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Abstract

In this technical report we study the theoretical results reported so far in the
specialized literature regarding to convergence of evolutionary algorithms (genetic
algorithms in particular). We only focus our study to those cases in which the
model adopted was based on Markov chains. In the work reported here, we will
present and extend the model proposed by Giinter Rudolph in 1994 to prove con-
vergence of an elitist genetic algorithm. This extended model is then used to
predict the expected convergence time of an elitist genetic algorithm with mini-
mum parameters. The theoretical results derived are then empirically corroborated
through a set of experiments. Finally, we also discuss the capabilities of a genetic
algorithm for optimizing multiple objectives and we propose some possible paths
for future research in such area.

1 Introduction

There are optimization problems whose search space is so large that even the most
efficient mathematical programming techniques available to solve them require expo-
nential time. It is precisely in these cases in which heuristics have particular relevance.
From these heuristics, evolutionary algorithms have shown to be very advantageous in



many real-world applications, producing at least sub-optimal solutions in very complex
problems [5, 2].

However, due to the stochastic nature of evolutionary algorithms, their behavior is
not fully understood. Basically, it turns out to be quite difficult (or even impossible) to
determine the conditions under which an arbitrary evolutionary algorithm may succeed
or fail in solving a problem. This is the case of genetic algorithms (GAs) which is the
type of evolutionary algorithm with which we will be dealing in this document.

Genetic algorithms are a heuristic search technique inspired on natural evolution
(i.e., the survival of the fittest). Although GAs were originally conceived as machine
learning techniques [6], they have become increasingly popular as optimizers [2].

In their origin, the genetic algorithm (now called “classical”) was applied to single-
objective optimization problems [5]. Rudolph proved in the mid-1990s convergence
of this simple GA to the global optimum of a given function, under certain conditions
[15]. This work gave some of the desired theoretical foundations to the behavior of
GAs.

In the real world, however, we frequently face problems with multiple objective
functions and associated constraints. The potential of genetic algorithms in these prob-
lems was hinted long ago [3], and several extensions of a GA were developed in order
to deal with multiobjective optimization problems. The theoretical study of the differ-
ent multiobjective evolutionary algorithms in current use has been fairly limited, but it
exists. In this document, we will summarize the theoretical work done on convergence
of multiobjective evolutionary algorithms (particularly genetic algorithms) towards the
Pareto optimal set of a problem.

Since the model that we will study is based on Markov chains, Section 2 introduces
this mathematical tool. In Section 3, the simple (classical) GA is studied, we introduce
its mathematical model and we prove its convergence to the global optimum of a given
problem. Section 4 extends the model of the previous section so that the necessary con-
vergence time for this algorithm can be estimated. In Section 5, we study convergence
of a multiobjective genetic algorithm. Finally, in Section 6, we provide our conclusions
and some possible paths for future research.

2 Markov Chains

The analysis of the GAs that will be presented in this document is based on probability
theory, specially in Markov chains. Therefore, in order to make this document self-
contained, we provide in this section the basics on Markov chains that we will use later
on. The material of this section was extracted from [16, 9].

2.1 Basic Definitions

Definition 2.1 If S # @ is a finite set and {X, : ¢ € IN} is a sequence of random
variables with values in S with the property:
P{Xir1 =Jj|1Xe =0, X41 = d4—1,..., Xo = io} =
P{Xit1 = jlXe = i} = pyj



forall¢ > 0andi,j € S, then the sequence {X; : t € IN} is called a finite Markov
chain with state space S.

The number p;; is called transition probability of the state ¢ to the state j in one
step. Since we are assuming that such probabilities are independent of ¢ € IN, is said
that the chain is homogeneous.

Since S is finite, the transition probabilities can be gathered in a transition matrix
P = (pij)i,jES- Note that Z]- Dij = 1foralli € S.

The row vector 6(¢) with components é;(t) = P{X; =} forall i € S, denotes the
distribution of the Markov chain in the step ¢ > 0. This distribution can be calculed
iteratively, since

8(t) = 6(t — 1)P = §(0)Pt, forall t > 0.

This way, a homogeneous Markov chain is completely determined by its initial
distribution 6(0) and its transition matrix P.

Definition 2.2

e Amatrix P : n x m is said to be nonnegative (P > 0) if p;; > 0 and positive
(P>0)ifp;; >0foralli=1,..,nandj =1,...,m.

e A nonnegative square matrix is called stochastic if the sum of each of its rows is
equal to one. Thus, the transition matrices are stochastic.

e An stochastic matrix P is primitive if

Jk € IN : P* is positive (P* > 0)
e Itisirreducible if

Vi,j € S:3k e IN: p;;(k) >0,

where p;; (k) denotes the element (i, j) of P*. Therefore, every positive matrix
P is primitive and every primitive matrix is irreducible.

e A matrix P is reducible (of course if it is not irreducible and) if it can be ar-

ranged in the form:
C o0
R T

¢ Finally, a stochastic matrix P is diagonal-positive if each element of its diagonal
is positive, is column allowable if it has at least one positive element in each
column and is stable if it has identical rows.

with square matrices C and T.

In the following, some results that will be useful in later sections are presented.



Lemma 2.3 Let P, @ and R stochastic matrices, where @ is positive and R is column
allowable. Then the product matrix PQR is positive.

Proof. [9].

Theorem 2.4 Let P a primitive stochastic matrix. Then P* converges when k — oo
to a positive stable stochastic matrix P> = 1’p®, where 1’ is a column vector of 1’s
and p>® = p° - limy_,o, P* = p? P> has positive entries and is unique regardless of
the initial distribution p°.

Proof. [9].

Theorem 2.5 Let P, a reducible stochastic matrix, where C' : m x m is a primitive
stochastic matrix and R, T' # 0. Then:

C*k 0 c* 0
00 : k s —
P =l P k1—>1moo< Sk TiRCH TH ) ( Ry 0 )

is a stable stochastic matrix with P*° = 1’p°, where 1’ is a column vector of 1’s and
p® = pY P> is unique regardless of the initial distributrion p° and, moreover, p>
satisfies: ps° > 0for1 <i<mandp$ =0form < i < n.

