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Abstract In this paper, we are interested in selection

mechanisms based on the hypervolume indicator with

a particular emphasis on the mechanism used in an im-

proved version of the S metric selection Evolutionary

Multi-Objective Algorithm (SMS-EMOA) called iSMS-

EMOA, which exploits the locality property of the hy-

pervolume. Here, we propose a new selection scheme

which approximates the contribution of solutions to

the hypervolume and it is designed to preserve the

locality property exploited by iSMS-EMOA. This ap-

proach is proposed as an alternative to the use of ex-

act hypervolume calculations, and is aimed for solving

many-objective optimization problems. The proposed

approach is called “approximate version of the im-

proved SMS-EMOA (aviSMS-EMOA)” and is validated

using standard test problems (with three or more objec-
tives) and performance indicators taken from the spe-

cialized literature. Our preliminary results indicate that

our proposed approach is a good alternative to solve

many-objective optimization problems, if we consider

both quality in the solutions and running time required

to obtain them. Since it outperforms two versions of

the original SMS-EMOA that approximate the contri-
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butions to the hypervolume, it outperforms MOEA/D

using PBI and it is competitive with respect to the

original SMS-EMOA in several of the test problems

adopted. Also, its computational cost is reasonable (e.g.

it is slower than MOEA/D but it is faster than SMS-

EMOA).
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Selection operators · Hypervolume indicator

1 Introduction

We are interested in the so-called multi-objective op-

timization problems (MOPs). These problems involve

multiple objective functions which are in conflict with

each other. In MOPs, the notion of optimality refers
to the best possible trade-offs among the objectives.

Consequently, there are several possible solutions (the

so-called Pareto optimal set whose image is called the

Pareto front). The use of evolutionary algorithms for

solving MOPs has become very popular and has two

main goals [10]: (i) to find solutions that are as close

as possible to the true Pareto front and (ii) to produce

solutions that are spread along the Pareto front as uni-

formly as possible.

There are different indicators to assess the quality of

the approximation of the Pareto-optimal set generated

by a multi-objective evolutionary algorithm (MOEA).

Some of them are: error ratio, generational distance, hy-

pervolume, ε-indicator, R2-indicator, two set coverage,

and nondominated vector addition [10]. But only a few

indicators are “Pareto Compliant”, e.g., in [31] showed

that the hypervolume indicator is the only unary indi-

cator which is strictly “Pareto compliant”.

When studying MOEAs, we find two main types

of selection mechanisms: (i) those that incorporate the
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concept of Pareto optimality (e.g., NSGA-II [12]), and

(ii) those that do not use Pareto dominance to select in-

dividuals. Within this class, those that use an indicator-

based selection mechanism [29] have become particu-

larly popular.

The use of Pareto-based selection has been very

popular for the last 20 years, but it has several lim-

itations. From them, its poor scalability with respect

to the number of objectives in a MOP is, perhaps, the

most remarkable one. The quick growth in the number

of nondominated solutions as we increase the number

of objectives, rapidly dilutes the effect of the selection

mechanism of a MOEA [16]. Because of this limitation,

MOEAs of type (ii) have become relatively popular in

recent years as an alternative that allows us to tackle

problems having four or more objectives (the so-called

“many-objective optimization problems”).

In this work, we are interested in MOEAs based on

the hypervolume indicator (IH). IH is the only unary

indicator which is known to be strictly “Pareto com-

pliant” [31]. IH was originally proposed by Zitzler and

Thiele in [30], and it’s defined as the size of the space

covered by the Pareto optimal solutions. IH rewards

convergence towards the Pareto front as well as the

maximum spread of the solutions obtained. Fleischer

proved in [17] that, given a finite search space and

a reference point, maximizing the hypervolume indi-

cator is equivalent to finding the Pareto optimal set.

The main disadvantage of the hypervolume indicator

is its high computational cost (the problem of comput-

ing IH is #P-hard 1 [6]). Consequently, in the last

few years, several proposals have been made to address

this problem. Some authors have proposed to reduce

the dimensionality of the MOP [9], others have pro-

posed improvements to the calculation of the contri-

bution to the hypervolume indicator of each individual

in the population [5,15], as well as mechanisms to ap-

proximate the contribution of each individual in the

population [22,3,7,8]. Also, other authors have pro-

posed a new competition scheme for selection mech-

anisms based on IH . In this scheme, only three indi-

viduals compete to survive. Thus, we only need to cal-

culate the contribution of three individuals and choose

the best from them [24]. In contrast, most of the current

hypervolume-based MOEAs need to calculate the con-

tribution of each individual in the population in order

to choose the best from them.

In this paper, we study the competition schemes

used in MOEAs based on the hypervolume indicator

and, we also study some selection techniques based on

the approximation of the hypervolume. Then, we pro-

1 IH cannot be computed exactly in polynomial time in the
number of objective functions unless P = NP

pose a new selection mechanism based on the com-

petition scheme proposed by Menchaca and Coello in

[24] and on the technique to approximate the contribu-

tion to the hypervolume proposed by Bringmann and

Friedrich in [7]. This idea came from the fact that we

only need to approximate three contributions to IH .

Additionally, we have the hypothesis that we can de-

crease the error of the approximation in two ways: First,

we can use a bigger sample without increasing exces-

sively the running time (compared with MOEAs that

use the traditional competition scheme in which we

need to know the contribution of all individuals). And,

second, the probability of deleting the correct individ-

ual (i.e., the individual with the lowest contribution) is

greater in this case, than if we use the traditional com-

petition scheme because we only deal with three errors

and not with P errors, where P is the population size.

As we will see later on, our results indicate that our pro-

posed selection mechanism obtains better results than

those which approximate the hypervolume and do not

consider the locality property of the hypervolume.

The remainder of this paper is organized as follows.

Section 2 states the problem of interest. The hyper-

volume indicator is defined in Section 3. The previous

related work is discussed in Section 4. The selection

mechanism based on the hypervolume and its locality

property is described in Section 5. Our alternative se-

lection mechanism based on the approximation of the

contributions to the hypervolume is presented in Sec-

tion 6. Our experimental validation and the results ob-

tained are shown in Section 7. Finally, we provide our

conclusions and some possible paths for future work in

Section 8.

2 Problem Statement

The general multi-objective optimization problem (MOP)

is defined as follows: Find x∗ = [x∗1, x
∗
2, . . . , x

∗
n]T which

optimizes

f(x) = [f1(x), f2(x), . . . , fk(x)]T (1)

such that x∗ ∈ Ω, where Ω ⊂ Rn defines the feasible re-

gion of the problem. Assuming minimization problems,

we have the following definitions.

Definition 1 We say that a vector x = [x1, . . . , xn]T

dominates vector y = [y1, . . . , yn]T , denoted by x ≺ y,

if and only if fi(x) ≤ fi(y) for all i ∈ {1, ..., k} and

there exists an i ∈ {1, . . . , k} such that fi(x) < fi(y).

Definition 2 We say that a vector x = [x1, . . . , xn]T

weakly dominates vector y = [y1, . . . , yn]T , denoted by

x � y, if f(x) is not worse than f(y) in all objectives.
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Definition 3 A point x∗ ∈ Ω is Pareto optimal if there

does not exist any x ∈ Ω such that x ≺ x∗.

Definition 4 For a given MOP, f(x), the Pareto opti-

mal set is defined as: P∗ = {x ∈ Ω|¬∃y ∈ Ω : y ≺ x}.
Definition 5 Let f(x) be a given MOP and P∗ the

Pareto optimal set. Then, the Pareto Front is defined

as: PF∗ = {f(x) | x ∈ P∗}.
Definition 6 An approximation of the Pareto op-
timal set is a subset of Ω composed of mutually non-

dominated vectors (e.g., A ⊆ Ω such that for any two

vectors x,y ∈ A is true that x ⊀ y and y ⊀ x).

3 Hypervolume indicator

The hypervolume indicator (IH) was originally proposed

by Zitzler and Thiele in [30], and it’s defined as the size

of the space covered by the Pareto optimal solutions.

IH is a “Pareto Compliant” indicator. 2

If Λ denotes the Lebesgue measure, IH is defined as:

IH(A,yref ) = Λ

 ⋃
y∈A
{x | y ≺ x ≺ yref}

 (2)

where A is the approximation of the Pareto optimal set

and yref ∈ Rk denotes a reference point which should

be dominated by all possible points.

The contribution to the hypervolume of a solution

x is defined as:

CH(x,A) = IH(A,yref )− IH(A \ x,yref ) (3)

where x ∈ A. Then, the contribution of x is the space

that is only covered by x. See Figure 1.

Auger et al. [2] conducted a study about the opti-

mal µ-distributions and the choice of the reference point

in the hypervolume indicator. They mentioned one in-

teresting property of this indicator when k = 2 (two

objective functions), called locality which says: given

three consecutive points on the Pareto front, moving the

middle point will only affect the hypervolume contribu-

tion that is solely dedicated to this point, but the joint

hypervolume contribution of the other points remains

fixed. See Figure 2. Also, Auger et al. conducted a sim-

ilar study for k = 3 in [1] and they mentioned that

the optimal placement of a single solution is not deter-

mined by only two neighbors, anymore, as it is the case

for k = 2, since in this case, all solutions can have an

influence on the optimal placement of one point.

2 An indicator I : Ω → R is Pareto compliant if for all
A,B ⊆ Ω : A � B ⇒ I(A) ≥ I(B) assuming that greater
indicator values correspond to higher quality, where A and B
are approximations of the Pareto optimal set, Ω is the feasible
region and A � B means that every point b ∈ B is weakly
dominated by at least one point a ∈ A.
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IH(A, ~yref)

f2

f1

~yref

~x8

~x2

~x1

~x3

~x4

~x5

~x6

~x7

CH(~x4,A)

Fig. 1 Let A = {x1,x2, · · · ,x8} be the approximation of the
Pareto optimal set and yref be the reference point. Then, the
gray area is the hypervolume of set A and the hatched area
is the contribution to the hypervolume of the solution x4.

4 Previous Related Work

In recent years, there have been several proposals to

incorporate the hypervolume into a MOEA. However,

in most cases, the MOEAs use the same competition

scheme: if we have a population P and a new individual

xnew, we calculate the contribution to the hypervolume

of each individual in P and the contribution of the new

individual. If xnew is better than xworst (according to

the contribution), xnew replaces xworst. Otherwise, the

population remains the same. Some of these proposals

are the following:

– Knowles and Corne [23] used a bounded archive to

save the nondominated solutions found at each gen-

eration. When the archive was full and Pareto dom-

inance could no longer discard solutions, they pro-

posed to use the above competition scheme.

– Huband et al. [19] have used the hypervolume with

an evolution strategy. They used Pareto ranking as

the primary selection criterion and the hypervolume

as a second selection criterion (in the same way as

described before). However, it is important to men-

tion that the authors used exact calculations of the

contribution to IH only for MOPs with two objec-

tive functions. 3

– Emmerich et al. [14] proposed an algorithm based

on NSGA-II and the archived strategies proposed by

Knowles, Corne and Fleisher. They called it “SMS-

EMOA”. SMS-EMOA creates an initial population

and then, it generates only one solution by itera-

tion using the operators (crossover and mutation)

3 Given a nondominated front of individuals, the hypervol-
ume value for an individual i is equal to the product of the
one-dimensional lengths to the next worse objective function
value in the front for each objective.
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~x1

~x2

~x3

~x1

~x2

~x3

IH(A \ ~x4, ~yref) IH(A \ ~x4, ~yref)

~yref

~x7

f1

f2

~x4

~x5

~x6

C(~x4,A)

~yref

~x7

~x5

~x6

~x4

f1

f2

C(~x4,A)

Fig. 2 Let A = {x1,x2, · · · ,x7} be the approximation of the Pareto optimal set. If we move x4 between x3 and x5, the covered
space by {A \ x4} is not affected and only the contribution to the hypervolume of x4 is affected.

of the NSGA-II. After that, it applies Pareto rank-

ing. When the last front has more than one solution,

SMS-EMOA uses the above competition scheme to

decide which solution will be removed. Beume et

al. [4] proposed not to use the contribution to the

hypervolume indicator when, after applying the Pareto

ranking procedure we obtain more than one front.

In that case, they proposed to use the number of

solutions which dominate one solution (the solution

that is dominated by more solutions is removed).

