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Abstract

In this paper, we study three selection mechanisms based on the maximin fit-

ness function and we propose another one. These selection mechanisms give

rise to the following MOEAs: “Maximin-Clustering Multi-Objective Evolution-

ary Algorithm (MC-MOEA)”, “Maximin-Distances Multi-Objective Evolution-

ary Algorithm (MD-MOEA)”, “Maximin-Hypervolume Multi-Objective Evolu-

tionary Algorithm (MH-MOEA)” and “Maximin-Approximated Hypervolume

Multi-Objective Evolutionary Algorithm (MAH-MOEA)”. All of these MOEAs

are validated using standard test functions taken from the specialized litera-

ture, having from three up to ten objective functions. First, we compare these

four MOEAs and we conclude that MD-MOEA and MAH-MOEA are the best

options to solve multi-objective optimization problems with both low and high

dimensionality. After that, we compare MD-MOEA and MAH-MOEA with re-
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spect to MOEA/D (which is based on decomposition) using Penalty Boundary

Intersection (PBI), and to SMS-EMOA (which is based on the hypervolume

indicator). For this sake, we use a version of SMS-EMOA that approximates

the contribution to the hypervolume indicator, since it is less computationally

expensive than the original version, which uses exact hypervolume contribu-

tions. The results indicate that both MD-MOEA and MAH-MOEA outperform

MOEA/D, and that MAH-MOEA is able to outperform SMS-EMOA in some

cases. Also, MD-MOEA and MAH-MOEA are both much faster than SMS-

EMOA; and MD-MOEA is not much slower than MOEA/D. Thus, we conclude

that our proposed maximin-based MOEAs are promising alternatives for solving

multi-objective optimization problems with either low or high dimensionality.

Keywords: Multi-objective evolutionary algorithms; selection operators;

maximin fitness function

1. Introduction

In real-world applications there are many problems which involve the simul-

taneous optimization of multiple objective functions [1], which are normally in

conflict with each other. They are called “Multi-objective Optimization Problems

(MOPs)”. Because of the conflicting nature of the objectives to be optimized,

the notion of optimality refers in this case to finding the best possible trade-offs

among the objectives (i.e., we aim to find solutions for which no objective can be

improved without worsening another). Consequently, when solving MOPs we

do not aim to find a single optimal solution but a set of them, which constitute

the so-called Pareto optimal set, whose image is known as the Pareto front.

The use of evolutionary algorithms for solving MOPs has become very pop-

ular in the last few years [2], giving rise to the so-called Multi-Objective Evo-

lutionary Algorithms (MOEAs).2 MOEAs have two main goals: (i) to find

2Although this paper focuses on MOEAs, there are many other multi-objective meta-
heuristics currently available (for example, multi-objective ant colony optimizers [3, 4], multi-
objective particle swarm optimizers [5], multi-objective firefly algorithms [6], multi-objective
flower pollination algorithms [7], and multi-objective harmony search algorithms [8] just to
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solutions that are, as close as possible, to the true Pareto front and, (ii) to pro-

duce solutions that are spread along the Pareto front as uniformly as possible.

We can talk of two types of MOEAs, if we classify them based on their selec-

tion mechanism: (i) those that incorporate the concept of Pareto optimality into

their selection mechanism, and (ii) those that do not use Pareto dominance to se-

lect individuals. The use of Pareto-based selection has several limitations from

which, its poor scalability with respect to the number of objective functions

is, perhaps, the most remarkable. The quick increase in the number of non-

dominated solutions as we increase the number of objective functions, rapidly

dilutes the effect of the selection mechanism of a MOEA [9].

Here, we are interested in the maximin fitness function (MFF) [10, 11] which

can act as a selection mechanism of type (ii) and it has interesting properties.

For example, through its application, we can know which individuals are non-

dominated and, in the case of dominated individuals, the fitness value that

this expression returns is a metric of the distance to the non-dominated front.