Proof. [9].

2.2 Clasification of States and Chains

Consider a Markov chain with finite state space S # @. In this section the states of a
Markov chain are classified accordingly to if it is possible to go from a given state to
another state.

Definition 2.6 We say that the state ¢ leads to state j and write ¢ — j if and only if
p{-“j >0forank > 1. If i — j and j — ¢ we say that state s communicates with state
jandwrite i < j.

Beginning with the previous definition, the states are classified into “equivalence
classes”. Two states are in the same class if they are “comunicated”, i.e. if the process
can go from one state to the another and viceversa.

The equivalence classes are classified like ergodic sets (so called recurrent) or
transient sets. This way, the corresponding states in those classes are called ergodic
states and transient states, respectively.

For each finite Markov chain there must be always at least one ergodic set; however,
there not need to be transient sets.

Once that a chain leaves a transient set, can never come back to it; while once that
it enters into an ergodic set, never can leave it.

In particular, if an ergodic set contains just one state, this state is called an absorb-
ing state, because once into it, the Markov chain will stay there for ever.

Theorem 2.7 A state ¢ is absorbing if and only if p;; = 1.



Proof. [10].

Ergodic sets can be classified in two ways:

1. Regular: In this case, there is just one cycle of states, and regardless of the state
in which the chain begins, after a sufficient amount of time, the chain can be in
any state of the class (primitive transition matrix).

2. Cyclic (or periodic): In this case, the set is divided in d distinct cycles such that
given an initial state, the chain will go through the distinct cycles until it return
to the cycle in wich it begins, after exactly d steps.

The Markov chains can be classified according to if it contains transient sets or not:

I Chains without transient sets
Without losing generality, let’s asume that in this case there is just one ergodic
set, i.e. all the set of states of the chain is an ergodic set. A chain that consists
of a unique ergodic set is called ergodic chain, and it can coindice with some of
the following cases:

I-A The ergodic set is regular.
I-B The ergodic set is cyclic.

Il Chains with transient sets
In this case, the chain is moving towards the ergodic sets. The probability that
the process enters into an ergodic set tends to 1. In this case we can again classify
this kind of chains based in the characteristics of its ergodic sets.

II-A All the ergodic sets are unit sets. This type of chain is called absorbing
chain, because it will eventually be trapped into an absorbing state.

11-B All the ergodic sets are regular but not unit sets.

I1-C All the ergodic sets are cyclic.

I1-D There exist ergodic sets that are both regular and cyclic.

2.3 Absorbing Chains

The absorbing chains are of special interest for us, therefore in this section some im-
portant properties of them will be presented [10].

Theorem 2.8 For each finite absorbing chain, no matter the state in wich it starts, the
probability that the process is in an absorbing state after n steps tends to 1 as n tends
to infinity.

Proof. [10].
It is important to consider the canonical form of the transition matrix of a Markov

chain. Let’s assume that we have s transient states and r — s ergodic states, and that
we cluster all the transient sets and all the ergodic sets together, the resulting form is:



r—s s
(S O }r—s
r=(% o)1
The region O consists completely of zeros. The matrix @ ;s represents the chain
while it is in transient states, the matrix R, ,._,) represents the transition from the
transient states to ergodic states and the matrix S(,_ ;) (»—s) represents the chain once
that it is into an ergodic state.

If we consider an absorbing chain, we have that by definition S = I(,_ 4 (), SO
its canonical form is:

r—s s
(I O }r—s
r=(n o) ¥
From Theorem 2.5 we can see that the powers of () tend to O.

Definition 2.9 For an absorbing Markov chain we define the fundamental matrix to
be N=(I-Q)

Definition 2.10 We define n; to be a function whose value is the total number of times
that the process is in state s;. (This definition is valid just for transient states s;). We
define u;? to be a function that is 1 if the process is in state s; in the step &, and is 0
otherwise.

It is easy to see that:
o
k
nj=> u
k=0

Let T the set of transient states of the Markov chain. If we denote with E;[n;] the
expected value of n; assuming that the process starts in the state s;, we have the next
result:

Theorem 2.11 {E;[n;]} = N
Proof. [10].

Definition 2.12 Let t be a function whose value is given by the number of steps (in-
cluding the initial state) in wich the process is in a transient state.

If the process starts in an ergodic state then t = 0. If the process starts in a transient
state, then t gives us the total number of necessary steps for reaching an ergodic state.
In an absorbing chain, this is the time to absorption.

Let £ a column vector with all entries equal to 1.

Theorem 2.13 {E;[t]} = N¢



Proof. It is easy to see that
t= Z n;
Thus,
{Eilt]} = {Ei[ > ny]} = {>_ Eilny]} = N¢.

5;€T s;€T
]

Theorem 2.14 {V,[t]} = (2N — I)N¢ — (N¢§)?

Proof. [10].

3 The Smple Genetic Algorithm for Global Optimiza-
tion

Genetic Algorithms are commonly used for solving optimization problems like: maxz{ f(b)|b €
B' = {0,1}'} assuming that 0 < f(b) < oo forall b € B and f(b) # const.

In this section we start our study of the convergence of the GAs. We will consider
mainly two cases, the GA without elitism, also called Simple GA (SGA) and the GA
with elistism (EGA).

3.1 Convergence Studies
3.1.1 Genetic algorithm without elitism

In [15], Rudolph models the SGA by means of a finite homogeneous Markov chain.
Each state ¢ of the Markov chain corresponds to a possible SGA population, so that the
state space is S = B™ where n is the number of individuals in the population and / is
the lenght of each individual. We define 7, (i) to be the individual & of the population
1 in the step ¢.

Given the nature of the SGA, the transition matrix P that represents it is defined

by:
P = CMS,

where C, M and S are the transition matrices of the operators of crossover, muta-
tion and selection, respectively.
When uniform mutation is used the elements of M are

mij = pHis (1 — pp,) N5 > 0,

where p,, is the mutation probability of the SGA, H;; is the Hamming distance
between the states ¢ and j, and N = nl. This way, we conclude that M is positive.



