worst) 1.2356e+6 1.8887e+2 1.2922e+12 1.9632e+4 1.1053e+4 2.1524e+1

p-values 9.7208e-004 0.1936 3.3440e-007 0.0055 3.0245e-005 0.9381

5.00e + 5

0.001

1st (Best) 9.3070e+2 1.6286e+2 4.0001e+8 1.4238e+4 3.0609e+1 1.9980e+1

13th (Median) 2.1936e+4 1.6722e+2 6.1033e+9 1.4893e+4 1.4342e+2 2.1494e+1

25th (Worst) 1.5386e+5 1.7263e+2 8.8517e+10 1.5697e+4 1.0235e+3 2.1518e+1

0.01

1st (Best) 9.5884e+2 1.6284e+2 2.7486e+8 1.3694e+4 0.4625e-1 2.1462e+1

13th (Median) 1.4540e+4 1.6746e+2 2.2323e+9 1.4649e+4 8.8825e+1 2.1489e+1

25th (Worst) 4.5222e+4 1.7042e+2 1.1079e+11 1.5801e+4 4.5928e+2 2.1520e+1

p-values 0.0842 0.7269 0.0598 0.0099 0.1206 0.9690

5.00e + 6

0.001

1st (Best) 9.2873e+2 1.5107e+2 3.9600e+8 1.4238e+4 3.0560e+1 1.9924e+1

13th (Median) 2.1936e+4 1.5500e+2 6.0860e+9 1.4893e+4 1.4340e+2 2.1483e+1

25th (Worst) 1.5385e+5 1.6461e+2 8.8517e+19 1.5697e+5 1.0235e+3 2.1520e+1

0.01

1st (Best) 9.4767e+2 1.4637e+2 3.4711e+7 1.3694e+4 4.6256e+0 2.1200e+1

13th (Median) 1.0929e+4 1.5476e+2 6.1684e+9 1.4648e+4 8.8636e+1 2.1330e+1

25th (Worst) 5.2064e+4 1.6461e+2 1.1077e+11 1.5801e+4 4.5928e+2 2.1499e+1

p-values 0.1653 0.1837 0.6275 0.0093 0.4244 0.0129
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Table 6: Comparison of ACOR and ACOR-Div with D = 100 andq ∈ {0.001, 0.01}
FES q Stats 1 2 3 4 5 6

5.00e + 3

0.001

Best 1.9326e+4 9.8291e+1 0.2217e+10 8.4231e+2 5.5226e+2 2.0307e+1

Bestdiv 1.6226e+4 9.8291e+1 0.2217e+10 8.0361e+2 1.6193e+2 2.0307e+1

0.01

Best 1.3583e+4 9.5175e+1 3.3488e+9 8.6345e+2 1.5270e+2 1.9405e+1

Bestdiv 1.3583e+4 9.5175e+1 3.3488e+9 8.7386e+2 1.5270e+2 1.9405e+1

5.00e + 4

0.001

Best 6.0000e-6 7.3209e+1 4.5120e+2 6.6045e+2 1.7520e-1 0.1888e-1

Bestdiv 2.0000e-6 7.1295e+1 1.5527e+1 6.6043e+2 1.0000e-6 1.8871e+1

0.01

Best 6.0000e-6 5.4617e+1 2.5061e+2 5.5227e+2 1.0000e-5 1.8871e+1

Bestdiv 3.0000e-6 5.4617e+1 2.4322e+1 5.5226e+2 5.0000e-6 1.7648e+1

5.00e + 5

0.001

Best 1.0000e-6 2.1856e+1 1.7257e+2 6.6049e+2 1.7460e-1 1.8884e+1

Bestdiv 0 2.0334e+1 8.4803e+1 6.6045e+2 0 1.8857e+1

0.01

Best 0 1.5818e+1 2.0430e-1 5.5227e+2 0 1.7712e+1

Bestdiv 0 1.4853e+1 0.1242 e+0 5.5227e+2 0 1.7712e+1

Table 7: Comparison of ACOR and ACOR-Div with D = 500 andq ∈ {0.001, 0.01}
FES q Stats 1 2 3 4 5 6

5.00e + 4

0.001

Best 2.3922e+5 1.5557e+1 9.4274e+010 7.4522e+3 2.8067e+3 21.4077

Bestdiv 2.0584e+5 1.5557e+1 9.0867e+10 7.2027e+3 2.0983e+3 21.4077

0.01

Best 2.8948e+5 1.5434e+2 1.2241e+11 6.7664e+3 2.8935e+3 21.3983

Bestdiv 2.8948e+5 1.5434e+2 1.2241e+01 6.8459e+3 2.8935e+3 21.3983

5.00e + 5

0.001

Best 5.6686e+1 1.4508e+2 5.9546e+6 6.2038e+003 0.28101e+1 21.3579

Bestdiv 0.0898 1.4508e+2 9.4978e+003 6.1980e+3 0.00086+1 21.3579

0.01

Best 1.0082e+1 1.4187e+2 1.3680e+7 5.7009e+3 0.10951e+1 21.3983

Bestdiv 9.1070e-1 1.4187e+2 3.8123e+4 5.7207e+3 0.02307e+1 21.3983

5.00e + 6

0.001

Best 56.6338 1.0641e+2 1.2545e+7 6.2038e+3 2.8098e+0 1.9923e+1

Bestdiv 0 1.0000e+2 5.6733e+2 6.1980e+3 0 1.9920e+1

0.01

Best 7.3952 1.0438e+1 1.2545e+7 5.7007e+3 1.0643e+0 1.9889e+1

Bestdiv 0 1.0000e+1 5.5533e+2 5.7005e+3 0 1.9881e+1
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Table 8: Comparison of ACOR and ACOR-Div with D = 1000 andq ∈ {0.001, 0.01}
FES q Stats 1 2 3 4 5 6

5.00e + 4

0.001

Best 7.3434e+5 1.6856e+2 4.4900e+10 1.6311e+4 6.5600e+3 2.1470e+1

Bestdiv 5.9803e+5 2.1565e+0 4.4018e+10 1.6078e+4 5.2271e+3 2.1470e+1

0.01

Best 8.5456e+5 1.6800e+2 5.1477e+11 1.6573e+4 7.9829e+3 2.1465e+1

Bestdiv 8.5456e+5 4.8252e+1 5.1477e+11 1.6694e+4 8.7005e+3 2.1465e+1

5.00e + 5

0.001

Best 9.3070e+2 1.6286e+2 4.0001e+8 1.4238e+4 3.0609e+1 1.9980e+1

Bestdiv 2.1565e+0 1.6286e+2 4.0899e+5 1.4245e+4 0.1454e+0 1.9998e+1

0.01

Best 9.5884e+2 1.6284e+2 2.7486e+8 1.3694e+4 4.6256e+0 2.1462e+1

Bestdiv 4.8252e+1 1.6284e+2 6.7842e+6 1.3678e+4 1.4757e+0 2.1462e+1

5.00e + 6

0.001

Best 9.2873e+2 1.5107e+2 3.9600e+8 1.4238e+4 3.0560e+1 1.9924e+1

Bestdiv 0 1.5010e+2 7.0498e+5 1.4011e+4 0 1.9290e+1

0.01

Best 9.4767e+2 1.5637e+2 3.4711e+7 1.3694e+4 4.6256e+0 2.1200e+1

Bestdiv 0.4022e+0 1.5089e+2 4.7675e+6 1.4340e+3 0.0212e+0 2.0988e+1

28