Additionally, the fitness value of the non-dominated individuals that is obtained

with this expression is penalized if they are clustered in the same region of

objective function space. Furthermore, computing the MFF is computationally

efficient because its complexity is linear with respect to the number of objective

functions. Nevertheless, the use of the MFF also has some disadvantages, but

there have been some proposals to address them. Thus, we argue here that the

use of the MFF is a viable alternative for dealing (at an affordable computational

cost) with many-objective optimization problems [12, 13, 14, 15].

Thus, the main goal of this paper is to provide an in-depth study about the

MFF and its proposed variations, so that we can identify its main advantages

and possible limitations. Such a study aims to provide more information about

the sort of instances in which it is advisable to use any of the proposed MFF-

based MOEAs, as well as those cases in which their use may present some

difficulties.

name a few). However, their discussion is beyond the scope of this paper.
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The remainder of this paper is organized as follows. Section 2 states the

problem of our interest. The previous related work about MOEAs based on the

maximin fitness function is presented in Section 3. The maximin fitness function

is described in detail in Section 4. Section 5 describes three MOEAs based on

the maximin fitness function (MC-MOEA, MD-MOEA and MH-MOEA) and we

also propose a new version of MH-MOEA called MAH-MOEA. Our experimental

results are presented in Section 6. Finally, we provide our conclusions and some

possible paths for future work in Section 7.

2. Problem Statement

We are interested in the general multiobjective optimization problem (MOP),

which is defined as follows: Find ~x∗ = [x∗1, x
∗
2, . . . , x

∗
n]T which optimizes

~f(~x) = [f1(~x), f2(~x), . . . , fk(~x)]T (1)

such that ~x∗ ∈ Ω, where Ω ⊂ Rn defines the feasible region of the problem.

Assuming minimization problems, we have the following definitions.

Definition 1. We say that a vector ~x = [x1, . . . , xn]T dominates vector ~y =

[y1, . . . , yn]T , denoted by ~x ≺ ~y, if and only if fi(~x) ≤ fi(~y) for all i ∈ {1, ..., k}

and there exists an i ∈ {1, . . . , k} such that fi(~x) < fi(~y).

Definition 2. We say that a vector ~x = [x1, . . . , xn]T is weakly non-dominated

if there does not exist any ~y such that fi(~y) < fi(~x) for all i ∈ {1, ..., k}.

Definition 3. A point ~x∗ ∈ Ω is Pareto optimal if there does not exist any

~x ∈ Ω such that ~x ≺ ~x∗.

Definition 4. A point ~x ∈ Ω is weakly Pareto optimal if there does not exist

another point ~y ∈ Ω such that fi(~y) < fi(~x) for all i ∈ {1, ..., k}.

Definition 5. For a given MOP, ~f(~x), the Pareto optimal set is defined as:

P∗ = {~x ∈ Ω|¬∃~y ∈ Ω : ~y ≺ ~x.
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Definition 6. Let ~f(~x) be a given MOP and P∗ the Pareto optimal set. Then,

the Pareto Front is defined as: PF∗ = {~f(~x) | ~x ∈ P∗}.

3. Related Work

The maximin fitness function (MFF) was originally proposed by Balling in

[10] and it has been incorporated in genetic algorithms [11, 16, 13, 14, 15],

particle swarm optimizers [17, 18], ant colony optimizers [19] and differential

evolution [12].

The early proposals based on MFF only considered MOPs with low dimen-

sionality (two objective functions) and did not adopt a technique to improve the

distribution based on the idea that MFF penalizes clustering. It was until 2012

[12] that a more in-depth study of MOEAs based on MFF was undertaken. The

authors of this study found two important disadvantages when MFF is used to

select individuals:

1. MFF prefers weakly non-dominated individuals over dominated individu-

als and this causes a loss in the diversity of the population, especially, in

MOPs in which one objective function is easier to solve than the others.

2. The second disadvantage has to do with the poor diversity obtained in

objective function space. Although MFF penalizes clustering between

solutions, it is possible that many individuals have the same fitness and

then we cannot know which individual should be selected.

In recent years, some proposals to address the two above disadvantages have

been made [12, 13, 14, 15]. In the following sections we will provide an in-depth

analysis of such proposals.