On the other hand, since what the selection operator does is to give us pairs of
individuals either for passing them intact to the next population or for generating (with
a certain probability) two new individuals through the crossover operator, the transition
matrix of this operator “sorts” the individuals and leaves them ready for generating the
next population.

The use of either a proportional or a tournament selection operator [16] determines
the existence of a strictly positive probability that the population remains intact, and as-
sures that the diagonal elements s;; of the transition matrix of that operator are positive,
thus, the matrix S is column allowable.

In summary, we have that the matrix M is positive and S is column allowable.
Then, from Lemma 2.3, the matrix P = CMS is positive and therefore primitive.

Next, we present the corresponding definition of convergence of a SGA [15]:

Definition 3.1 Let Z, = maz{f(nL(i))|k = 1,...,n} be a sequence of random vari-
ables denoting the best fitness into the population 7 in the step ¢. A genetic algorithm
converges to the global optimum, if and only if:

limyooP{Zy = f*} =1 3.1)
where f* = maxz{f(b)|b € B'}.

This way, we can see that the SGA converges to the global optimum if the prob-
ability of being in the population tends to 1 when the number of iterations tends to
infinity.

Thus, given the previous definition and using the Theorem 2.4 Rudolph [15] shows
that the SGA does not converge:

Theorem 3.2 The SGA with primitive transition matrix does not converge to the global
optimum.

Proof. Leti € S any state in which maz{ f(wi(i))|k = 1,...,n} < f* and p;(t) the
probability that the SGA is into such state i in the step ¢. It is clear that P{Z; # f*} >
pi(t) & P{Z; = f*} <1 — p;(t). From Theorem 2.4 the probability of that the SGA
is in state ¢ converges to p;(co) > 0. Therefore:

lzmt—»ooP{Zt = f*} S 1 —pz(OO) < 17
i.e. the condition (3.1) is not satisfied. m

Theorem 3.2 shows that given Theorem 2.4, the transition matrix P of the SGA con-
verges to a positive matrix, and thus the probability of been into a non optimal state is
strictly positive as the number of iterations increase. So the probability of remaining in
an optimal state is not 1 in the limit.



3.1.2 Elitist genetic algorithm

Rudolph [15] argues that when the SGA is applied to real-world problems, it normally
keeps the best solution found so far along the evolutionary process (this is called elitism
in evolutionary computation). Therefore, Rudolph argues that elitism is an important
component that has to be considered when modeling a SGA.

Thus, we will now consider to add to the population of the SGA a super individual
that will not take part of the evolutionary process and that for easiness of notation will
be placed in the first lefthand position, i.e. we will be able to access it by (7). We
will call this new version Elitist Genetic Algorithm (EGA).

The cardinality of the corresponding state space of the Markov chain grows now
from 27 to 2(»+t 1! since we have 2! possibles super individuals and for each of them
we have 2™ possible populations.

The elitist operator will be represented by the matrix E; this matrix is going to up-
date a state that contains an individual better than its current super individual replacing
them by that individual.

In particular, let:

i = (mo(2), m (1), m2(8), ..., 7 (i)) €S

mo (%) is the super individual of the population (state) . Now, let
b =argmax{ f(m(i))|k = 1,...,n} € B’ be the best individual of the population 4
excluding the super individual and:

§ ¥ (b, m1(0), m2(3), -y T (3)) € S

then:

0 otherwise.

= { § ) <10)

The new transition matrix for the EGA results of the product of a matrix composed
by 2! matrices P, one for each possible super individual and placed in such a way that
the higher the position, the better is the super individual, and the matrix of the elitism
operator E:

P En
Pt = P E_” E?
P E21,1 E2172 b Ezl’zl
PEq,
PE2; PE»;
PE2171 PE21’2 b PE21’21



The structure showed of the matrix P+ is due to the fact that the populations are
sorted in descending way according to the fitness of their super individual. This way,
the blank spaces represent zeros since it is not possible to go from a state to another
with a super individual of lower fitness.

The conclusion is that PE;; = P since such matrices correspond with the popu-
lations that have as a super individual the optimum f*.

On the other hand, making the following definitions:

PE2; PE..
PE21,1 PE21,2 st PE21’21

we conclude that the matrix P+ is reducible to the form:
P 0
+ _
PT= ( R T ) )
Thus, we have the next theorem:

Theorem 3.3 The EGA converges to the global optimum.

Proof. The submatrix P contains the transition probabilities between global op-
timum states. Since P is a primitive stochastic matrix and R, T # 0, Theorem 2.5
guarantees that the probability of remaining in a nonoptimal state converges to zero.
Therefore, the probability of remaining in a global optimum state convergesto 1. m

Then, we have shown that the EGA converges, i.e. a Genetic Algorithm that uses
elitism converges to the global optimum.

4 Convergence Time

The problem of characterizing the behavior of a GA is complex since it varies with the
application domain as well as with the implementation parameters adopted for the GA.
In this chapter will show a model based on Markov chains that is used to estimate
the convergence time of a simple genetic algorithm.
The preliminary work reviewed includes the models developed by Carol A. Anken-
brandt [1] and Sushil J. Louis & Gregory J. Rawlins [11]. Such models are based on
convergence of alleles and on Hamming distances, respectively.

4.1 Model based on Markov Chains

In Section 2, we showed some results on the fundamental matrix of a Markov chain.
As we saw, such a matrix can be used to compute the expected convergence time of the
chain. In this section, we will apply such results to the corresponding transition matrix
of the EGA.

Rudolph [15] showed that the matrix of the EGA has the form:

10



P 0
+ _
P~ (x 1)
where P is the transition matrix of the SGA and:

PE2q PE2»

R: T =

PE2171 PE2172 b PE21’21

where E;; are the corresponding blocks of the matrix of the elitist operator E.