The authors argue that the motivation for using the

hypervolume indicator is to improve the distribution

in the nondominated front and then it is not neces-

sary in fronts different to the nondominated front.

– Igel et al. [20] have used the hypervolume indicator

with an evolution strategy. They used Pareto rank-

ing as a primary selection criterion and crowding or

hypervolume as a second selection criterion (in the
same way as described before).

– Mostaghim et al. [25] designed a MOEA based on

particle swarm optimization in which the hypervol-

ume indicator was used in the leader selection mech-

anism.

If we use eq. (3) in the above competition scheme,

we need to calculate |P|+1 contributions to the hyper-

volume indicator, and therefore, the above algorithms

won’t be able to deal with MOPs with more than five

objective functions (solving a MOP with five objec-

tive functions will require several hours using a recent

personal computer). In order to address this problem,

Bradstreet et al. [5] proposed a method to calculate

the contribution to the hypervolume indicator of each

solution in a fast way without calculating the hyper-

volume for each solution. The main idea is the follow-

ing: when we eliminate one solution of the population,

not all the contributions of the other solutions are af-

fected. Emmerich and Fonseca [15] proposed a dimen-

sion sweep algorithm for computing all contributions to

the hypervolume in three dimensions with a time com-

plexity equal to O(n log n). Also, they showed that for

k > 3 (more than three objective functions), the time

complexity is bounded below by Ω(n log n). However,

the calculation of the minimal contribution is an NP-

hard [7] problem.

Other authors have chosen to approximate the con-

tribution to the hypervolume. For example, Ishibuchi et

al. [21] proposed using a number of achievement scalar-

izing functions with uniformly distributed weight vec-

tors to approximate the hypervolume. They measure

the distance from the reference point to the solution

set, using scalarizing functions, see Figure 3.

Bader and Zitzler [3] proposed to assign a fitness to

each individual using an approximation of the hypervol-

ume based on the idea that is not necessary to know the

exact contribution to the hypervolume of each solution,

since we only aim to obtain a good ranking of the so-

lutions in the population. The technique that they use

to assign fitness to each individual is not easy because

they do not consider only the contribution to the hyper-

volume as we defined in eq. (3), but also all the space

dominated by one solution, see Figure 4(a). They used

Monte Carlo simulation to approximate the dominated

regions and then assign fitness. Also, they proposed a

method to remove m individuals from a population P
considering the expected loss in hypervolume that can

be attributed to a particular solution when exactly m

solutions are removed, see Figure 4(b).

Bringmann and Friedrich [7] indicated that it is not

necessary to calculate the hypervolume of all the indi-

viduals in the population, in order to know the hyper-

volume contribution of a single solution. Let A be the

approximation of the Pareto optimal set; they proposed

to approximate the contribution of a solution x ∈ A as

follows: Let BBx be the bounding box of x; then, we
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~f(~a)

~f(~b)

A

~f (~c)

~f (~d)

R = {~r}

~f(~a)

~f(~b)

~f (~c)

~f (~d)

R = {~r}

(a) (b)

Fig. 3 In (a), the dotted line represents a scalarizing function. Let A = {a,b, c,d} be the approximation of the Pareto optimal
set and r the reference point. Ishibuchi et al. propose to measure the distance from r to A. In (b) many uniformly distributed
weight vectors are used and the average length is taken as an approximation of the hypervolume.

1/4

1/2

1/3

1/31/2
1

~f (~a)

~f (~b)

~f(~c)

~f (~d)

FitnessH(~a,P ,R)

FitnessH(~c,P ,R)

R = {~r}

1/4

1

1/31/2

p=1/3 p=0 p=0p=1

~f (~a)

~f (~b)

~f(~c)

~f (~d)

R = {~r}

(a) (b)

Fig. 4 In (a), we illustrate the fitness assignment proposed by Bader and Zitzler. The space dominated by the four solutions
(a, b, c and d) is divided in regions. Suppose that we want to calculate the fitness of individuals a and c. Regions labeled with
number 1 indicate that this portion of the space is only dominated by the solution a or c. Therefore, this region is attributed
to a or c. Regions labeled with 1/2 indicate that this portion of the space is dominated by two solutions, and then, to each
of these two solutions, it corresponds half of this region. Regions with 1/3 and 1/4 indicate that the portion is dominated by
three and four solutions, respectively. Thus, for each of them, it corresponds a third or a fourth of this region. (b) shows the
probability p that a dominated region is lost if solution a is removed together with any other solution (m = 2). It is interesting
to look at the region with probability p = 1/3. If we remove solution a, then only solution b can dominate this region and the
probability of choosing b is 1/3. Regions with probability p = 0 indicate that if we remove a together with any solution, this
region is still dominated by one of the remaining solutions.

do a random sampling in BBx. For each random point,

we have to check if it is uniquely dominated by x, and

then we can approximate the contribution of x using:

C̃H(x,A) =
SuccessSamples

Samples
V OL(BBx) (4)

where SuccessSamples is the number of samples that

were only dominated by x (there does not exist an-

other y ∈ A such that y dominates the sample) and

Samples is the total number of samples. See Figure 5.

To determine BBx, we construct a bounding box, By,

for each solution y ∈ A, using the reference point yref

as in Figure 5. Then, we can cut BBx as follows: start

with the box Bx itself, iterating over all other boxes By,

such that x 6= y. If By dominates Bx in all but one di-

mension, then we can cut the bounding box, Bx, in the

nondominated dimension to obtain BBx. See Figure 6.

5 Selection Mechanism based on Hypervolume

and its Locality Property

A new competition scheme for selection mechanisms

based on IH was proposed in [24] and it works as fol-

lows: Let’s assume that at each iteration of a MOEA,

only one solution xnew is created and the current pop-

ulation is P. After that, we calculate the Euclidean dis-

tance of the new solution to each solution in the current

population:

disti = ‖xi − xnew‖ such that xi ∈ P (5)

and, we choose the nearest solution:

xnear such that distnear = min disti (6)
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(a) (b)

Fig. 6 In (a), we can see that a is dominated by b in all objective functions except for f3. Then, we can cut the bounding
box of a and use ya instead of yref because the cut region is completely covered by b. In (b), b is better than a only in f1.
Therefore, we cannot move the reference point and cut the bounding box because the cut region is not completely covered by
b.
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BB~x3Failed sample Success sample

~yref

f2

~x2

~x1

~x4

~x5
~x6

f1

~x3

Fig. 5 Let A = {x1,x2,x3,x4,x5,x6} be the approximation
of the Pareto optimal set and yref be the reference point.
We approximate the contribution of solution x3 as follows.
We construct the bounding box BBx3 from the reference
point yref . After that, we generate random points in BBx3 .
The black points into BBx3 are success samples; these points
are only dominated by x3. The remaining random points in
BBx3 are also dominated by other points and therefore they
are failed samples. Finally, the contribution is approximately

SuccessSamples
SuccessSamples+FailedSamples

V OL(BBx3). It is important to

mention that this is an example simply for illustrating the
procedure by which we can approximate the hypervolume
contribution of a solution. However, for two dimensions, we
can calculate the exact contribution, when we execute the
procedure to cut BBx3 .

where i = {1, · · · , |P|}. These two solutions (the new

solution, xnew, and its nearest neighbor, xnear) com-

pete to survive. The core idea is to move a solution

within its neighborhood with the aim of improving its

contribution to the hypervolume. See Figure 7(a). How-

ever, we must consider the case in which the new solu-

tion is located in an unexplored region (a region with

few solutions) as shown in Figure 7(a). In this case, it

is not a good idea to remove the new solution or its

nearest neighbor. To address this problem, the authors

proposed to choose randomly another solution, xrand.

Then, xrand will also compete with the other two (xnew

and xnear). This is considering that the probability of

choosing a solution in an unexplored region is low. See

Figure 7(b).

The experimental results, presented by the authors

of this selection scheme, showed that this scheme is a

good option to deal with many-objective optimization
problems because it is able to reduce the running time

significantly without losing quality in the solutions un-

like other methods based on the approximation of the

hypervolume indicator which have a significant quality

loss. However, it is important to note that if we use the

competition scheme based on IH and its locality prop-

erty, we still have difficulties to solve many-objective

optimization problems because although the running

time is much lower than that required by MOEAs which

use the traditional selection scheme based on IH , we

need to calculate the exact contribution to IH and this

is an NP-hard problem. Also, the authors conducted

a study about the randomly-chosen solution in MOPs

with k = 3. For this, they calculated, at each genera-

tion, the number of times in which the random solution

is eliminated and considering 30 independent runs, they

showed that the random solutions are eliminated at the

beginning of the search process. And, as the search pro-

cess progresses, the new solution or its nearest neighbor

is eliminated more often. From these results, we can see
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Fig. 7 In (a), xnew competes only with its nearest neighbor xnear and then xnear is eliminated. In (b), we choose xrand

randomly. Then, xnew, xnear and xrand compete to survive and xrand is eliminated.

that although for the case in which k = 3 the optimal

placement of a single solution is not determined by only

two neighbors, the competition scheme based on IH and

its locality property still works. This is because this se-

lection scheme does not need to know the entire neigh-

borhood, it only considers to move one solution in the

direction corresponding to its nearest neighbor. There-

fore, it is not important if the optimal placement of one

solution is determined by many (even all) solutions of

the population.

6 An alternative selection mechanism based on

the approximation of the contributions to the

hypervolume

As we mentioned above, there are some proposals to ap-

proximate the hypervolume. However, these techniques

were incorporated into MOEAs that use the traditional

selection scheme in which all individuals compete to

survive. In this work, we propose to use the approxima-

tion technique proposed by Bringmann and Friedrich in

[7] into the selection mechanism proposed by Menchaca

and Coello in [24]. There are two main motivations to

adopt this approach: First, Bringmann and Friedrich

proposed a technique to approximate the contribution

to the hypervolume of an individual without having to

calculate the hypervolume and the new selection mech-

anism proposed by Menchaca and Coello is based on

the hypervolume contributions. And second, we have

the following hypothesis: since the new selection mech-

anism needs to calculate the contribution of only three

individuals, we can reduce the error of the approxima-

tion, by increasing the number of samples and this will

not increase the running time in an excessive manner.

Also, the probability of deleting the individual with the

lowest contribution is greater than if we use the tradi-

tional competition scheme because we only deal with

three errors and not with P errors where P is the size

of the population. Furthermore, we expect that the con-

tributions of the new solution and its nearest neighbor

are different because our idea is to decide if we move the

current solution in the population (nearest neighbor of

the new solution) to the position of the new solution.

Therefore, we expect that the joint contribution of the

other solutions is fixed and the contribution of the new

solution and its nearest neighbor are different (locality

property). We designed an experimental test to validate

this last claim. We show experimentally our hypothesis

in Section 7. In Algorithm 1, we can see the procedure

to approximate the contribution to the hypervolume of

one individual in the population. And we can see our

alternative selection mechanism in Algorithm 2.

7 Experimental Results

To validate our alternative selection mechanism based

on the hypervolume indicator, we incorporated it into

the original SMS-EMOA [4] and we called it “ap-

proximate version of improved SMS-EMOA (aviSMS-

EMOA)”. For our experiments, we used problems with

up to six objective functions, seven of which were

taken from the Deb-Thiele-Laumanns-Zitzler (DTLZ)

test suite [13] and seven more were taken from the

Walking Fish Group (WFG) toolkit [18]. We used k = 5

for DTLZ1, DTLZ3 and DTLZ6 and k = 10 for the

remaining test problems. We used kfactor = 2 and

lfactor = 10 for the WFG test problems. For each test

problem, we performed 30 independent runs. For all al-

gorithms, we adopted the parameters suggested by the

authors of NSGA-II: pc = 0.9 (crossover probability),

pm = 1/n (mutation probability), where n is the num-

ber of decision variables. For the crossover and muta-
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Input : Current population, Pt, individual, x,
reference point, yref , and the number of
samples, nsamples.

Output: Approximation of the contribution to the
hypervolume of individual x, C̃H(x,Pt).