4. Maximin Fitness Function

The maximin fitness function (MFF) works as follows. Let’s consider a MOP

with K objective functions and an evolutionary algorithm whose population size

is P . Let f i
k be the normalized value of the kth objective for the ith individual
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in a particular generation. Assuming minimization problems, we have that the

jth individual weakly dominates the ith individual if:

mink(f i
k − f j

k) ≥ 0 (2)

The ith individual, in a particular generation, will be weakly dominated by

another individual, in the generation, if:

maxj 6=i(mink(f i
k − f j

k)) ≥ 0 (3)

Then, the maximin fitness of individual i is defined as:

fitnessi = maxj 6=i(mink(f i
k − f j

k)) (4)

where the min is taken over all objective functions, and the max is taken over all

individuals in the population, except for the same individual i. From eq. (4), we

can say the following: (i) Any individual whose maximin fitness is greater than

zero is a dominated individual; (ii) any individual whose maximin fitness is less

than zero is a non-dominated individual; (iii) finally, any individual whose max-

imin fitness is equal to zero is a weakly-dominated individual. Some interesting

properties of MFF are the following:

1. MFF penalizes clustering of non-dominated individuals. See Figure 1(b).

2. The maximin fitness of dominated individuals is a metric of the distance

to the non-dominated front. See Figure 1(c).

3. The max function in the maximin fitness of a dominated individual is al-

ways controlled by a non-dominated individual and is indifferent to clus-

tering. The max function in the maximin fitness of a non-dominated indi-

vidual may be controlled by a dominated or a non-dominated individual.

See Figure 1(c).
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Figure 1: Properties of maximin fitness function. In (b), we can see that if we incorporate
individual D, individuals B, C and D are penalized because they are close from each other. In
(c), we can see that the fitness of individuals D, E and F is controlled by the non-dominated
individual B, and their fitness is a metric of the distance to the individual B. The same occurs
with individual G but its fitness is controlled by the non-dominated individual C. Also, we
can see that the fitness of individual B is affected by the dominated individual D because they
are close and the fitness of individual C is affected by the dominated individual G.

The author of MFF proposed in [11] the following modified maximin fitness

function:

fitnessi = maxj 6=i,j∈ND(mink(f i
k − f j

k)) (5)

where ND is the set of non-dominated individuals. Using eq. (5) to assign

the fitness of each individual, we guarantee that the fitness of a non-dominated

individual is controlled only by its non-dominance and then, we only penal-

ize clustering between non-dominated individuals. For example, if we use the

modified maximin fitness function in Figure 1(c), individual B would not be

penalized and it would retain a fitness value equal to -1.

It is interesting to observe that MFF allows to design, in an easy way, an

interactive method to solve MOPs when the decision maker can define prefer-

ences. For example, at each iteration of the algorithm we can present to the

decision maker the set of non-dominated solutions, and then he/she can choose

which solutions will be considered to calculate the fitness of each solution in the

population. Then, we use the following equation to assign fitness:

fitnessi = maxj 6=i,j∈A(mink(f i
k − f j

k)) (6)
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where A is the set of non-dominated individuals which were chosen by the

decision maker.

4.1. Disadvantages of Maximin Fitness Function

A MOEA based on Differential Evolution and MFF was proposed in [12]. In

that work, two important disadvantages of MFF were identified. The principal

disadvantage arises from the following question: Is it better to prefer weakly

non-dominated individuals than dominated individuals? The answer

was that it is not good to prefer weakly non-dominated individuals (even if they

are weakly non-dominated by any dominated individual). As an example to

illustrate this claim, the ZDT2 function was used:

f1(~x) = x1

f2(~x) = g(~x)
(

1 − (x1/g(~x))2
)

g(~x) = 1 +
9

n− 1

n
∑

i=2

xi (7)

If we used MFF into an evolutionary algorithm to solve ZDT2, we would

assign the fitness of each individual, using MFF, and then we would sort the

individuals according to their fitness values. Then, we will obtain many (perhaps

even only) weakly Pareto points because f1 is easier to optimize than f2 and

then, we quickly obtain weakly non-dominated solutions at one extreme of the

Pareto front. Figure 2(a) shows that if we use Differential Evolution and MFF,

we only obtain weakly Pareto points. Figure 2(b) shows that if we use a Genetic

Algorithm and MFF, the convergence to the Pareto optimal front is slow because

we obtain many weakly Pareto points during the search. In [17], the authors

proposed a MOEA based on a particle swarm optimizer and MFF, and also

reported problems in ZDT2. In order to address this problem, the following

constraint was proposed in [12]: Any individual that we want to select must not

be similar (in objective function space) to another (already selected) individual.