Since in Rudolph’s model the matrix P corresponds with the populations whose
super individual is the global optimum, we can consider that when the chain is in one
of those states, the search process has finished. Any further change in the population
can be ignored because the super individual will not be any longer modified. Therefore,
we can rewrite the matrix like:

+_( I o0
#=(n 1)

We can see clearly now that the Markov chain corresponding to the EGA is ab-
sorbent. According to Definition 2.9, the fundamental matrix that interests us in this
case is:

N=(I-T)"!

4.1.1 Study of the matrix of the EGA (PT)

Since our objective is to know the fundamental matrix IN, we will start by studying
the structure of the block T. As we saw, once we have the matrix P we proceed to
construct the matrix P in the following way:

P Ei1
Pt — P E21  E22
P E21,1 E2172 =t Ezl’zl
PE,
PE3; PE,,
PE2171 PE21,2 et PE21,21
Matrix P

In this section we will study the elements of the matrix P. As we know, this matrix is
the result of the product:

P =CMS

11



Parent 1 Parent 2

0| 1|0 1 171 ]0 1
00| 0|1

Child

Probability= (05) (0) (1) (1) =0

=05(0x0+1x0) 05(1x0+1x0)
05(0x0+0x0) 0.5(1x1+1x1)
=0.5(1+0) 0.5(0+0) 0.5(1+1) 0.5(1+1)
=0.5(1) 0.5(0) 0.5(2) 0.5(2)
=(05)(0)(1)(1=0

Figure 1: Example of the way in which uniform crossover works. The symbol @ is
represented by the letter x.

This is the reason why the elements of each of the corresponding matrices will be spec-
ified next.

Elements of the matrix of crossover

The elements of 2 types of crossover were modeled: uniform and single-point. For
that sake, the following operator was defined:

®|0 1
01 0
110 1

The operator @ is nothing more than the negation of an or — exclusive, and it will
be applied between the bits corresponding to a fixed position of a parent and a possible
child. Thus, if the bits are equal, the result is 1 and 0 otherwise.

I Uniform crossover:

When we perform uniform crossover (assuming a crossover percentage of 0.5)
each bit of a new child has 0.5 of probability of being equal to the correspond-
ing bit of each one of both parents. Using this fact the following formula was

developed:
n ! #(q)
cy =[O ] > =@ eni)
a=1 r=1s=¢(q)-1

12



where ¢(q) = 2| 22|

Intuitively, given two parents and a possible child, the probability of obtaining
the child from these parents is given by the product of the probability of obtain-
ing, in an independent way, each bit of the child from its parents.

On the other hand, the probability of obtaining a certain bit of the child is: 1 if
the corresponding bits of the parents are equal among them and to the bit that it
wants to obtain, 0.5 if the bits of the parents are different and O if the bits from
the parents are equal among them but different from the bit of the child. Figure 1
shows an example of how to compute this probability.

Il Single-point crossover.
Assuming that the crossover point is randomly chosen we have that:

n L1 (k—1)+83 (1—1)-3
i =127 I @w@en@) [ @wadenw)

r=1 | k=1 s=1+a s=k—a

where @ = (1 — rmod2)(k — 1) and § = (1 — rmod2) (Il — k).

In this case, if we assume that the crossover point is fixed, we only have to verify
if the bits of the first parent going from the beginning of the chain to the crossover
point are all equal to those in the child. Then, we have to verify if the remaining
bits are all equal to those of the second parent. In this case, the terms of the
matrix can only be zero or one. Thus, the total term is the result of the sum of
the probabilities for each possible crossover point multiplied by the probability
of choosing each point.

Elements of the Mutation Matrix

As we saw before, Rudolph models the GA using uniform mutation. The corre-
sponding elements are:
mij = Py (1 = pr) V11
where p,, is the mutation probability and H;; is the Hamming distance between

populations ¢ and j. Since mutation is applied with probability p,,, to each bit, the ex-
pression of the element m;; is quite simple.

Elements of the Selection Matrix
The selection operator adopted is the well-known proportional selection. As we

know, in such a selection scheme, each individual has a probability of being selected
which is proportional to its fitness, thus:

O o, Fme()

o Hk=1f(ﬂ'k(j)) |f7rk(])€{7rr(l)|7‘=1,;n}Vk:La”
ij —
0 otherwise.

13



where f is the objective function (fitness).
Elements of the P Matrix

Since the matrix P is the product of the crossover, mutation and selection matrices,
we have that:

n n
pij = Z(Z CigMgp)Sp;

p=1 ¢=1

which is the reason why:

..Zi i ﬁ(OS)lﬁ % (i) & 7°(q) ( H‘“’(l— )N—qu) HZ:l F(mr(5))
Dij 2 . i r\q P Pm >, fm()"

p=1 r=1 s=1t=¢(r)—1

E Matrix
The E matrix is the following:
Ell
E21 E22
E21’1 E21,2 b E21)21

Rudolph [15] indicates that this matrix has exactly one 1 by row. Then, E4; is an
identity matrix and the matrices E,, (a > 2) are identity matrices with some zeros in
the diagonal. Next, we will try to clarify these claims and to provide a specific example
of this matrix.

As we know:

0 — { 1 if f(mo(i)) < f(b)
& 0 otherwise.
where b =argmax{ f (7 (i))|k = 1,...,n} € Bl y

7Y b, 71 (), 72 (1), ooy (3)) € S

Then, given a fixed population is clear that its super individual can only improve
(Figure 2), so that it only has two choices:

1. Remain intact:
f(mo(i)) > f(b) > e =1

2. Update its super individual by the maximum of its population:

f(mo(i)) < f(b) = ei; =1

14



popul ations that

have as . second
super individual to  OPtimal better - - - worst
optimal | Eqy 0 0| 0 |
sljegt?grd Exy | Exn| O i 0
0

Figure 2: The structure of the elitism matrix is due to the fact that the super individual
of a given population can only improve. Therefore, there are blocks of zeros.

From the previous, we conclude that there exists one 1 and only one 1 in the rows
of the E matrix and the remaining elements are zeros.