/*Defining the bounding box */

ybox ← yref ;
foreach xi ∈ Pt such that xi 6= x do

if x is dominated by xi in all objective functions

except in fk then
ybox[k]← xi[k];

end

end

/*Calculating the volume of the box BBx */

volumeBBx ← 1;
foreach Objective function k do

volumeBBx ← (volumeBBx)(ybox[k]− x[k]);
end

/*Doing sampling */

SuccessSamples← 0;
for j ← 1 to nsamples do

Generate a random point xr, such that xr ∈ BBx;
if Not exists another point xi ∈ Pt such that xi

dominates xr then
SuccessSamples← SuccessSamples+ 1;

end

end

return SuccessSamples
nsamples

(volumeBBx);

Algorithm 1: Approximating the contribution to

the hypervolume of individual x.

tion operators, we adopted ηc = 15 and ηm = 20, re-

spectively. We performed a maximum of 50,000 fitness

function evaluations (we used a population size of 100

individuals and we iterated for 500 generations). Only

in DTLZ3 we performed 100,000 evaluations (we used

a population size of 100 individuals and we iterated

for 1000 generations). However, we adopted four hours

as our maximum running time because we know that

the computation of the exact hypervolume contribution

has a high computational cost. All MOEAs considered

in our experiments were compiled using the GNU C

compiler and they were executed on a computer with a

2.66GHz processor and 4GB in RAM.

7.1 Performance Indicators

We adopted IH to validate our results because it re-

wards both convergence towards the Pareto front as

well as the maximum spread of the solutions obtained.

Also, most of the algorithms used in this work have

as their aim to maximize the hypervolume and, there-

fore, it makes sense to use this indicator to assess their

Input : Current population, Pt, and the new
solution, xnew.

Output: The new population, Pt+1.

/*Calculate the distance of each solution in Pt to

xnew */

foreach xi ∈ Pt do
disti ← ‖xi − xnew‖;

end

/*Choose the nearest solution to xnew */

xnear | distnear = min disti;

/*Choose one random solution */

Choose randomly xrand such that xrand ∈ Pt and
xrand 6= xnew;

/*Calculate the contributions to the hypervolume,

using Algorithm 1 */

C̃new ← C̃H(xnew,Pt);

C̃near ← C̃H(xnear,Pt);

C̃rand ← C̃H(xrand,Pt);

/*Remove the solution with the worst contribution

*/

xworst | C̃worst = min{C̃new, C̃near, C̃rand};
Pt+1 ← P \ xworst;

Algorithm 2: Alternative selection mechanism

based on the hypervolume.

performance 4. To calculate the hypervolume indica-

tor, we normalized the approximations of the Pareto

optimal set, generated by the MOEAs, and we used

yref = [y1, · · · , yk] such that yi = 1.1 as our reference

point. The normalization was performed considering all

approximations generated by the different MOEAs (i.e.,

we place, in one set, all nondominated solutions found

and from this set we calculate the maximum and min-

imum for each objective function).

Only in some experiments, we consider another

quality indicator called “two set coverage (ISC)” with

the aim of assessing only the convergence of the

MOEAs. ISC was proposed by Zitzler et al. [28] and

it is a Pareto compliant binary indicator. Let A,B two

approximations of the Pareto optimal set, ISC is defined

as follows:

ISC(A,B) =
|b ∈ B such that ∃a ∈ A with a ≺ b|

|B|

If all points in A dominate or are equal to all points

in B, then by definition ISC = 1. ISC = 0 implies that

no element in B is dominanted by any element of A.

In general, both ISC(A,B) and ISC(B,A) have to be

considered.

4 MOEA/D is not based on IH , but in this case, we also
used the “two set coverage” indicator.
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7.2 Approximate version of original SMS-EMOA vs

approximate version of improved SMS-EMOA

As we saw in the previous section, we propose to ap-

proximate the contributions to the hypervolume used

by the selection mechanism proposed in [24]. However,

this gives rise to the following question: why don’t we

approximate the contributions in the original version

of the SMS-EMOA? Our hypothesis is that it is bet-

ter to use the improved SMS-EMOA for two reasons:

First, we need to do sampling for each solution for which

we need to know its contribution. Therefore, if we use

a large number of samples, the running time drasti-

cally increases when employing the traditional selection

mechanism adopted by the original SMS-EMOA. This

is because in this case, it is required to know the contri-

butions of all the individuals at each iteration, unlike

the selection mechanism used by the improved SMS-

EMOA that only requires to know the contribution of

three individuals per iteration. And second, if we use

the improved SMS-EMOA, we can decrease the proba-

bility of not choosing the worst individual because we

only deal with three errors instead of dealing with P

errors (P is the population size). Also, it is important

to consider that the selection mechanism used in the

improved SMS-EMOA exploits the locality property of

the hypervolume. Thus, we estimate that the contri-

butions of the new individual and its nearest neighbor

will be different and that the joint contribution of the

remaining individuals is fixed.

In order to validate our hypothesis, we compare our

“aviSMS-EMOA” with respect to a version of the orig-

inal SMS-EMOA that approximates the contributions
to the hypervolume using Algorithm 1; this version is

called “approximate version of the original SMS-EMOA

(avoSMS-EMOA).” We ran tests with up to six objec-

tive functions because the avoSMS-EMOA algorithm

has a manageable running time up to this dimension-

ality. We used k(103) as our number of samples for

both algorithms, where k is the number of objective

functions (e.g., if we have a MOP with three objec-

tive functions, we use 3(103) = 3000 samples). We de-

cided to use this number of samples with the aim that

both MOEAs can finish the search or they can execute

the largest possible number of generations in the al-

lowable time (we must remember that we adopted four

hours as our maximum running time). However, in Sec-

tion 7.6, we study the behavior of our aviSMS-EMOA

with respect to the number of samples. Table 1 shows

the results of the DTLZ and WFG test problems with

respect to the hypervolume indicator. This table also

shows the statistical analysis applied to the experiments

using Wilcoxon’s rank sum. In this table, we can see

that our aviSMS-EMOA obtains better results in most

cases, avoSMS-EMOA obtained better results only in

nine cases. However, if we check the statistical analy-

sis, we can see that avoSMS-EMOA outperforms our

aviSMS-EMOA only in four cases because only in these

cases the hypothesis that “medians are equal” can be re-

jected. Moreover, our aviSMS-EMOA obtains better re-

sults than avoSMS-EMOA in forty-seven cases and the

hypothesis that “medians are equal” can be rejected in

forty-three cases. In summary, our aviSMS-EMOA out-

performs avoSMS-EMOA in 43 problems, it is outper-

formed in 4 problems, and both algorithms obtain simi-

lar results in 9 problems. Now, let’s check Table 2, which

shows the running time required by the two algorithms

to obtain the approximation of the Pareto front of each

test problem. In this table, we can see that our pro-

posed aviSMS-EMOA is significantly better in all cases

(we can say that, on average, it is ten times faster than

avoSMS-EMOA 5). This validates, experimentally, the

first part of our hypothesis with respect to the running

time. For validating the second part, we executed both

algorithms, avoSMS-EMOA and aviSMS-EMOA, but

we also calculate the exact contribution to the hypervol-

ume and we verify if the algorithm chooses the correct

individual to be deleted (worst individual) per iteration.

With the aim of calculating the success percentage of

each selection mechanism, we consider a success when

the algorithm deletes the worst individual. For this ex-

periment, we only use problems with three and four ob-

jective functions, in order to keep running times within

manageable values. In Table 3, we can see that the al-

ternative selection mechanism used in aviSMS-EMOA

achieves a high success rate (above 98% in all cases).

This does not happen with avoSMS-EMOA, which can-

not even reach a success rate of 1%. Thus, we can con-

clude that our proposed aviSMS-EMOA is better than

avoSMS-EMOA. This is an important result because

one of the objectives of this paper is to show that we

can significantly improve the current MOEAs based on

approximations of IH if we use the selection mechanism

proposed in [24].

5 It is important to clarify that aviSMS-EMOA is not 33
times faster than avoSMS-EMOA because avoSMS-EMOA
does not always calculate 100 contributions to IH (only when
after applying Pareto ranking, a single front is obtained).
Also, aviSMS- EMOA only uses the selection mechanism
based on IH and its locality property when, after applying
Pareto ranking, we only obtain a single front. Otherwise, both
algorithms use the number of solutions that dominate certain
solution as suggested by Beume et al. in [4].
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7.3 HyPE version of SMS-EMOA vs approximate

version of improved SMS-EMOA

In this section, we adopt a version of the original SMS-

EMOA that uses the fitness assignment scheme pro-

posed in [3] instead of calculating the exact contribu-

tions 6, and which we called “HyPE version of SMS-

EMOA (hypeSMS-EMOA)”. For hypeSMS-EMOA, we

used the source code of HyPE, which is available in

the public domain. In both techniques, we used k(103)

as our number of samples, where k is the number of

objective functions. Table 4 shows the results for the

DTLZ and WFG test problems, with up to six objec-

tive functions, with respect to the hypervolume indi-

cator. This table also presents the statistical analysis

of our experiments using Wilcoxon’s rank sum. In this

table, we can see that our aviSMS-EMOA obtains bet-

ter results than hypeSMS-EMOA in forty-eight prob-

lems and in forty-six of these problems, the hypothe-

sis “medians are equal” can be rejected. Only in eight

problems, hypeSMS-EMOA obtains better results than

our aviSMS-EMOA and only in four cases, we can say

that it outperforms our aviSMS-EMOA because the

hypothesis can be rejected. Summarizing, our aviSMS-

EMOA outperforms hypeSMS-EMOA in 46 problems,

it is outperformed in 4 problems and in 6 problems

both algorithms obtain similar results. In Table 5, we

can see the running time required by the two algorithms

and we can note that hypeSMS-EMOA is better than

our aviSMS-EMOA in all cases. However, as we saw

in Table 4 the hypeSMS-EMOA algorithm loses qual-

ity in its solutions and although our aviSMS-EMOA

is slower than hypeSMS-EMOA, its time requirements

are still manageable (in the worst case, it requires ap-

proximately twenty-four minutes to solve problems with

up to six objective functions). In Figure 8, we can see

the Pareto fronts obtained by the algorithms hypeSMS-

EMOA, aviSMS-EMOA and the original SMS-EMOA,

in the median of thirty independent runs (with respect

to the hypervolume indicator) for some of the prob-

lems used. In this figure, we can see that hypeSMS-

EMOA loses quality in the distribution of the solutions

and, in some problems, it cannot even generate the en-

tire Pareto front (for example, in DTLZ6, WFG1 and

WFG7). On the other hand, our aviSMS-EMOA ob-

tains a good distribution in all cases, similar to those

obtained by the original SMS-EMOA but at a much

lower computational cost.

6 It is important to mention that our aim was to validate
the selection mechanism. Therefore, we decided to use the
same MOEA in all cases and we only changed the selection
mechanism. For this reason, we did not use the original HyPE.

7.4 Approximate version of the improved SMS-EMOA

vs the original SMS-EMOA

In this section, we compare our aviSMS-EMOA with

respect to the original SMS-EMOA. We tested it only

with up to five objective functions because the orig-

inal SMS-EMOA already exceeds the allowable time

in problems with five objective functions. Tables 6, 7

and 8 show that our aviSMS-EMOA is competitive

with respect to the original SMS-EMOA. In Table 7,

we present the results with respect to the hypervolume

indicator and we also present the results of the statisti-

cal analysis that we made to validate our experiments,

using Wilcoxon’s rank sum. Although, in most prob-

lems, the original SMS-EMOA obtains better results

than our aviSMS-EMOA, the aim of this work was to

design a new MOEA based on the approximations of

IH which can significantly reduce the computational

cost of MOEAs based on the exact calculation of IH
in many-objective optimization problems but without

losing much quality. In Table 8, we can see that our

algorithm requires at most 24 minutes to solve prob-

lems with five objective functions (9.5% of the allowable

time), while the original SMS-EMOA spends all the al-

lowable time (four hours) and it is unable to finish the

search. It is important to note that our aviSMS-EMOA

outperformed the original SMS-EMOA in four problems

(DTLZ6, WFG1, WFG4 and WFG7 with five objective

functions) in spite of the fact that it requires much less

running time.