The process to verify similarity between individuals is shown in Algorithm 1.
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Input : P (population), x (individual such that x /∈ P) and ǫ (minimum difference
between components).

Output: Returns 1, if the individual x is similar to any individual in the population P;
otherwise, returns 0.

1 foreach y ∈ P do

2 foreach objective function “k” do

3 if |x.~f[k]− y. ~f[k]| < ǫ then

4 return 1;
5 end

6 end

7 end

8 return 0;

Algorithm 1: Verify similarity

By adding this constraint, we can find the true Pareto front of ZDT2 when

we use a MOEA based on Differential Evolution, see Figure 2(c). Also, we

speed up convergence when we use a MOEA based on a Genetic Algorithm,

see Figure 2(d). The complete selection mechanism using MFF and the above

constraint proposed in [12] is shown in Algorithm 2. One could think that we

can use MFF simply without selecting solutions whose maximin fitness value is

equal to zero (because they are weakly dominated). However, it is important to

note that the above constraint avoids that we select both: (i) solutions which

are weakly dominated by non-dominated solutions and (ii) solutions which are

weakly dominated by dominated solutions. For example, let’s assume that we

want to select five individuals in Figure 1(c). If we only use MFF, then we select

individuals A, C, B, D, F. If we use MFF and the above constraint, then we sort

them according to their fitness values: A(-1), C(-0.75), B(-0.5), D(0.5), F(0.5),

G(0.75) and E(1). Finally, we select individuals A, C, B, D and we consider

the individual F but we do not select it because is similar to individual D (in

objective function f1) which had been already selected. Consequently, we select

individual G.

The second disadvantage has to do with the approximate Pareto optimal

front and its distribution. In [12], the authors showed that the maximin fitness

has difficulties in some cases. For example, in Figure 1(b), individuals B, C and

D have the same maximin fitness value. Therefore, we cannot know which of

those three is the best individual that should be part of the next generation.

In orded to address this disadvantage, several approaches have been proposed.
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Input : P (population), N (number of individuals that we want to choose such that
N < |P|) and ǫ (minimum difference between objectives).

Output: S (selected individuals).
/*Sorting with respect to the maximin fitness values */

1 AssignFitness(P);
2 Sort(P);

/*Fill up the new population with the best copies according to the maximin fitness

values, verifying that no solution is similar to one that had been previously
selected */

3 S ← ∅;
4 foreach y ∈ P do

5 if |S| < N and VerifySimilarity(y, S, ǫ) = 0 then

6 S ← S ∪ y;
7 end

8 end

/*Choose the remaining individuals considering only the maximin fitness values */

9 if |S| < N then

10 foreach y ∈ P such that y has not been selected and |S| < N do

11 S ← S ∪ y;
12 end

13 end

14 return S;

Algorithm 2: Maximin Selection

In [12], the authors proposed to combine MFF with a clustering technique. In

[13], the authors studied if it was better to use the original MFF or its modi-

fied version. In [14], the authors proposed to combine MFF with a technique

based on Euclidean distances which has as its aim to improve the distribution

of solutions. Finally, in [15], the authors proposed combining MFF with the

hypervolume indicator. In the following section, we will analyze these proposals

in more detail.

5. Selection Mechanisms based on MFF

5.1. MFF and a Clustering Technique

In [12], the authors proposed a selection mechanism based on MFF and a

clustering technique to select solutions from a set of non-dominated solutions.

Such mechanism works as follows. If we want to select N individuals from a

population of non-dominated individuals called ND, then, we choose the best

N individuals with respect to their maximin fitness, and we use them as centers

of the clusters. Then, we proceed to place each individual in its nearest cluster.