Now we will proceed to study the structure of the columns. It is clear that no pop-
ulation ¢ will become a population j in which the super individual is of lower quality
than the maximum within her (formally, f(mo(j)) < f(b)). Here follows that the
column corresponding to this population j will consist completely of 0 elements, i.e.
e;; = 0 for all 4. Therefore, the matrix E has columns of zeros.

We will now study those columns different from zero. Let us remember that in
the final structure of the E matrix each row of blocks ¢ represents the probabilities of
transition of all the possible populations but with the 4th best individual as a super indi-
vidual (Figure 2). It is clear that in each row of blocks there exists a population A that
contains the second best individual as its maximum. Let us consider that population in
the block of rows 2 and in the 2¢, and call them ks and h.:. Clearly, the population hs
will be intact, but the population h,: will pass to be hs (Figure 3). In conclusion, we
have that it is possible to find more of one 1 in the columns that are different from zero.

We will now consider the columns but of blocks. For the first column of blocks
(corresponding to the populations that have the optimal solution as their super individ-
ual) is clear that in a column corresponding to one population whose maximum is the
optimal we will have one 1 in each block, because this means that the super individual
of that population will pass to be the optimal in case of not being it, for each of the
blocks. Let us say then that all the populations whose maximum is optimal “stay” in
the first block of columns. Analogously, the populations whose maximum is the ith
best individual “stay” in the ith block. Therefore, in the block of columns 4 there will
be a maximum of (2! — i + 1) 1’s by column. That is to say, there will be as many 1’s
as blocks in the column since in each block there will be a population whose maximum
is the individual i.

Then, as we descend throughout the rows of blocks, the populations get distributed
along the row, depending on the quality of their maximum individual.

To exemplify the previous, we will assume that within each block the populations

15



2
O1010 optimal
0 o
| -
hy—= _— c worst
optimal St?gt(t)grd ... worst pOpﬂZ\t/iggsSthat

super individual to

Figure 3: If the populations A and hy: have as a maximum the second best individual,
after applying to them the elitism matrix both will pass to be hs. This way, the elitism
matrix can have more of one 1 in the columns different from zero.

are sorted (by sets within which order is irrelevant) based on the quality of their max-
imum individual. Let us say that there are three populations and three possible super
individuals, the corresponding elitism matrix will have the form depicted in Figure 4.

Obviously, the case that has been used as an example is quite unrealistic, because
it would be very difficult to find a problem with 3 possible populations and 3 possible
super individuals, particularly if we consider that we are assigning a different maximum
individual to each population.

In general, it is clear that the number of populations whose maximum is the ith best
individual decreases as 4 increases (if the maximum individual is i, in the rest of the
population we can only find N — 4 individuals different to it); nevertheless, it does not
get down to zero for any value of s.

Now we will show the minimum case that has become commonly associated with
the basic (minimum) conditions of a GA.

Let us consider the simplest case. Let! = 2 and n = 2. This gives us a total of
22%2 = 24 —= 16 populations to consider by the GA. Nevertheless, just with the aim
of illustrating our example in an easier way, we will consider the fact that on a formal
way the net number of populations is [13]:

[ n+r-1
v=(M)
where r = 2%,

Therefore in this case we only have N = 10 possible populations.
As there exist only 4 (2! = 4) possible individuals, we will say that 4 populations
have as their maximum the optimal individual, 3 have as their maximum to the second
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super

1 2 3 individual
1 (1]lolo| | | | ]
2 |oj10]| 3 1
3 ]0/ol1 HEE
1 [1/0]/0]o|o]o0 |
2 lojo|o]o|1]0 | 2
3 [olofofofol2]| | |
1 [1]o]o]ofolo]olo]0O
2 |lojolo|ol1]|o]o0]olo 3
3 |ojolo]olo]o]o]o]1
}

maximum

Figure 4: In the elitism matrix the populations get “distributed” throughout the row of
blocks according to the quality of their maximum individual as we descend throughout
the matrix. The figure shows the case in which we have three possible populations and
three possible maximum individuals.

best, 2 to the third best and 1 to the worst individual. This is done with the purpose
of modeling the fact that somehow the number of possible populations that have a
certain individual as their maximum decreases simultaneously with the quality of such
an individual.

The corresponding matrix of elitism is shown in Figure 5. This is a 40 x40 matrix in
which we can again observe that the populations get “distributed” throughout the rows
of blocks based on the quality of their maximum individual, as we descend throughout
the matrix. The dimensions of this matrix gives us an idea of how complex this model
becomes when we use more realistic parameters for the GA.

Based on the previous, we now know the structure of the P+ matrix. Figure 6
shows the P* matrix for the case of 3 populations and 3 individuals previously dis-
cussed.

4.1.2 Expected Convergence Time

We will use again our two previous examples to illustrate the following procedure. In
the case of 3 individuals and 3 populations, whose P+ matrix is provided in Figure 6,
the corresponding block T is shown in the Figure 7.

The package MATHEMATICA 4.0 was used to carry out the computations cor-
responding to the fundamental matrix N, where

N=(I-T)"!

According to Theorem 2.13, once we have the N matrix, it must be multiplied by a
column vector of 1°s and the result is a vector whose elements are the expected times of
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with the
super
T 4 1l A 1l A s A 1 individual
11
1 1
1 1
1 1
2 1 1
2 1
2 1
3 1
3 1
4 1 d
1|11
1 1
1 1
1 1
2 1 2
2 1
2 1
3 1
3 1
4 1 .
111
1 1
1 1
1 1
2 1
2 1] 3
2 1
3 1
3 1
4 1
11
1 1
1 1
1 1
2 1
2 1 4
2 1
3 1
3 1
4 1
!
maximum

Figure 5: Matrix of elitism for the case of 4 possible individuals and 10 possible pop-
ulations.
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1 [Pyl 00| 0[Py 0]|0]0|Ps
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f

maximum

Figure 6: P in the case of 3 possible populations and 3 possible individuals.

super

2 3 individual
1 | 0|P|Pis 5f B
2 | 0[Py Py i 2
3 | 0[Py|Ps| |
1 {0|Puj0|0]|0]|Ps
2 | 0Py 0] 0] 0[Py 3
3|0(Py 0] 0| 0|P,