Finally, in Table 6, we show the results correspond-

ing to the “two set coverage” indicator ISC . To calculate

it, we merged all solutions found by our aviSMS-EMOA

in a set called A, considering all the 30 independent

runs, and we merged all solutions found by the original

SMS-EMOA in a set called B. From this table, we can

say that in only eleven problems SMS-EMOA covered

some solutions generated by aviSMS-EMOA and that

aviSMS-EMOA could not cover any solution generated

by SMS-EMOA, i.e., in these eleven problems, SMS-

EMOA was better than our aviSMS-EMOA in terms

of convergence. However, in the remaining thirty-one

problems, our aviSMS-EMOA covered some solutions

generated by SMS-EMOA and, therefore, we cannot say

which algorithm is better. There were no cases in which

SMS-EMOA was able to cover all solutions generated

by our aviSMS-EMOA and in which aviSMS-EMOA

was unable to cover any solution generated by SMS-

EMOA. Therefore, we can say that only in 26% of the

problems (eleven cases) SMS-EMOA outperforms our

aviSMS-EMOA in terms of convergence. In the other

74% of the problems (thirty-one cases) both algorithms

had a similar performance in terms of this indicator.
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7.5 Approximate version of the improved SMS-EMOA

vs MOEA/D

Finally, in this section, we compare our aviSMS-EMOA

with respect to another well-known MOEA which is

called MOEA/D. We chose this MOEA because it has

been an alternative to deal with many-objective op-

timization problems in recent years and its computa-

tional cost is very low. MOEA/D [27] decomposes the

MOP into N scalar optimization subproblems and then

it solves these subproblems simultaneously using an

evolutionary algorithm. For our experiments, we used

the version in which MOEA/D adopts PBI (Penalty

Boundary Intersection) to decompose the MOP 7 and

we generated the convex weights using the technique

proposed in [11] and after that, we applied clustering

(k-means) to obtain a specific number of weights.

Table 10 shows the results for the DTLZ and WFG

test problems, with up to six objective functions, with

respect to the hypervolume indicator. This table also

presents the statistical analysis of our experiments us-

ing Wilcoxon’s rank sum. From these results, we can

say that our aviSMS-EMOA outperforms MOEA/D in

fifty-one problems, it is outperformed by MOEA/D in

one problem and both algorithms have a similar behav-

ior in the remaining four problems. Table 9 shows that

our aviSMS-EMOA was able to cover a big percentage

of the solutions generated by MOEA/D in some prob-

lems and MOEA/D did not cover any solutions gener-

ated by our aviSMS-EMOA in many cases. Then, we

can say that the convergence of our aviSMS-EMOA is

better than the convergence of MOEA/D. With respect

to the running time required by each MOEA, MOEA/D

outperforms our aviSMS-EMOA because it only needs

a maximum of one second to solve MOPs with 6 objec-

tive functions while aviSMS-EMOA needs twenty-two

minutes.

Finally, we present a brief study on the effect of

the population size on the performance of these two

MOEAs. It is normally assumed that if we increase

the number of objective functions, we should increase

the population size as well. However, MOEAs based

on IH are not practical when we use big populations

because their computational costs increase rapidly (we

need to compute more times the contribution to IH).

Our aviSMS-EMOA is more practical in this sense for

two reasons: (i) it only needs to calculate three con-

tributions to IH per iteration regardless of the pop-

ulation size and (ii) it does not compute the exact

contributions to IH , it only approximates them. For

7 We decided to use PBI because the resulting optimal so-
lutions with PBI are normally much better distributed than
those obtained by the Tchebycheff approach [27].

our study, we only used the DTLZ2 test problem with

3, 4 and 5 objective functions and we used a popu-

lation size equal to 300, 350 and 400 individuals, re-

spectively. Table 11 shows the results. In (a), we can

see that our aviSMS-EMOA is better than MOEA/D

regarding IH because it obtains better results and we

also can reject the null hypothesis in all three cases. In

(b), we can see that our aviSMS-EMOA is better than

MOEA/D in terms of convergence in two cases because

aviSMS-EMOA was able to cover some solutions found

by MOEA/D and MOEA/D could not cover any so-

lution found by aviSMS-EMOA. Only in DTLZ2 with

three objective functions both MOEAs have a similar

behavior because MOEA/D was able to cover some so-

lutions found by aviSMS-EMOA and, therefore, we can-

not say if one of these MOEAs is better. With respect

to the running time, we can see in (c) that MOEA/D

is much faster than our aviSMS-EMOA because it only

needs two seconds to solve problems with 3, 4 or 5 ob-

jective functions while our aviSMS-EMOA consumes

all the allowable running time (4 hours). Although

MOEA/D is very fast, it is important to keep in mind

that MOEA/D needs to generate a well-distributed set

of convex weights and this task is not easy when we

increase the number of objective functions.

7.6 Study: aviSMS-EMOA and the number of samples

As we mentioned in Section 4, Bringmann and Friedrich

proposed a method to approximate the contribution to

IH of one solution. However, their main goal was to

find the solution from a set of solutions with the least

contribution to IH , then, they present a way in which

we can determine the number of samples to guarantee

that for any given δ and ε ≥ 0 the obtained solution is

with a probability of (1−δ) larger by at most a factor of

(1+ε) than the least contributor. Also, Nowak et al. [26]

made an empirical study about the number of samples

in the approximation method proposed by Bringmann

and Friedrich to find the least contributor. They used

δ = 10−6 and ε = 10−2. In one of their experiments

in which they used 200 points, the number of samples

was: 104 for points with dimension equal to 3, between

104 and 105 for points with dimension equal to 4 and 5,

105 for points with dimension equal to 6, between 105

and 106 for points with dimension equal to 7, between

106 and 107 for points with dimension equal to 8, 107

and 108 for points with dimension equal to 9 and 10,

108 for point with dimension equal to 11, 109 for points

with dimension equal to 12. And, an interesting thing is

that for points with dimension greater than 12 the num-

ber of samples can decrease significantly, e.g., for points

with dimension equal to 90 the number of samples was
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Fig. 8 Pareto fronts obtained by the three algorithms in the median (with respect to the hypervolume indicator) of their
independent runs for the test problems DTLZ1, DTLZ2, DTLZ6, WFG1, WFG3 and WFG7.

between 104 and 105. Some of their conclusions were

the following: (i) there is a dependence between the

number of samples and the dimension, (ii) the num-

ber of samples increases when two or more points differ

very little in their contribution (this was called “hard-

ness of approximation” in the original work by Bring-

mann and Friedrich) and, (iii) the effect “hardness of

approximation” seems to be inversely proportional to

the dimension when the number of points is fixed. The

authors mentioned that this can be attributed to rel-

atively sparse distribution of points as the dimension

increases, leading to fewer occurrences of hard cases.

Since we do not use the complete algorithm pro-

posed by Bringmann and Friedrich in which they want
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to find the point with the least contribution to IH from

a set of points and we only use the way in which the

contribution is approximated. We decided to conduct a

study, in which we use 102, 103, 104 and 105 samples

to approximate the contribution to IH in our aviSMS-

EMOA and we consider the DTLZ2 test problem with

3, 4, 5, 6, 7, 8, 9 and 10 objective functions. We made

our experiments using a population size equal to 100.

We decided to use up to 105 samples because according

to the empirical results presented by Nowak et al. we

need at most 105 samples for solving problems with di-

mension greater or equal than 2 and less or equal than

7 and problems with dimension greater or equal than

40 and less or equal than 90 to obtain a good approx-

imation (when δ = 10−6 and ε = 10−2 as suggested by

Bringmann and Friedrich). And also, for this number

of samples our aviSMS-EMOA requires less than four

hours (maximum allowable running time) to obtain the

approximation of the Pareto front. Therefore, we can

think that this is a good number of samples that our

aviSMS-EMOA could adopt. As in the above Sections,

to calculate the hypervolume indicator, we normalized

the approximations of the Pareto optimal set, gener-

ated by aviSMS-EMOA and we used yref = [y1, · · · , yk]

such that yi = 1.1 as our reference point. The normal-

ization was performed considering all approximations

generated by aviSMS-EMOA using a different number

of samples (i.e., we place, in one set, all nondominated

solutions found and from this set we calculate the max-

imum and minimum for each objective function). In

Table 12, we can see that aviSMS-EMOA improved the

quality in its solutions significantly when we increase

the number of samples. And, an interesting thing is that

in Table 13 we can see that our aviSMS-EMOA is still

faster than avoSMS-EMOA (avoSMS-EMOA required

8418 seconds to solve the DTLZ2 test problems with

six objective funtions using 6000 samples while aviSMS-

EMOA required 3546 seconds to solve the same problem

using 105 samples). It is important to mention that the

running time decreases as we increase the number of

objective functions and this is because aviSMS-EMOA

only uses the selection mechanism based on IH and its

locality property when, after applying Pareto ranking,

we only obtain one front. Therefore, we can claim that

our aviSMS-EMOA is a good option to solve MOPs

with low or high dimensionality in objective function

space.

8 Conclusions and Future Work

We have studied some MOEAs based on the hypervol-

ume indicator, finding that in most cases, they use a tra-

ditional competition scheme. The exception is the im-

proved SMS-EMOA proposed by Menchaca and Coello

[24], which uses a different competition scheme that ex-

ploits the locality property of the hypervolume. Also,

we have studied different techniques to approximate the

hypervolume, and we found out that the technique pro-

posed by Bringmann and Friedrich [7] is an excellent

choice to be incorporated into the competition scheme

of a MOEA that exploits the locality property of the

hypervolume. This assumption is based on the following

hypothesis: Since the selection mechanism proposed by

Menchaca and Coello needs to calculate the contribu-

tion of only three individuals, we can reduce the error

of the approximation in two ways: (i) by increasing the

number of samples without excessively increasing the

running time and (ii) by considering that the probabil-

ity of deleting the individual with the lowest contribu-

tion is greater than if we use the traditional competition

scheme, because in this case we only deal with three er-

rors and not with P errors (where P is the population

size). This hypothesis has been empirically validated in

this paper. Our results showed that our proposed se-

lection scheme is a viable alternative for solving MOPs

with many objective functions, since it provides reason-

ably good solutions at a very affordable computational

cost.

We also proposed an approximate version of the

improved SMS-EMOA, which was called “aviSMS-

EMOA”. This approach incorporates our proposed se-

lection mechanism into the original SMS-EMOA [4].

We compared our proposed aviSMS-EMOA with re-

spect to different versions of the original SMS-EMOA:

avoSMS-EMOA (which uses the technique proposed by

Bringmann and Friedrich [7] in a traditional competi-
tion scheme), hypeSMS-EMOA (which assigns fitness

to each individual in the population, using the tech-

nique proposed by Bader and Zitzler [3]) and SMS-

EMOA. Also, we compared our aviSMS-EMOA with

respect to MOEA/D using PBI. We showed that our

proposed aviSMS-EMOA outperforms avoSMS-EMOA,

hypeSMS-EMOA and MOEA/D. Moreover, we can say

that our aviSMS-EMOA outperforms SMS-EMOA, if

we consider both the quality of the approximation of

the Pareto front and the computational cost required

to obtain that approximation. This is because our pro-

posed aviSMS-EMOA obtains competitive results with

respect to SMS-EMOA but at a much lower computa-

tional cost. Although with respect to IH , SMS-EMOA

was better than aviSMS-EMOA in most problems, re-

garding ISC , in thirty-one problems (73% of the total

problems), we saw that aviSMS-EMOA was able to gen-

erate solutions that no solution found by SMS-EMOA

can dominate. Since we cannot say if the nondominated

solutions found by SMS-EMOA are better than the
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nondominated solutions found by aviSMS-EMOA, we

claim that they are both competitive in these thirty-

one problems. Finally, we also conducted a study about

the number of samples that our aviSMS-EMOA should

use to increase the quality of the solutions but with-

out exceed four hours as maximum running time and

we concluded that 105 is a good choice. However, we

should not forget that aviSMS-EMOA allows us to bal-

ance the quality of the solutions and the running time

required to obtain them.

As part of our future work, we plan to study other

techniques to approximate the contribution of the hy-

pervolume with the aim of reducing even more the run-

ning time of our proposed scheme, as well as its ap-

proximation error. We are also interested in studying

other performance indicators, such as the ε indicator

[29], which is also Pareto compliant [31]. The aim would

be to use the ε indicator to select solutions and the hy-

pervolume to distribute them, with the goal of having

a hybrid selection scheme that is more effective and

efficient than any of the hypervolume-based selection

schemes currently available. Finally, we plan to design

a version of aviSMS-EMOA which is able to use large

population sizes. The idea is to start the search using a

small population size and to increase its size over time.