Finally, for each of the resulting clusters, we recompute the center, and we

choose the individual closest to it. This procedure is shown in Algorithm 3.
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Figure 2: In (a), we used a MOEA based on Differential Evolution and the maximin fitness
function. In (b), we used a MOEA based on a Genetic Algorithm and the maximin fitness
function. In cases (c) and (d), we used the same MOEAs adopted in (a) and (b), respectively,
but using the constraint to verify similarity. In all cases, we used a population size of 100
individuals. In cases (a) and (c), we iterated for 100 generations. Finally, in cases (b) and
(d), we iterated for 150 generations.
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Figure 3: Let’s assume that we want to select two individuals. If we use only the maximin
fitness function and we assume that A, B, C and D is the ordering of the solutions after sorting
them with respect to their fitness value, then we select individuals A and B and individuals C
and D are not considered (see (a)). This is clearly not a good selection procedure. If we use
the clustering technique proposed in [12], we take A and B as initial centers of the clusters
and we obtain two clusters: the first one only has A and the second has B, C and D, see (b).
When we recalculate the centers of the clusters and choose the closest solution to the centers,
we select A and C, see (c).

With this technique, if we return to Figure 1(b) and we assume that we want to

choose two individuals, we can see that, regardless of the individual (B, C or D)

that we choose as an initial center of the cluster, we always obtain two clusters:

one of them contains individual A, and the other one contains individuals B, C

and D. After applying this procedure, we always choose individuals A and C.

See Figure 3. It is important to note that clustering selection does not iterate

many times to improve the distribution of the centers because we choose the

initial centers regarding the maximin fitness and we only want to do a small

correction based on the idea that MFF penalizes clustering.

It is necessary to consider that if we want to select from a set which contains

dominated solutions, this selection mechanism is not effective. For example,

in Figure 1(c), if we want to select three individuals, the clustering technique

selects individuals A, D and C, penalizing individual B. This is clearly not good

because individual B dominates individual D. Therefore, the complete selection

mechanism that the authors proposed in [12] is a a combination of Algorithms 2

and 3. If we want to select N individuals from a population P . First, we

obtain the set of non-dominated solutions and we called it “ND”. Then, if the

number of non-dominated solutions is greater than N (i.e., |ND| > N), we use

Algorithm 3, in other case, we use Algorithm 2.
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Input : ND (population of non-dominated individuals) and N (number of individuals that
we want to choose such that N < |P|).

Output: S (selected individuals).
/*Choose the best N individuals, according to maximin fitness, as centers of the

clusters C */

1 AssignFitness(ND);
2 Sort(ND);
3 for j ← 1 to N do

4 µj = yj such that yj ∈ ND;
5 Cj = {∅};

6 end

/*Do one iteration of clustering */
7 foreach y ∈ ND do

8 if µj is closest to y then

9 Cj ← Cj ∪ y;
10 end

11 end

/*Obtain the new centers of the clusters */

12 for j ← 1 to N do

13 µj ←
1

|Cj |

∑

yi∈Cj

yi;

14 end

/*Select individuals who are closest to the centers of the clusters */

15 S ← ∅;
16 for j ← 1 to N do

17 if yi | yi ∈ Cj is the nearest to the center µj then

18 S ← S ∪ yi;
19 end

20 end

21 return S;

Algorithm 3: Clustering Selection (setting the centers using maximin)

Although with this selection mechanism the authors were able to address

some difficulties of MFF, it still has some disadvantages. For example, if we see

Figure 4, and we assume that we want to select six individuals, if we only use

MFF to select, we would choose individuals: A, B, C, D, E and F. If we use

the selection mechanism based on MFF and the above clustering technique, we

would choose individuals: A, B, C, D, E and K. None of two results is correct.

This is because MFF penalizes all solutions: G, H, ..., O and prefers to select

solutions in other parts of the Pareto front, leaving big gaps in the front.