?

maximum

Figure 7: The block T in the case of 3 possible populations and 3 possible individuals.
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absorption or convergence for each one of the transient states, in terms of the elements
of the P matrix.
We shown next the results obtained:

Case I. 3 individuals - 3 populations. We have 6 transient states:

(I) 1+pia+pi3—p2o—pi3p22+pi2p23+pPi13Ps2 —P23p32 —P33+P12P33+p22pss
1—p22 —p23p32 —Pp33+p22p3s

ii —1—pa3+pss
(i)
1—p2o—p23ps2—Pp3s+p22p33
Hh 1—poo+p3a
(iii)
1—pa2—p23p32—p33+p22p33

(IV) 1+pio+pis—poo—pi3pr2+pi2p2s+pi3Ps2 —P23p32 —P33+P12P33+p22pss
1—p22—p23p32 —p33+p22p33

(V) 1+pas—pas
1—pa2—p23p32—p33+p22p3s

(VI) —1+poo—p32
1—p22—p23p32 —p33+p22p33

Case Il. 4 individuals - 10 populations. We have 30 transient states. The software
used could not unfold the results. The obvious cause is that in the expression of
the matrix whose inverse we wish to compute there are 60 variables.

It is clear that the use of the elements of the P matrix makes the problem quite
complex. For that reason, we thought of the possibility of using a label called p; by
each ¢ column of the P matrix in order to simplify the necessary computations. Note
that such labels p; must fulfill: -7 | p; = 1.

Let us assume that we can label each column ¢ of the P matrix by the term p;.

In order to clarify our idea, the P+ matrix and the block T corresponding to the
case of 3 possible individuals and 3 possible populations using the labels p; are illus-
trated in the Figures 8 and 9.

Now we show the results obtained using the new matrices:

Case I. 3 individuals - 3 populations. We have 6 transient states: Expected times
using a label for each column:

-1
—1+p2+p3
for all the transient states.

Case Il. 4 individuals - 10 populations. We have 30 transient states: Expected
times using a label for each column:

-1
—1+ps +ps + p7+ps + Py + pro

for all the transient states.
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super

1 2 individual
1 |P1|P2(P3
2 [Palpalps| | | | | 1 1
3 [PaPelPs| | | | |
1 |P1jo of|o0|P2|P3
2 [pilolo]olp2lps| | | 1 2
3 [Pifofo]olpP2]ps| | |
1 |Pijo|o|o0|P2/0]0 P3
2 [Prjo|0]|0O[P2/0]0 P3 3
3 |P1{0|0]0O|P2/0] 0 P3
!
maximum

Figure 8: For the case of 3 populations and 3 individuals, this is the P matrix in the
case in which a label by column is used.

2

P2

super

~individual

P>

P2

P

P,

o
&

o|lo|O|O|o O

P>

Figure 9: Block matrix T corresponding to the case of the Figure 8.
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4.1.3 Experiments

We carried out the tests corresponding to the case of 10 populations and 4 individuals.
In this case, each population consists of 2 individuals and each individual is of length
2. As we mentioned previously, the total number of populations for the GA in this case
is of 16.

With the aim of being able to hierarchize the four individuals, we defined the fol-
lowing function:

f(iL‘l.’L'Q) =1x; + 0525, + 0.5
For example:
f(01)=0+05%x1+05=1.0

As the function f is strictly positive for any individual, this same function was used
as fitness function. In the following table, we show the four possible individuals, their
corresponding fitnesses and their hierarchy:

individual | fitness | hierarchy
00 0.5 4
01 1.0 3
10 15 2
11 2.0 1

Now, we show the table with the 16 populations organized according to their cor-
responding maximum individual:

Maximum | No. | individuals
1 1 |11 00
1 2 |11 01
1 3 |11 10
1 4 |11 11
1 5 |10 11
1 6 |01 11
1 7 |00 11
2 8 |10 00
2 9 |10 01
2 10 | 10 10
2 11 | 01 10
2 12 | 00 10
3 13 | 01 00
3 14 | 01 01
3 15 | 00 01
4 16 | 00 00

22



As we can see, 7 populations have as their maximum the optimal, 5 have as their
maximum the second best, 3 to the third best and one to the worst individual. In
addition, within these groups the order is irrelevant.

According to the model described in Section 3, the chain corresponding to the EGA
has 16 absorbent (or optimal) states. That is to say, all the possible populations but with
the optimal as super individual, and 48 transient states, that is, the sixteen possible
populations but with the second, third or worst individual as their super individual.

Using the expressions previously obtained and the procedure described in the pre-
vious section, the corresponding matrices of crossover, mutation and selection were
constructed, and after that, the corresponding P matrix. Also, the E matrix was con-
structed and finally the P+ matrix was obtained. From this last one, the block T was
obtained, which gives rise to the fundamental matrix N

Since in our model the probability of crossover (p.) was fixed to a value of 1, and
due to the fact that the size of the population and the length of the individuals are also
fixed, the results only depend on the mutation probability (p,y).

On the other hand, a GA with the conditions imposed by the model was run. Note
that within this GA, the super individual (elitist individual) does not have to take part
in the evolutionary process. The fixed parameters for the GA were:

populationsize = 2
chromosome lenght = 2
crossover probability = 1.0

Let g be the random variable whose value is the number of necessary iterations for
the convergence of the GA.

Next, we show the expected value of the variable g (E[g]) and the correspond-
ing standard deviation (D[g¢]) obtained (using MATHEMATICA 4.0) by the theoretical
model (TM) developed and the results obtained by the GA. In our experiments, we
performed 100 runs with different random seeds:

Pm GA ™
Elg] D[g] Elg] D[g]
0.001 | 345.05 | 540.001 | 514.137 | 660.781
0.005 | 90.98 | 131.4615 | 103.782 | 132.47
0.01 | 40.89 | 54.01943 | 52.4913 | 66.4335
003 | 130 | 16.8367 | 18.3079 | 22.4155
007 | 508 | 7.036241 | 856138 | 9.85261
01 | 4.69 65 | 6.38044 | 7.3
02 | 269 347 | 3.87256 | 3.78054
05 | 1.32 | 1.847083 | 252747 | 1.96485

In Figure 10, we show the graph of the values obtained by both methods. As we can
see, the values obtained by the theoretical model turn out to be larger than the values
obtained by the GA, in all cases.