In this way, we can obtain more accurate knowledge

about the Pareto front in many-objective problems but

saving both evaluations of the objective functions and

calculations of the contributions to IH .
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f

avo
SMS-EMOA

IH

avi
SMS-EMOA

IH

P (H)

DTLZ1 (3)
1.119355

(0.000752)
1.122217
(0.000494)

0.000 (1)

DTLZ2 (3)
0.752558

(0.000827)
0.758602

(0.000340)
0.000 (1)

DTLZ3 (3)
1.328649

(0.000456)

1.328265
(0.000700)

0.000 (1)

DTLZ4 (3)
0.869511

(0.000606)
0.873943

(0.000250)
0.000 (1)

DTLZ5 (3)
0.266479

(0.000073)
0.266585
(0.000048)

0.000 (1)

DTLZ6 (3)
1.093792

(0.003768)
1.094423
(0.004341)

0.739 (0)

DTLZ7 (3)
0.550945

(0.040583)
0.552256

(0.048770)
0.000 (1)

DTLZ1 (4)
1.359120

(0.003350)
1.366684

(0.001205)
0.000 (1)

DTLZ2 (4)
1.020956

(0.002523)
1.035152

(0.001397)
0.000 (1)

DTLZ3 (4)
1.462183

(0.002832)
1.463597
(0.000130)

0.000 (1)

DTLZ4 (4)
1.021915

(0.001837)
1.035100

(0.000920)
0.000 (1)

DTLZ5 (4)
0.542823

(0.000578)
0.545064

(0.000508)
0.000 (1)

DTLZ6 (4)
1.204105

(0.005438)
1.206271

(0.004888)
0.057 (0)

DTLZ7 (4)
0.558208
(0.045049)

0.550050
(0.061062)

0.228 (0)

DTLZ1 (5)
0.000157

(0.000847)
1.541811
(0.005706)

0.000 (1)

DTLZ2 (5)
1.283019

(0.007232)
1.300072

(0.004737)
0.000 (1)

DTLZ3 (5)
1.602555

(0.003153)
1.608407

(0.003140)
0.000 (1)

DTLZ4 (5)
1.242106

(0.006623)
1.264793

(0.004457)
0.000 (1)

DTLZ5 (5)
0.928496

(0.001337)
0.930685
(0.001020)

0.000 (1)

DTLZ6 (5)
1.519338

(0.002185)

1.519103
(0.001631)

0.853 (0)

DTLZ7 (5)
0.585090

(0.009424)
0.589229

(0.020254)
0.001 (1)

DTLZ1 (6)
0.000000

(0.000000)
1.549649

(0.202423)
0.000 (1)

DTLZ2 (6)
1.643348

(0.006121)
1.655438
(0.003776)

0.000 (1)

DTLZ3 (6)
1.765905

(0.003950)
1.770941
(0.000163)

0.000 (1)

DTLZ4 (6)
1.551908

(0.011219)
1.572087

(0.006064)
0.000 (1)

DTLZ5 (6)
1.023163

(0.001465)
1.031885

(0.001188)
0.000 (1)

DTLZ6 (6)
1.634232
(0.003208)

1.631369
(0.002293)

0.000 (1)

DTLZ7 (6)
0.760641

(0.009346)
0.773352
(0.010180)

0.000 (1)

f

avo
SMS-EMOA

IH

avi
SMS-EMOA

IH

P (H)

WFG1 (3)
1.213067
(0.017999)

1.205361
(0.024067)

0.067 (0)

WFG2 (3)
0.773147

(0.090704)
0.799503

(0.074819)
0.318 (0)

WFG3 (3)
0.634272

(0.000975)
0.636772

(0.003130)
0.000 (1)

WFG4 (3)
0.745912

(0.001248)
0.752357

(0.001500)
0.000 (1)

WFG5 (3)
0.554767

(0.001288)
0.557581
(0.001661)

0.000 (1)

WFG6 (3)
0.562236

(0.001805)
0.565928
(0.001409)

0.000 (1)

WFG7 (3)
0.736256

(0.004506)
0.748956

(0.003767)
0.000 (1)

WFG1 (4)
1.416596

(0.009155)

1.414339
(0.008604)

0.245 (0)

WFG2 (4)
0.001735

(0.008153)
0.300548

(0.254003)
0.000 (1)

WFG3 (4)
0.583248

(0.003331)
0.592232
(0.006450)

0.000 (1)

WFG4 (4)
1.014467

(0.003034)
1.030276

(0.003034)
0.000 (1)

WFG5 (4)
0.591930

(0.001643)
0.598550

(0.001842)
0.000 (1)

WFG6 (4)
0.589722

(0.007086)
0.610031

(0.006558)
0.000 (1)

WFG7 (4)
0.901884

(0.007163)
0.915375
(0.006581)

0.000 (1)

WFG1 (5)
1.548501
(0.006609)

1.547656
(0.006617)

0.795 (0)

WFG2 (5)
0.022475

(0.038981)
0.407945

(0.205793)
0.000 (1)

WFG3 (5)
0.568612

(0.017204)
0.576101

(0.022876)
0.093 (0)

WFG4 (5)
1.248211

(0.005244)
1.270178

(0.004494)
0.000 (1)

WFG5 (5)
0.644069

(0.003874)
0.655659
(0.002092)

0.000 (1)

WFG6 (5)
0.516213

(0.037908)
0.598269

(0.027623)
0.000 (1)

WFG7 (5)
1.023308

(0.008889)
1.032123

(0.012809)
0.004 (1)

WFG1 (6)
1.703600

(0.010057)

1.691179
(0.014593)

0.000 (1)

WFG2 (6)
0.017461

(0.036667)
0.487496
(0.254908)

0.000 (1)

WFG3 (6)
0.550745

(0.034929)
0.590424
(0.049438)

0.000 (1)

WFG4 (6)
1.468713

(0.005597)
1.492717

(0.007779)
0.000 (1)

WFG5 (6)
0.700614

(0.003190)
0.720380

(0.002684)
0.000 (1)

WFG6 (6)
0.526582

(0.042342)
0.637238
(0.050036)

0.000 (1)

WFG7 (6)
1.014516
(0.061564)

0.907848
(0.066396)

0.000 (1)

Table 1 Results obtained in the DTLZ and WFG test problems by avoSMS-EMOA and aviSMS-EMOA, using the hypervolume
indicator. We show average values over 30 independent runs. The values in parentheses correspond to the standard deviations.
The third column shows the results of the statistical analysis applied to our experiments using Wilcoxon’s rank sum. P is the
probability of observing the given result (the null hypothesis is true). Small values of P cast doubt on the validity of the null
hypothesis. H = 0 indicates that the null hypothesis (“medians are equal”) cannot be rejected at the 5% level. H = 1 indicates
that the null hypothesis can be rejected at the 5% level.
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f
avo

SMS-EMOA
time

avi
SMS-EMOA

time

DTLZ1 (3) ≈ 4593 s ≈ 385 s
DTLZ2 (3) ≈ 10349 s ≈ 889 s
DTLZ3 (3) ≈ 14300 s ≈ 1298 s
DTLZ4 (3) ≈ 10482 s ≈ 888 s
DTLZ5 (3) ≈ 897 s ≈ 172 s
DTLZ6 (3) ≈ 5203 s ≈ 409 s
DTLZ7 (3) ≈ 8469 s ≈ 738 s
DTLZ1 (4) ≈ 4215 s ≈ 394 s
DTLZ2 (4) ≈ 12071 s ≈ 961 s
DTLZ3 (4) ≈ 11419 s ≈ 1399 s
DTLZ4 (4) ≈ 12062 s ≈ 948 s
DTLZ5 (4) ≈ 4679 s ≈ 495 s
DTLZ6 (4) ≈ 5794 s ≈ 567 s
DTLZ7 (4) ≈ 11439 s ≈ 974 s
DTLZ1 (5) ≈ 5488 s ≈ 350 s
DTLZ2 (5) ≈ 9542 s ≈ 798 s
DTLZ3 (5) ≈ 12807 s ≈ 1346 s
DTLZ4 (5) ≈ 9558 s ≈ 776 s
DTLZ5 (5) ≈ 5950 s ≈ 557 s
DTLZ6 (5) ≈ 6878 s ≈ 649 s
DTLZ7 (5) ≈ 13077 s ≈ 1135 s
DTLZ1 (6) ≈ 8364 s ≈ 436 s
DTLZ2 (6) ≈ 8418 s ≈ 750 s
DTLZ3 (6) ≈ 14410 s ≈ 1164 s
DTLZ4 (6) ≈ 8426 s ≈ 726 s
DTLZ5 (6) ≈ 6913 s ≈ 662 s
DTLZ6 (6) ≈ 7954 s ≈ 754 s
DTLZ7 (6) ≈ 13879 s ≈ 1324 s

f
avo

SMS-EMOA
time

avi
SMS-EMOA

time

WFG1 (3) ≈ 13915 s ≈ 1176 s
WFG2 (3) ≈ 4706 s ≈ 474 s
WFG3 (3) ≈ 6627 s ≈ 554 s
WFG4 (3) ≈ 13945 s ≈ 1230 s
WFG5 (3) ≈ 10697 s ≈ 896 s
WFG6 (3) ≈ 9574 s ≈ 736 s
WFG7 (3) ≈ 14415 s ≈ 1351 s
WFG1 (4) ≈ 11621 s ≈ 882 s
WFG2 (4) ≈ 6353 s ≈ 693 s
WFG3 (4) ≈ 7828 s ≈ 628 s
WFG4 (4) ≈ 14419 s ≈ 1238 s
WFG5 (4) ≈ 10827 s ≈ 878 s
WFG6 (4) ≈ 10351 s ≈ 799 s
WFG7 (4) ≈ 14319 s ≈ 1129 s
WFG1 (5) ≈ 7432 s ≈ 614 s
WFG2 (5) ≈ 9955 s ≈ 1007 s
WFG3 (5) ≈ 9945 s ≈ 815 s
WFG4 (5) ≈ 13473 s ≈ 1091 s
WFG5 (5) ≈ 13090 s ≈ 1123 s
WFG6 (5) ≈ 12392 s ≈ 1000 s
WFG7 (5) ≈ 12685 s ≈ 992 s
WFG1 (6) ≈ 5974 s ≈ 558 s
WFG2 (6) ≈ 13436 s ≈ 1339 s
WFG3 (6) ≈ 11710 s ≈ 1058 s
WFG4 (6) ≈ 12737 s ≈ 1042 s
WFG5 (6) ≈ 14413 s ≈ 1332 s
WFG6 (6) ≈ 14416 s ≈ 1359 s
WFG7 (6) ≈ 12346 s ≈ 992 s

Table 2 Time required by avoSMS-EMOA and aviSMS-EMOA for the test problems adopted. s = seconds. Both algorithms
were compiled using the GNU C compiler and they were executed on a computer with a 2.66GHz processor and 4GB in RAM.

f
avo

SMS-EMOA
success

avi
SMS-EMOA

success

DTLZ1 (3)
0.010551

(0.003024)
0.973352
(0.002994)

DTLZ2 (3)
0.010578

(0.003577)
0.976261
(0.001304)

DTLZ3 (3)
0.008350

(0.003084)
0.953463
(0.011867)

DTLZ4 (3)
0.009864

(0.002434)
0.968088
(0.001255)

DTLZ5 (3)
0.009462

(0.001427)
0.869048
(0.009573)

DTLZ6 (3)
0.011180

(0.001651)
0.967014
(0.015320)

DTLZ7 (3)
0.009721

(0.003322)
0.990437
(0.001576)

DTLZ1 (4)
0.009780

(0.002375)
0.929687
(0.004549)

DTLZ2 (4)
0.009171

(0.002870)
0.958048
(0.001183)

DTLZ3 (4)
0.007843

(0.002046)
0.871917
(0.022897)

DTLZ4 (4)
0.009949

(0.002545)
0.937088
(0.001944)

DTLZ5 (4)
0.009950

(0.002343)
0.945747
(0.002642)

DTLZ6 (4)
0.010536

(0.002724)
0.963123
(0.002079)

DTLZ7 (4)
0.009045

(0.002350)
0.983524
(0.004796)

f
avo

SMS-EMOA
success

avi
SMS-EMOA

success

WFG1 (3)
0.009368

(0.002253)
0.981253
(0.001282)

WFG2 (3)
0.010965

(0.002512)
0.976954
(0.004540)