Finally, a study about of the impact of using the original MFF or its modified

version was done in [13]. The main conclusions of this study were that there is

no significant impact. In this paper, we always use the modified version of MFF

for all the MOEAs presented.
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Figure 4: Maximin fitness function penalizes all solutions G, H, ... O. This is undesirable,
because it leaves gaps when we select individuals.

5.2. MFF and Euclidean Distances

In [14], the authors proposed to combine MFF with a technique based on

Euclidean distances to improve the distribution of the solutions in objective

function space. They explained that they used Euclidean distances because

the aim was that the solutions were uniformly distributed. Such a selection

mechanism works as follows:

Let’s assume that we want to select N individuals from a population called

P . First, we assign fitness to each individual using the modified version of MFF.

Then, we proceed to select individuals according to their fitness value, verify-

ing similarity between the selected individuals (see Algorithm 1). We put the

selected individuals in the set called S. If we already selected the N individuals

but there are still non-dominated individuals which have not participated in the

selection process, then we proceed to do the following. For each non-dominated

individual y who has not participated in the selection process (because its fitness

value is low), we obtain its nearest neighbor from S (snearest) and we choose a

random individual from S (srandom, such that snearest 6= srandom). We assume

that the probability of choosing an individual in a crowded region is higher than

the probability of choosing an individual in an unexplored region. Then, y will
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compete with srandom and snearest to survive. We use snearest with the idea

of improving the diversity locally: If we move snearest to y, do we increase the

distance with respect to its nearest neighbor in S? And, we use srandom be-

cause we consider the scenario in which the solution snearest is in an unexplored

region and, therefore, it is not a good idea to delete snearest or y. Therefore,

first, y competes with the randomly chosen solution srandom: If the Euclidean

distance from y to its nearest neighbor in S is greater than the Euclidean dis-

tance from srandom to its nearest neighbor in S, we replace srandom with y. If

y loses the competition, then y competes with its nearest neighbor to survive.

If the Euclidean distance from y to its nearest neighbor in S (without consider-

ing snearest) is greater than the Euclidean distance from snearest to its nearest

neighbor in S, then we replace snearest with y. It is important to mention that

if all the objectives are equally important, we need to calculate the Euclidean

distance on the normalized values of the objective functions. The complete

selection mechanism is shown in Algorithm 4.
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Input : P (population), N (number of individuals to choose N < ‖P‖).
Output: S (selected individuals).
/*Sorting with respect to the maximin fitness */

1 AssignFitness(P);
2 Sort(P);
3 ND ← The non-dominated solutions in P;

/*Fill up the new population with the best copies according to the maximin fitness,

verifying that there is not a similar one */
4 S ← ∅;
5 foreach y ∈ P do

6 if |S| < N and VerifySimilarity(y, S, ǫ) = 0 then

7 S ← S ∪ y;
8 end

9 end

10 if |S| ≤ N then

/*Choose the remaining individuals considering only the maximin fitness */

11 foreach y ∈ P such that y has been not selected do

12 S ← S ∪ y;
13 end

14 else

/*mprove diversity according to the Euclidean distances between solutions. */
15 foreach y ∈ ND who has not participated in the selection process do

16 if VerifySimilarity(y, S, ǫ) = 0 then

17 snearest ← The nearest neighbor of y in S;
18 dy1← Distance from y to snearest;
19 srandom ← Obtain a random individual from S such that snearest 6= srandom;
20 dsrandom← Distance from srandom to its nearest neighbor in S;
21 if dy1 > dsrandom then

22 Replace srandom with y;
23 else

24 dsnearest ← Distance from snearest to its nearest neighbor in S;
25 dy2← Distance from y to its nearest neighbor in S without regarding

snearest;
26 if dy2 > dsnearest then

27 Replace snearest with y;
28 end

29 end

30 end

31 end

32 end

33 return S;

Algorithm 4: Maximin-Euclidean Selection

Figure 5 shows the selection process using MFF and Euclidean distances.

Since individuals C and D are not considered in (a), in (b), C competes with A

and B, and C replaces B. In (c), D competes with A and C, and D replaces C.

With this selection mechanism, if we return to Figure 4, we can avoid that the

approximate Pareto front has big gaps. Because of that, all individuals G, H,

· · · , O have the same fitness value.