Perhaps the values that were obtained in the cases of p,, =0.001, 0.005, 0.01 will
seem very high, but they are correct from the following point of view: if we remem-
ber, the table of all the possible populations, approximately 46% (populations 1 to 7)
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Figure 10: Graph of the values obtained by the GA and the theoretical model devel-
oped for the variable g, in terms of the probability of mutation. The continuous line
corresponds with the values generated by the theoretical model and the dotted line
corresponds to the values generated by the GA.

contains the optimal, and only populations 9 and 11 contain the schemata necessary to
give rise to the optimum by means of crossover. In conclusion, approximately 40% of
the possible populations do not contain the optimal one nor the schemata necessary to
give them rise. Since the population is very small, the number of mutations performed
in a short number of generations is practically zero, being this one the only mechanism
to be able to converge correctly. This is the reason why we need a high number of
generations to find the global optimum in these cases.

Moreover, if in each generation we have 4 opportunities to carry out a mutation
and the mutation probability is of 0.001, then we need at least 250 iterations on aver-
age to ensure that at least one mutation was carried out. For that reason, for certain
populations it will take many iterations to find the optimal solution.

In the following table, we show the populations for which it is particularly diffi-
cult to reach the optimal solution. Keep in mind that the super individual does not
participate in the evolutionary process.

Maximum | No. | individuals
2 8 |10 00
2 10 | 10 10
2 12 | 00 10
3 13 | 01 00
3 14 | 01 01
3 15 | 00 01
4 16 | 00 00

Obviously, the problem previously indicated (i.e., the need of a large humber of
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iterations to ensure that a mutation will be carried out when the mutation probability
is low) becomes less critical when we adopt a higher mutation probability. This is
reflected in the results previously shown.

On the other hand, the matrix P corresponding to the value p,, =0.5 was the only
one characterized by having a label p; for each column 4. Such property was most
likely due to the fact that the probability of passing (by effect of the mutation operator)
from the population ¢ to the population 5 is the same regardless of 7 and j. In this case,
the formula previously obtained gave the correct results, as expected.

4.2 Conclusions

We have seen that the current models to estimate the convergence time of a GA are
quite simple and, therefore, very distant from the observed behavior of such type of
algorithm.

In this Section, we developed a mechanism to estimate the convergence time of a
GA by means of a model based on Markov chains.

In general, it turns out to be very complicated to obtain an expression for the ex-
pected convergence time of a GA based on its parameters. This is due to the fact
that we need to know every single element of the transition matrix under study. For
this reason, the dimensions of such matrix introduce an excessive complexity in our
computations. On the other hand, the elements of this matrix are complex enough as
to preclude classification. This is the reason why knowing the matrix is a necessary
condition.

Our results for the most simple case that can be considered (perhaps argueably)
as realistic, led us to conclude that the proposed model is correct. Nevertheless, it
is clear that in such case it was relatively easy to obtain the corresponding matrix P,
but this is a process that will generally get more complicated as we increase the size
of the population and the chromosomic length. For example, let us suppose that the
population consists of 50 individuals of length 5, then the corresponding matrix P is
of size 2250 x 2250 In general, the size of the matrix has an exponential growth.

Therefore, we can conclude that, from a practical point of view, Markov chains are
not a recommended theoretical tool for this sort of analysis (i.e., estimation of expected
convergence time). Nevertheless, other alternatives exist to which it would be possible
to resort (e.g., statistical mechanics [14], geometric interpretation approaches [18], and
random search based modelling [19]).

5 The Simple Genetic Algorithm for Multi-Objective
Optimization

The theoretical frame corresponding to multi-objective evolutionary optimization is
completely different from the one adopted for single-objective optimization. This is
because in single-objective optimization, the goal is to obtain a single solution, whereas
in multiobjective optimization, we aim to find a set of solutions (the so-called Pareto
optimal set).
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In this section we provide a brief analysis of the capabilities of the simple GA
when dealing with multiobjective optimization problems, starting with some basic def-
initions.

5.1 Definition of the problem

We are interested in solving problems of the type:

-

(MO) minf () = (f1(2), f2(), - - -, fr(Z))

where f; : R® — R fori = 1, ..., k are the objective functions, f: X cR" > RFis
the multiobjetive function, and Z € X is called the vector of decision variables.

In order to describe the concept of optimality that interests us, we will use the
following relation in R¥: we say that @ < @ if u; < v; forall = 1,...,k, and that
4 < Uifd < vbutd # . Inthis last case, we say that @ dominates ¢ and instead of
4 < ¥ we will write @ < 7.

Summarizing, in the set 7 = f(X) we can define the following relation:

Definition 5.1 (Pareto Dominance) We say that a vector @ = (ug,...,u;) € R*
dominates 7@ = (vy, ...,v) € R” (denoted by @ < ) if and only if @ < .

Definition 5.2 A vector of decision variables #* € X is Pareto optimal for a MO
problem if there does not exist another vector of decision variables # € X such that

f(@ < fl@).

Let X* = {Z* € X|Z* be Pareto optimal}. The elements of X* are also called

-

nondominated and the set 7* = f(X™) is called the Pareto front.

5.2 Partially Ordered Sets

If the reflective, anti-symmetrical and transient relation < is valid in X then the pair
(X, X) is called a partially ordered set. If z and y are two elements of X such that
x <y but z # y, then we say that x < y.

Definition 5.3 An element z* € X is called minimal element of (X, <) if there does
not exist x € X such that z < z*. The set of all the minimal elements is denoted by
M(X,<).

We say that different points z,y € X are comparable when z < y ory < x; of
another way, = and y are incomparable which is denoted as z || y.