WFG3 (3)
0.009335

(0.001776)
0.986898
(0.000819)

WFG4 (3)
0.009588

(0.003385)
0.997338
(0.000251)

WFG5 (3)
0.009214

(0.003495)
0.981864
(0.000761)

WFG6 (3)
0.009902

(0.002373)
0.986261
(0.000806)

WFG7 (3)
0.009955

(0.003873)
0.986393
(0.000630)

WFG1 (4)
0.008880

(0.003976)
0.970744
(0.001421)

WFG2 (4)
0.011041

(0.002897)
0.930375
(0.010810)

WFG3 (4)
0.010296

(0.004187)
0.979382
(0.001668)

WFG4 (4)
0.009413

(0.002984)
0.994394
(0.000436)

WFG5 (4)
0.009564

(0.003095)
0.981475
(0.000773)

WFG6 (4)
0.010444

(0.002686)
0.971220
(0.002110)

WFG7 (4)
0.008602

(0.004414)
0.984837
(0.000790)

Table 3 Success rate achieved by both, avoSMS-EMOA and aviSMS-EMOA. Since the two selection mechanisms delete the
individual with the worst contribution, we define success when the following occurs: When the algorithm deletes the true worst
individual (in order to know which is the true worst individual, we compute the exact contribution).
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f

hype
SMS-EMOA

IH

avi
SMS-EMOA

IH

P (H)

DTLZ1 (3)
1.101012

(0.006067)
1.122217
(0.000494)

0.000 (1)

DTLZ2 (3)
0.743232

(0.002097)
0.758602

(0.000340)
0.000 (1)

DTLZ3 (3)
1.328533

(0.000169)

1.328265
(0.000700)

0.487 (0)

DTLZ4 (3)
0.863879

(0.001943)
0.873943

(0.000250)
0.000 (1)

DTLZ5 (3)
0.265428

(0.000238)
0.266585
(0.000048)

0.000 (1)

DTLZ6 (3)
1.082554

(0.015066)
1.094423
(0.004341)

0.000 (1)

DTLZ7 (3)
0.534802

(0.033129)
0.552256

(0.048770)
0.000 (1)

DTLZ1 (4)
1.258490

(0.056806)
1.366684

(0.001205)
0.000 (1)

DTLZ2 (4)
1.008560

(0.003414)
1.035152

(0.001397)
0.000 (1)

DTLZ3 (4)
1.463624
(0.000067)

1.463597
(0.000130)

0.695 (0)

DTLZ4 (4)
1.014310

(0.004246)
1.035100

(0.000920)
0.000 (1)

DTLZ5 (4)
0.518095

(0.004575)
0.545064

(0.000508)
0.000 (1)

DTLZ6 (4)
1.056882

(0.017816)
1.206271

(0.004888)
0.000 (1)

DTLZ7 (4)
0.507082

(0.030202)
0.550050
(0.061062)

0.002 (1)

DTLZ1 (5)
1.237122

(0.348331)
1.541811
(0.005706)

0.000 (1)

DTLZ2 (5)
1.281626

(0.004608)
1.300072

(0.004737)
0.000 (1)

DTLZ3 (5)
1.608858

(0.000222)

1.608407
(0.003140)

0.004 (1)

DTLZ4 (5)
1.254611

(0.005040)
1.264793

(0.004457)
0.000 (1)

DTLZ5 (5)
0.871195

(0.008001)
0.930685
(0.001020)

0.000 (1)

DTLZ6 (5)
1.433997

(0.008634)
1.519103

(0.001631)
0.000 (1)

DTLZ7 (5)
0.473364

(0.056567)
0.589229

(0.020254)
0.000 (1)

DTLZ1 (6)
1.500805

(0.234972)
1.549649

(0.202423)
0.162 (0)

DTLZ2 (6)
1.658514
(0.002679)

1.655438
(0.003776)

0.000 (1)

DTLZ3 (6)
1.771045
(0.000047)

1.770941
(0.000163)

0.000 (1)

DTLZ4 (6)
1.583394

(0.003860)

1.572087
(0.006064)

0.000 (1)

DTLZ5 (6)
0.941583

(0.011495)
1.031885

(0.001188)
0.000 (1)

DTLZ6 (6)
1.460519

(0.022557)
1.631369
(0.002293)

0.000 (1)

DTLZ7 (6)
0.450393

(0.124927)
0.773352
(0.010180)

0.000 (1)

f

hype
SMS-EMOA

IH

avi
SMS-EMOA

IH

P (H)

WFG1 (3)
1.017526

(0.067671)
1.205361
(0.024067)

0.000 (1)

WFG2 (3)
0.647049

(0.054860)
0.799503

(0.074819)
0.000 (1)

WFG3 (3)
0.606017

(0.006630)
0.636772

(0.003130)
0.000 (1)

WFG4 (3)
0.701693

(0.005039)
0.752357

(0.001500)
0.000 (1)

WFG5 (3)
0.537158

(0.002760)
0.557581
(0.001661)

0.000 (1)

WFG6 (3)
0.547413

(0.003932)
0.565928
(0.001409)

0.000 (1)

WFG7 (3)
0.558748

(0.028965)
0.748956

(0.003767)
0.000 (1)

WFG1 (4)
1.147478

(0.026432)
1.414339

(0.008604)
0.000 (1)

WFG2 (4)
0.422296

(0.256235)

0.300548
(0.254003)

0.084 (0)

WFG3 (4)
0.527767

(0.016347)
0.592232
(0.006450)

0.000 (1)

WFG4 (4)
0.932772

(0.008365)
1.030276

(0.003034)
0.000 (1)

WFG5 (4)
0.558728

(0.005313)
0.598550

(0.001842)
0.000 (1)

WFG6 (4)
0.562704

(0.011569)
0.610031

(0.006558)
0.000 (1)

WFG7 (4)
0.417145

(0.032298)
0.915375
(0.006581)

0.000 (1)

WFG1 (5)
1.245126

(0.027633)
1.547656
(0.006617)

0.000 (1)

WFG2 (5)
0.496898

(0.219141)

0.407945
(0.205793)

0.176 (0)

WFG3 (5)
0.424716

(0.034430)
0.576101

(0.022876)
0.000 (1)

WFG4 (5)
1.116985

(0.018688)
1.270178

(0.004494)
0.000 (1)

WFG5 (5)
0.564973

(0.012296)
0.655659
(0.002092)

0.000 (1)

WFG6 (5)
0.437411

(0.035684)
0.598269

(0.027623)
0.000 (1)

WFG7 (5)
0.309892

(0.022794)
1.032123

(0.012809)
0.000 (1)

WFG1 (6)
1.356902

(0.031802)
1.691179

(0.014593)
0.000 (1)

WFG2 (6)
0.369049

(0.247980)
0.487496
(0.254908)

0.072 (0)

WFG3 (6)
0.353758

(0.043983)
0.590424
(0.049438)

0.000 (1)

WFG4 (6)
1.282154

(0.024684)
1.492717

(0.007779)
0.000 (1)

WFG5 (6)
0.523809

(0.020982)
0.720380

(0.002684)
0.000 (1)

WFG6 (6)
0.369149

(0.052829)
0.637238
(0.050036)

0.000 (1)

WFG7 (6)
0.264190

(0.017844)
0.907848
(0.066396)

0.000 (1)

Table 4 Comparison of the results obtained in the DTLZ and WFG test problems by hypeSMS-EMOA and aviSMS-EMOA,
with respect to the hypervolume indicator. We show average values over 30 independent runs. The values in parentheses
correspond to the standard deviations. The third column shows the results of the statistical analysis applied to our experiments
using Wilcoxons rank sum. P is the probability of observing the given result (the null hypothesis is true). Small values of P
cast doubt on the validity of the null hypothesis. H = 0 indicates that the null hypothesis (“medians are equal”) cannot be
rejected at the 5% level. H = 1 indicates that the null hypothesis can be rejected at the 5% level.
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f
hype

sms-emoa
time

avi
SMS-EMOA

time

DTLZ1 (3) ≈ 47 s ≈ 385 s
DTLZ2 (3) ≈ 106 s ≈ 889 s
DTLZ3 (3) ≈ 135 s ≈ 1298 s
DTLZ4 (3) ≈ 107 s ≈ 888 s
DTLZ5 (3) ≈ 64 s ≈ 172 s
DTLZ6 (3) ≈ 59 s ≈ 409 s
DTLZ7 (3) ≈ 98 s ≈ 738 s
DTLZ1 (4) ≈ 59 s ≈ 394 s
DTLZ2 (4) ≈ 156 s ≈ 961 s
DTLZ3 (4) ≈ 165 s ≈ 1399 s
DTLZ4 (4) ≈ 157 s ≈ 948 s
DTLZ5 (4) ≈ 143 s ≈ 495 s
DTLZ6 (4) ≈ 129 s ≈ 567 s
DTLZ7 (4) ≈ 185 s ≈ 974 s
DTLZ1 (5) ≈ 79 s ≈ 350 s
DTLZ2 (5) ≈ 188 s ≈ 798 s
DTLZ3 (5) ≈ 177 s ≈ 1346 s
DTLZ4 (5) ≈ 190 s ≈ 776 s
DTLZ5 (5) ≈ 229 s ≈ 557 s
DTLZ6 (5) ≈ 225 s ≈ 649 s
DTLZ7 (5) ≈ 296 s ≈ 1135 s
DTLZ1 (6) ≈ 98 s ≈ 436 s
DTLZ2 (6) ≈ 233 s ≈ 750 s
DTLZ3 (6) ≈ 185 s ≈ 1164 s
DTLZ4 (6) ≈ 234 s ≈ 726 s
DTLZ5 (6) ≈ 336 s ≈ 662 s
DTLZ6 (6) ≈ 340 s ≈ 754 s
DTLZ7 (6) ≈ 377 s ≈ 1324 s

f
hype

sms-emoa
time

avi
SMS-EMOA

time

WFG1 (3) ≈ 147 s ≈ 1176 s
WFG2 (3) ≈ 98 s ≈ 474 s
WFG3 (3) ≈ 148 s ≈ 554 s
WFG4 (3) ≈ 107 s ≈ 1230 s
WFG5 (3) ≈ 153 s ≈ 896 s
WFG6 (3) ≈ 168 s ≈ 736 s
WFG7 (3) ≈ 151 s ≈ 1351 s
WFG1 (4) ≈ 233 s ≈ 882 s
WFG2 (4) ≈ 170 s ≈ 693 s
WFG3 (4) ≈ 247 s ≈ 628 s
WFG4 (4) ≈ 157 s ≈ 1238 s
WFG5 (4) ≈ 206 s ≈ 878 s
WFG6 (4) ≈ 216 s ≈ 799 s
WFG7 (4) ≈ 252 s ≈ 1129 s
WFG1 (5) ≈ 335 s ≈ 614 s
WFG2 (5) ≈ 269 s ≈ 1007 s
WFG3 (5) ≈ 378 s ≈ 815 s
WFG4 (5) ≈ 220 s ≈ 1091 s
WFG5 (5) ≈ 276 s ≈ 1123 s
WFG6 (5) ≈ 274 s ≈ 1000 s
WFG7 (5) ≈ 358 s ≈ 992 s
WFG1 (6) ≈ 383 s ≈ 558 s
WFG2 (6) ≈ 377 s ≈ 1339 s
WFG3 (6) ≈ 445 s ≈ 1058 s
WFG4 (6) ≈ 316 s ≈ 1042 s
WFG5 (6) ≈ 246 s ≈ 1332 s
WFG6 (6) ≈ 259 s ≈ 1359 s
WFG7 (6) ≈ 408 s ≈ 992 s

Table 5 Time required by hypeSMS-EMOA and aviSMS-EMOA for the test problems adopted. s = seconds. Both algorithms
were compiled using the GNU C compiler and they were executed on a computer with a 2.66GHz processor and 4GB in RAM.

f ISC(A,B) ISC(B,A)

DTLZ1 (3) 0.002333 0.031000

DTLZ2 (3) 0.000000 0.063333

DTLZ3 (3) 0.039333 0.276000

DTLZ4 (3) 0.000000 0.067667

DTLZ5 (3) 0.002000 0.087333

DTLZ6 (3) 0.693667 0.703333

DTLZ7 (3) 0.002333 0.001667
DTLZ1 (4) 0.000000 0.013333

DTLZ2 (4) 0.000000 0.208000

DTLZ3 (4) 0.002000 0.169333

DTLZ4 (4) 0.000000 0.192667

DTLZ5 (4) 0.000667 0.127333

DTLZ6 (4) 0.226667 0.308333

DTLZ7 (4) 0.000333 0.002000

DTLZ1 (5) 0.000000 0.112667

DTLZ2 (5) 0.000000 0.327667

DTLZ3 (5) 0.091333 0.191000

DTLZ4 (5) 0.000000 0.330667

DTLZ5 (5) 0.092333 0.044000
DTLZ6 (5) 0.273333 0.134000
DTLZ7 (5) 0.000000 0.004667

f ISC(A,B) ISC(B,A)

WFG1 (3) 0.000000 0.003667

WFG2 (3) 0.426333 0.634667

WFG3 (3) 0.379333 0.186333
WFG4 (3) 0.078667 0.256667

WFG5 (3) 0.004333 0.061000

WFG6 (3) 0.272333 0.445333

WFG7 (3) 0.003667 0.020333

WFG1 (4) 0.000000 0.001000

WFG2 (4) 0.033000 0.966000

WFG3 (4) 0.159333 0.137333
WFG4 (4) 0.027000 0.228333

WFG5 (4) 0.003333 0.050667

WFG6 (4) 0.086000 0.387000

WFG7 (4) 0.001000 0.002667

WFG1 (5) 0.000000 0.000000
WFG2 (5) 0.029667 0.966667

WFG3 (5) 0.106667 0.207667

WFG4 (5) 0.419000 0.000667
WFG5 (5) 0.002000 0.044000

WFG6 (5) 0.023667 0.393667

WFG7 (5) 0.000000 0.000000

Table 6 Results obtained in the DTLZ and WFG test problems by aviSMS-EMOA and SMS-EMOA, using the two set coverage
indicator (ISC). In this case, A is the set composed by all solutions found by aviSMS-EMOA considering all 30 independent
runs and B is the set composed by all solutions found by SMS-EMOA considering all 30 independent runs.
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f

avi
SMS-EMOA

IH

SMS-EMOA
IH

P (H)

DTLZ1 (3)
1.122217

(0.000494)
1.123180
(0.000283)

0.000 (1)

DTLZ2 (3)
0.758602

(0.000340)
0.759983

(0.000048)
0.000 (1)

DTLZ3 (3)
1.328265

(0.000700)

1.328074
(0.000341)

0.051 (0)

DTLZ4 (3)
0.873943

(0.000250)
0.875118

(0.000042)
0.000 (1)

DTLZ5 (3)
0.266585

(0.000048)
0.266762
(0.000021)

0.000 (1)

DTLZ6 (3)
1.094423

(0.004341)
1.095866
(0.003607)

0.145 (0)

DTLZ7 (3)
0.552256

(0.048770)

0.548923
(0.056148)

0.045 (1)

DTLZ1 (4)
1.366684

(0.001205)
1.373796

(0.000307)
0.000 (1)

DTLZ2 (4)
1.035152

(0.001397)
1.046741

(0.000063)
0.000 (1)

DTLZ3 (4)
1.463597

(0.000130)
1.463689
(0.000083)

0.000 (1)

DTLZ4 (4)
1.035100

(0.000920)
1.044891

(0.000093)
0.000 (1)

DTLZ5 (4)
0.545064

(0.000508)
0.546139

(0.000159)
0.000 (1)

DTLZ6 (4)
1.206271

(0.004888)
1.208642

(0.003669)
0.003 (1)

DTLZ7 (4)
0.550050

(0.061062)
0.579217
(0.046162)

0.000 (1)

DTLZ1 (5)
1.541811

(0.005706)
1.566729
(0.000759)

0.000 (1)

DTLZ2 (5)
1.300072

(0.004737)
1.334594

(0.000329)
0.000 (1)

DTLZ3 (5)
1.608407

(0.003140)
1.609056

(0.000319)
0.004 (1)

DTLZ4 (5)
1.264793

(0.004457)
1.299259

(0.000224)
0.000 (1)

DTLZ5 (5)
0.930685

(0.001020)
0.931459
(0.001521)

0.000 (1)

DTLZ6 (5)
1.519103

(0.001631)

1.504474
(0.002545)

0.000 (1)

DTLZ7 (5)
0.589229

(0.020254)
0.599077

(0.019488)
0.008 (1)

f

avi
SMS-EMOA

IH

SMS-EMOA
IH

P (H)

WFG1 (3)
1.205361

(0.024067)
1.210076
(0.025345)

0.029 (1)

WFG2 (3)
0.799503

(0.074819)
0.809164

(0.067653)
0.245 (0)

WFG3 (3)
0.636772

(0.003130)
0.636873

(0.002070)
0.646 (0)

WFG4 (3)
0.752357

(0.001500)
0.754175

(0.001647)
0.000 (1)

WFG5 (3)
0.557581

(0.001661)
0.557814
(0.001690)

0.015 (1)

WFG6 (3)
0.565928

(0.001409)
0.567213
(0.001614)

0.003 (1)

WFG7 (3)
0.748956

(0.003767)
0.750817

(0.003654)
0.055 (0)

WFG1 (4)
1.414339

(0.008604)
1.422808

(0.008483)
0.000 (1)

WFG2 (4)
0.300548

(0.254003)
0.861447

(0.126454)
0.000 (1)

WFG3 (4)
0.592232

(0.006450)
0.599850
(0.006850)

0.000 (1)

WFG4 (4)
1.030276

(0.003034)
1.038021

(0.002107)
0.000 (1)

WFG5 (4)
0.598550

(0.001842)
0.599677

(0.001846)
0.000 (1)

WFG6 (4)
0.610031

(0.006558)
0.616532

(0.006956)
0.000 (1)

WFG7 (4)
0.915375

(0.006581)
0.925977
(0.007987)

0.000 (1)

WFG1 (5)
1.547656
(0.006617)

1.372422
(0.018408)

0.000 (1)

WFG2 (5)
0.407945

(0.205793)
0.913807

(0.125715)
0.000 (1)

WFG3 (5)
0.576101

(0.022876)
0.590381

(0.027869)
0.000 (1)

WFG4 (5)
1.270178

(0.004494)

1.224230
(0.008055)

0.000 (1)

WFG5 (5)
0.655659

(0.002092)
0.658808
(0.002015)

0.000 (1)

WFG6 (5)
0.598269

(0.027623)
0.631408

(0.028629)
0.000 (1)

WFG7 (5)
1.032123

(0.012809)

0.753463
(0.054363)

0.000 (1)

Table 7 Results obtained in the DTLZ and WFG test problems by aviSMS-EMOA and SMS-EMOA, using the hypervolume
indicator. We show average values over 30 independent runs. The values in parentheses correspond to the standard deviations.
The third column shows the results of the statistical analysis applied to our experiments using Wilcoxon’s rank sum. P is the
probability of observing the given result (the null hypothesis is true). Small values of P cast doubt on the validity of the null
hypothesis. H = 0 indicates that the null hypothesis (“medians are equal”) cannot be rejected at the 5% level. H = 1 indicates
that the null hypothesis can be rejected at the 5% level.
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f

avi
SMS-EMOA

time

sms-emoa
time

DTLZ1 (3) ≈ 385 s ≈ 197 s

DTLZ2 (3) ≈ 889 s ≈ 302 s

DTLZ3 (3) ≈ 1298 s ≈ 502 s

DTLZ4 (3) ≈ 888 s ≈ 303 s

DTLZ5 (3) ≈ 172 s ≈ 201 s
DTLZ6 (3) ≈ 409 s ≈ 236 s

DTLZ7 (3) ≈ 738 s ≈ 270 s

DTLZ1 (4) ≈ 394 s ≈ 1422 s
DTLZ2 (4) ≈ 961 s ≈ 2527 s
DTLZ3 (4) ≈ 1399 s ≈ 6093 s
DTLZ4 (4) ≈ 948 s ≈ 2589 s
DTLZ5 (4) ≈ 495 s ≈ 1695 s
DTLZ6 (4) ≈ 567 s ≈ 2157 s
DTLZ7 (4) ≈ 974 s ≈ 1402 s
DTLZ1 (5) ≈ 350 s ≈ 14431 s
DTLZ2 (5) ≈ 798 s ≈ 14449 s
DTLZ3 (5) ≈ 1346 s ≈ 14474 s
DTLZ4 (5) ≈ 776 s ≈ 14440 s
DTLZ5 (5) ≈ 557 s ≈ 14433 s
DTLZ6 (5) ≈ 649 s ≈ 14444 s
DTLZ7 (5) ≈ 1135 s ≈ 13256 s

f

avi
SMS-EMOA

time

sms-emoa
time

WFG1 (3) ≈ 1176 s ≈ 369 s

WFG2 (3) ≈ 474 s ≈ 236 s

WFG3 (3) ≈ 554 s ≈ 288 s

WFG4 (3) ≈ 1230 s ≈ 340 s

WFG5 (3) ≈ 896 s ≈ 342 s

WFG6 (3) ≈ 736 s ≈ 298 s

WFG7 (3) ≈ 1351 s ≈ 388 s

WFG1 (4) ≈ 882 s ≈ 3471 s
WFG2 (4) ≈ 693 s ≈ 751 s
WFG3 (4) ≈ 628 s ≈ 783 s
WFG4 (4) ≈ 1238 s ≈ 2809 s
WFG5 (4) ≈ 878 s ≈ 1067 s
WFG6 (4) ≈ 799 s ≈ 939 s
WFG7 (4) ≈ 1129 s ≈ 2948 s
WFG1 (5) ≈ 614 s ≈ 14463 s
WFG2 (5) ≈ 1007 s ≈ 2486 s
WFG3 (5) ≈ 815 s ≈ 1424 s
WFG4 (5) ≈ 1091 s ≈ 14456 s
WFG5 (5) ≈ 1123 s ≈ 2742 s
WFG6 (5) ≈ 1000 s ≈ 2738 s
WFG7 (5) ≈ 992 s ≈ 14445 s

Table 8 Time required by aviSMS-EMOA and SMS-EMOA for the test problems adopted. s = seconds. Both algorithms were
compiled using the GNU C compiler and they were executed on a computer with a processor running at 2.66GHz and with
4GB in RAM.

f ISC(A,B) ISC(B,A)

DTLZ1 (3) 0.036333 0.000000
DTLZ2 (3) 0.002667 0.000333
DTLZ3 (3) 0.167667 0.003333
DTLZ4 (3) 0.001333 0.000000
DTLZ5 (3) 0.501667 0.020333
DTLZ6 (3) 0.983333 0.453667
DTLZ7 (3) 0.501333 0.000000
DTLZ1 (4) 0.000000 0.000000
DTLZ2 (4) 0.002667 0.000000
DTLZ3 (4) 0.060333 0.004667
DTLZ4 (4) 0.001667 0.000000
DTLZ5 (4) 0.285667 0.062333
DTLZ6 (4) 0.811667 0.057333
DTLZ7 (4) 0.124667 0.000000
DTLZ1 (5) 0.000000 0.000333

DTLZ2 (5) 0.002333 0.000000
DTLZ3 (5) 0.052000 0.008667
DTLZ4 (5) 0.002333 0.000000
DTLZ5 (5) 0.159000 0.055000
DTLZ6 (5) 0.423667 0.133333
DTLZ7 (5) 0.011333 0.000000
DTLZ1 (6) 0.000000 0.006000

DTLZ2 (6) 0.000333 0.000000
DTLZ3 (6) 0.025000 0.007667
DTLZ4 (6) 0.000333 0.000000
DTLZ5 (6) 0.148667 0.053000
DTLZ6 (6) 0.374000 0.089333
DTLZ7 (6) 0.000333 0.000000

f ISC(A,B) ISC(B,A)