If each pair of different points from (X, <) is comparable then (X, <) is called a
totally ordered set or a chain. If each pair of different points from (X, <) is incompa-
rable then (X, <) is called a antichain.

Lemma5.4 If (X, <) is a partially ordered set and 0 < |X| < oo then M(X, <) is
complete.
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Letnow f : B! — F = {f(z) : « € B'} C R". Note that the Pareto Dominance
defines a relation of strict order in F.
Therefore:

(F, =) is a partially ordered set and
M(F, =) ~ Pareto front.

As we have seen, the objectives of the search in this case are the minimal elements
of the space search.

Given their natural capacity (due to the use of a population) to handle several pos-
sible solutions simultaneously, GAs have become increasingly popular in the solution
of multiobjective optimization problems [3].

5.3 Convergence Study

The SGA has been used to solve multi-objective problems by means of the use of Pareto
ranking [5, 3] and diversity maintenance mechanisms such as fitness sharing and nich-
ing. Some examples of multi-objective evolutionary algorithms based on the previous
concepts are the following: the Nondominated Sorting Genetic Algorithm (NSGA)
[17], the Niched-Pareto Genetic Algorithm (NPGA) [8] and the Multi-Objective Ge-
netic Algorithm (MOGA) [4].

As any other evolutionary algorithm, multi-objective evolutionary algorithms can
be represented through their corresponding transition matrix. Thus, the model pre-
sented in Section 3 is directly applicable to multi-objective evolutionary algorithms.

In what follows, we propose a definition of convergence analogous to Definition
3.1, but extended for multi-objective optimization:

Definition 5.5 Let M; = #{xL(i)|x% (i) € M(F, %)} be a sequence of random vari-
ables representing the number of minimal elements of the search space into the pop-
ulation represented by the state ¢ in the step ¢. A multi-objective genetic algorithm
converges to the set of minimal elements of the search space if and only if:

llmt%ooP{Mt = popsize} =1

where pop,;.. is the population size of the algorithm.

Thus, the convergence is in terms of the number of elements of M (F, <) that the
population of the algorithm contains in a certain step ¢. This way, each population will
be labeled with the number of minimal elements of the search space that contains.

Next, we present a theorem that demonstrates that any evolutionary algorithm with
irreducible transition matrix (primitive), does not converge in terms of the previous
definition.

Theorem 5.6 An EA with primitive transition matrix does not converge to M (F, <).
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Proof. Leti € S be any state in which M; < popsiz. and p;(t) is the probability
that the EA is in state ¢ at step ¢. Clearly, P{M; # popsize} > pi(t) & P{M; =
POPsize} < 1 — p;(t). From Theorem 2.4, the probability that the EA is in state i
converges to p;(oo) > 0. Therefore,

limt—)ooP{Mt = popsz’ze} <l1 —Pz'(OO) <1

and therefore, the condition of convergence is not satisfied. m

After proving that any evolutionary algorithm with primitive transition matrix can-
not converge to the Pareto front in terms of Definition 5.5, it remains to study the effect
of fitness sharing in the distribution of the population.

5.3.1 Niching

Since the states of the Markov chain that models a genetic algorithm both in its single-
objective and in its multi-objective versions correspond to the population of the algo-
rithm itself, and since the mechanisms of fitness sharing (i.e., niche induction) intro-
duce modifications only to the fitness values of each individual, it should be clear that
niching only modifies the matrix representing the selection operator. Nevertheless, the
use of fitness sharing introduces some extra complexity into the model because of the
changes that it can produce.

For an example of the complexity surrounding the changes in the matrix when
fitness sharing is used, refer to Horn’s work [7], in which a very simplified model is
adopted. Additionally, we suggest to read Mahfoud’s work [12], in which a different
algorithmic model that uses niching is proposed. An interesting aspect of this work is
that Mahfoud shows that the use of Markov chains to model algorithms with niching is
unnecessary in a certain particular case.

6 Conclusions and Future Work

In this report, we have provided a theoretical study of the convergence of genetic algo-
rithms both for single-objective as for multi-objective optimization.

The convergence of the elitist GA (for single-objective optimization) was demon-
strated, and we then studied the complexity of estimating the expected convergence
time of this algorithm. With respect to this point, we could see that although the theo-
retical model is correct, it turns out to be very complicated to obtain an expression (in
terms of the parameters of the GA) that bounds the number of iterations necessary to
reach the global optimum. This difficulty is due to the dimensions of the transition ma-
trix corresponding to the evolutionary process. Such dimensions grow exponentially
with respect to the value of the parameters adopted for the GA. This means that in or-
der to be able to predict the behavior of the algorithm, it becomes necessary to know
its corresponding matrix, which in a real-world situation, would be a very expensive
process (computationally speaking).
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The most viable alternative in this case is to use another type of theoretical tool
to model the GA. Such a tool should not require as much a priori knowledge as our
Markov chain model to predict some aspects of the algorithm’s behavior.

We have also analyzed the capabilities of a simple GA for solving multi-objective
optimization problems. Basically, we studied the convergence of a simple GA to the
true Pareto front of a problem.

As we could see, the simple GA does not converge to the Pareto front if convergence
is defined as having all the members of the population to belong to the Pareto optimal
set. This turns out to open several possible areas of study. For example, it would be
interesting to know how many elements of the population converge to the Pareto front?
Also, we would like to know what is the expected time to obtain the first Pareto optimal
solution? In this regard, we propose to study the population dynamics (i.e., how the
mechanisms of fitness sharing or any other diversity maintenance mechanism affects
the distribution of individuals along the evolutionary process). This is an important
topic since one of the aims of multi-objective evolutionary algorithms is to obtain a
distribution of nondominated solutions as uniform as possible.

This brief theoretical study has shown that evolutionary algorithms theory in gen-
eral is a very interesting research area with many open questions. Particularly, the
theoretical study of multi-objective evolutionary algorithms has been very scarce so
far and many problems remain to be solved (e.g., modelling of parallel multi-objective
evolutionary algorithms) [3].
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