WFG1 (3) 0.001667 0.000000
WFG2 (3) 1.000000 0.004000
WFG3 (3) 0.922000 0.014667
WFG4 (3) 0.989333 0.000000
WFG5 (3) 0.085333 0.050000
WFG6 (3) 0.621000 0.162667
WFG7 (3) 0.165667 0.002000
WFG1 (4) 0.000000 0.000000
WFG2 (4) 1.000000 0.009333
WFG3 (4) 0.865000 0.005000
WFG4 (4) 0.811667 0.000000
WFG5 (4) 0.040667 0.010000
WFG6 (4) 0.571667 0.014667
WFG7 (4) 0.002667 0.000000
WFG1 (5) 0.000000 0.000000
WFG2 (5) 0.993333 0.020667
WFG3 (5) 0.936333 0.000000
WFG4 (5) 0.627333 0.000000
WFG5 (5) 0.007667 0.000000
WFG6 (5) 0.381333 0.010667
WFG7 (5) 0.000000 0.000000
WFG1 (6) 0.000000 0.000000
WFG2 (6) 1.000000 0.002333
WFG3 (6) 0.911333 0.000000
WFG4 (6) 0.500000 0.010667
WFG5 (6) 0.000000 0.000000
WFG6 (6) 0.333000 0.010000
WFG7 (6) 0.000000 0.000000

Table 9 Results obtained in the DTLZ and WFG test problems by aviSMS-EMOA and MOEA/D, using the two set coverage
indicator (ISC). Where A is the set composed by all solutions found by aviSMS-EMOA considering all 30 independent runs
and B is the set composed by all solutions found by MOEA/D considering all 30 independent runs.
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f

pbi
MOEA/D

IH

avi
SMS-EMOA

IH

P (H)

DTLZ1 (3)
1.071328

(0.002556)
1.122217
(0.000494)

0.000 (1)

DTLZ2 (3)
0.718988

(0.000212)
0.758602

(0.000340)
0.000 (1)

DTLZ3 (3)
1.294000

(0.002000)
1.328265

(0.000700)
0.000 (1)

DTLZ4 (3)
0.709501

(0.000134)
0.873943

(0.000250)
0.000 (1)

DTLZ5 (3)
0.246682

(0.000807)
0.266585
(0.000048)

0.000 (1)

DTLZ6 (3)
0.197818

(0.029819)
1.094423
(0.004341)

0.000 (1)

DTLZ7 (3)
0.448768

(0.026011)
0.552256

(0.048770)
0.000 (1)

DTLZ1 (4)
1.311857

(0.003695)
1.366684

(0.001205)
0.000 (1)

DTLZ2 (4)
0.887228

(0.000914)
1.035152

(0.001397)
0.000 (1)

DTLZ3 (4)
1.439263

(0.004172)
1.463597
(0.000130)

0.000 (1)

DTLZ4 (4)
0.878865

(0.001268)
1.035100

(0.000920)
0.000 (1)

DTLZ5 (4)
0.471816

(0.003958)
0.545064

(0.000508)
0.000 (1)

DTLZ6 (4)
0.592195

(0.014757)
1.206271

(0.004888)
0.000 (1)

DTLZ7 (4)
0.337272

(0.008258)
0.550050
(0.061062)

0.994 (0)

DTLZ1 (5)
1.506309

(0.008970)
1.541811
(0.005706)

0.000 (1)

DTLZ2 (5)
0.987833

(0.003838)
1.300072

(0.004737)
0.000 (1)

DTLZ3 (5)
1.608395

(0.000366)
1.608407

(0.003140)
0.000 (1)

DTLZ4 (5)
0.982714

(0.003994)
1.264793

(0.004457)
0.000 (1)

DTLZ5 (5)
0.669155

(0.022872)
0.930685
(0.001020)

0.000 (1)

DTLZ6 (5)
0.802058

(0.020102)
1.519103

(0.001631)
0.018 (1)

DTLZ7 (5)
0.075921

(0.070973)
0.589229

(0.020254)
0.589 (0)

DTLZ1 (6)
1.690367

(0.003587)

1.549649
(0.202423)

0.000 (1)

DTLZ2 (6)
0.973263

(0.008725)
1.655438
(0.003776)

0.000 (1)

DTLZ3 (6)
1.766545

(0.001449)
1.770941
(0.000163)

0.661 (0)

DTLZ4 (6)
0.986331

(0.006574)
1.572087

(0.006064)
0.000 (1)

DTLZ5 (6)
0.585905

(0.017193)
1.031885

(0.001188)
0.000 (1)

DTLZ6 (6)
0.708188

(0.043127)
1.631369
(0.002293)

0.000 (1)

DTLZ7 (6)
0.013435

(0.003121)
0.773352
(0.010180)

1.000 (0)

f

pbi
MOEA/D

IH

avi
SMS-EMOA

IH

P (H)

WFG1 (3)
0.910507

(0.016598)
1.205361
(0.024067)

0.000 (1)

WFG2 (3)
0.145574

(0.198499)
0.799503

(0.074819)
0.000 (1)

WFG3 (3)
0.499214

(0.025639)
0.636772

(0.003130)
0.000 (1)

WFG4 (3)
0.595609

(0.013100)
0.752357

(0.001500)
0.000 (1)

WFG5 (3)
0.471079

(0.010426)
0.557581
(0.001661)

0.000 (1)

WFG6 (3)
0.453757

(0.006661)
0.565928
(0.001409)

0.000 (1)

WFG7 (3)
0.494583

(0.056148)
0.748956

(0.003767)
0.000 (1)

WFG1 (4)
1.100204

(0.057651)
1.414339

(0.008604)
0.000 (1)

WFG2 (4)
0.007223

(0.031709)
0.300548

(0.254003)
0.000 (1)

WFG3 (4)
0.287483

(0.034365)
0.592232
(0.006450)

0.000 (1)

WFG4 (4)
0.652634

(0.025612)
1.030276

(0.003034)
0.000 (1)

WFG5 (4)
0.366984

(0.015366)
0.598550

(0.001842)
0.000 (1)

WFG6 (4)
0.268060

(0.015468)
0.610031

(0.006558)
0.000 (1)

WFG7 (4)
0.293433

(0.036496)
0.915375
(0.006581)

0.000 (1)

WFG1 (5)
1.206775

(0.062432)
1.547656
(0.006617)

0.000 (1)

WFG2 (5)
0.029223

(0.064926)
0.407945

(0.205793)
0.000 (1)

WFG3 (5)
0.191112

(0.031531)
0.576101

(0.022876)
0.000 (1)

WFG4 (5)
0.640835

(0.023757)
1.270178

(0.004494)
0.000 (1)

WFG5 (5)
0.238371

(0.013922)
0.655659
(0.002092)

0.000 (1)

WFG6 (5)
0.193513

(0.027379)
0.598269

(0.027623)
0.000 (1)

WFG7 (5)
0.218223

(0.014294)
1.032123

(0.012809)
0.000 (1)

WFG1 (6)
1.167832

(0.030511)
1.691179

(0.014593)
0.000 (1)

WFG2 (6)
0.003634

(0.018966)
0.487496
(0.254908)

0.000 (1)

WFG3 (6)
0.040186

(0.034593)
0.590424
(0.049438)

0.000 (1)

WFG4 (6)
0.591344

(0.028666)
1.492717

(0.007779)
0.000 (1)

WFG5 (6)
0.153001

(0.017135)
0.720380

(0.002684)
0.000 (1)

WFG6 (6)
0.152732

(0.038473)
0.637238
(0.050036)

0.000 (1)

WFG7 (6)
0.189978

(0.014303)
0.907848
(0.066396)

0.000 (1)

Table 10 Results obtained in the DTLZ and WFG test problems by MOEA/D and aviSMS-EMOA, using the hypervolume
indicator. We show average values over 30 independent runs. The values in parentheses correspond to the standard deviations.
The third column shows the results of the statistical analysis applied to our experiments using Wilcoxon’s rank sum. P is the
probability of observing the given result (the null hypothesis is true). Small values of P cast doubt on the validity of the null
hypothesis. H = 0 indicates that the null hypothesis (“medians are equal”) cannot be rejected at the 5% level. H = 1 indicates
that the null hypothesis can be rejected at the 5% level.
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f |P|
pbi

MOEA/D
IH

avi
SMS-EMOA

IH

P (H)

DTLZ2 (3) 300
0.7678
(0.000)

0.7935
(0.000)

0.000 (1)

DTLZ2 (4) 350
0.9913
(0.001)

1.1046

(0.001)
0.000 (1)

DTLZ2 (5) 400
1.2083
(0.002)

1.4338

(0.001)
0.000 (1)

ISC(A,B) ISC(B,A)

0.000222 0.000667

0.000000 0.001143

0.000000 0.001583

pbi
MOEA/D

time

avi
SMS-EMOA

time

≈2.38 ≈2935.09

≈2.36 ≈4384.97

≈2.74 ≈4551.01

(a) (b) (c)

Table 11 Results obtained in the DTLZ2 test problem by MOEA/D and aviSMS-EMOA. |P| is the population size. In the case
of the hypervolume indicator (IH), we show average values over 30 independent runs. The values in parentheses correspond to
the standard deviations. Also, in the case of IH , we present the results of the statistical analysis applied to our experiments
using Wilcoxon’s rank sum. P is the probability of observing the given result (the null hypothesis is true). Small values of P
cast doubt on the validity of the null hypothesis. H = 1 indicates that the null hypothesis can be rejected at the 5% level. In
the case of the two set coverage indicator, all solutions found by our MOEA/D were merged in a set called A, considering all
the 30 independent runs, and all solutions found by the original aviSMS-EMOA are merged in a set called B. In the case of
running time (time), we present the time required by both MOEAs in seconds. Both algorithms were compiled using the GNU
C compiler and they were executed on a computer with a processor running at 2.66GHz and with 4GB in RAM.

f
100-samples

IH

1000-samples
IH

10000-samples
IH

100000-samples
IH

DTLZ2 (3) 0.7456 (0.002) 0.7549 (0.001) 0.7577 (0.000) 0.7581 (0.000)

DTLZ2 (4) 0.9670 (0.007) 1.0207 (0.003) 1.0405 (0.001) 1.0451 (0.000)

DTLZ2 (5) 1.0448 (0.000) 1.0448 (0.000) 1.0448 (0.000) 1.0448 (0.000)

DTLZ2 (6) 1.1124 (0.041) 1.4090 (0.019) 1.5153 (0.009) 1.5588 (0.002)

DTLZ2 (7) 1.1884 (0.074) 1.6036 (0.024) 1.7477 (0.007) 1.8043 (0.003)

DTLZ2 (8) 1.5072 (0.125) 1.8152 (0.043) 1.9893 (0.010) 2.0498 (0.004)

DTLZ2 (9) 2.0565 (0.063) 2.0905 (0.046) 2.2676 (0.009) 2.3135 (0.003)

DTLZ2 (10) 2.3874 (0.071) 2.3114 (0.074) 2.5323 (0.008) 2.5683 (0.003)

Table 12 Results obtained in the DTLZ2 test problem with 3, 4, 5, 6, 7, 8, 9 and 10 objective functions by aviSMS-EMOA
using 102, 103, 104 and 105 samples to approximate the contribution to IH . We show average values over 30 independent runs
using the hypervolume indicator IH . The values in parentheses correspond to the standard deviations.

f
100-samples

time
1000-samples

time
10000-samples

time
100000-samples

time

DTLZ2 (3) 82.0507 (5.654) 178.4597 (3.499) 969.8713 (15.051) 8904.6407 (104.433)
DTLZ2 (4) 84.6053 (3.655) 160.5430 (3.103) 792.2043 (10.598) 7464.5580 (127.088)
DTLZ2 (5) 86.7600 (3.023) 135.5130 (2.812) 528.9030 (8.302) 5135.6250 (88.684)
DTLZ2 (6) 88.7860 (2.877) 126.9493 (2.811) 402.0157 (4.699) 3546.9327 (83.094)
DTLZ2 (7) 93.7263 (3.195) 125.3957 (2.989) 367.8517 (3.811) 2914.5407 (66.569)
DTLZ2 (8) 95.9470 (1.954) 110.1653 (3.706) 374.0367 (4.304) 2812.7597 (43.800)
DTLZ2 (9) 98.7967 (3.043) 112.6773 (2.650) 391.5673 (3.303) 3146.0043 (42.011)
DTLZ2 (10) 100.9503 (3.005) 115.7223 (3.212) 414.8363 (4.425) 3311.5910 (37.305)

Table 13 Time required by aviSMS-EMOA for the DTLZ2 test problem with 3, 4, 5, 6, 7, 8, 9 and 10 objective functions,
using 102, 103, 104 and 105 samples to approximate the contribution to IH . s = seconds. aviSMS-EMOA was compiled using
the GNU C compiler and they was executed on a computer with a processor running at 2.66GHz and with 4GB in RAM.