5.3. MFF and the Hypervolume indicator

There are different indicators to assess the quality of the approximate Pareto

optimal set generated by a MOEA. However, the hypervolume indicator (IH) is
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Figure 5: Let’s assume that we want to select two individuals. If we use the technique based
on MFF and Euclidean distances, first we select A and B (S = A,B), see (a). After that,
we consider individual C; its nearest neighbor is B and we choose A as a random solution.
First, C competes with A and C loses because the distance from A to B is greater than the
distance from C to B. Then, C competes with B and C wins because the distance from C to
A is greater than the distance from B to A, see (b). Finally, we consider D, and D loses with
A but it wins with C. Then, we select A and D, see (c).

the only unary indicator which is strictly “Pareto compliant 3” [20]. Besides, IH

rewards convergence towards the Pareto front as well as the maximum spread

of the solutions obtained. For these reasons, many MOEAs based on it have

been proposed [21, 22, 23, 24, 25, 26, 27, 28]. However, this indicator has an

important disadvantage: its high computational cost (the problem of comput-

ing IH is #P-hard4 [29]). In [15], the authors proposed a selection mechanism

that combines MFF and IH . Their idea is to use MFF as the main selection

mechanism and IH is used only to correct the possible errors produced when

selecting with MFF. One interesting thing of this selection mechanism is that,

to the author’s best knowledge, it is the only one based on IH that is known

to work with a population-based scheme. This is probably because MFF de-

termines the order in which each individual competes to survive using IH and

also uses the competition scheme proposed in [28] in which each individual only

competes with two other individuals of the population. Therefore, the original

combinatorial problem no longer exists.

3An indicator I : Ω → R is Pareto compliant if for all A,B ⊆ Ω : A � B ⇒ I(A) ≥
I(B) assuming that greater indicator values correspond to higher quality, where A and B are
approximations of the Pareto optimal set, Ω is the feasible region and A � B means that
every point ~b ∈ B is weakly dominated by at least one point ~a ∈ A.

4IH cannot be computed exactly in polynomial time in the number of objective functions
unless P = NP .
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5.3.1. Hypervolume Indicator

The hypervolume indicator (IH) was originally proposed by Zitzler and

Thiele in [30]. If Λ denotes the Lebesgue measure, IH is defined as:

IH(A, ~yref ) = Λ





⋃

~y∈A

{~y′ | ~y ≺ ~y′ ≺ ~yref}



 (8)

where ~yref ∈ R
k denotes a reference point that should be dominated by all the

Pareto optimal points. The contribution to IH of a solution ~x is defined as:

CH(~x,A) = IH(A, ~yref ) − IH(A \ ~x, ~yref) (9)

where ~x ∈ A. Then, the contribution of ~x is the space that is only covered by

~x. See Figure 6(a).

Auger et al. [31] conducted a study about the optimal µ-distributions and the

choice of the reference point in IH . In this study, they mentioned an interesting

property of this indicator when d = 2 (two objective functions), called locality

which is stated as follows: Given three consecutive points on the Pareto front,

moving the middle point will only affect the hypervolume contribution that is

solely dedicated to this point, but the joint hypervolume contribution remains

fixed. In Figure 6(a), if we move the point ~x4 between ~x3 and ~x5, the space

covered by A \ ~x4 is not affected and only the contribution of ~x4 is affected.

However, it is important to mention that Auger et al. conducted a similar

study for d = 3 in [32] and they mentioned that the optimal placement of a

single solution is not determined by only two neighbors, anymore, as it is the

case for d = 2.

Recently, a new selection scheme based on IH and its locality property was

proposed in [28]. It works as follows: Let’s assume that at each iteration of

a MOEA, only one solution ~ynew is created and the current population is P .

Then, we choose the nearest neighbor (~ynearest) of ~ynew in P and we also choose

(randomly) another solution, ~yrandom, such that ~yrandom ∈ P and ~yrandom 6=
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Figure 6: (a) Let A = {~x1, ~x2, · · · , ~x8} be the approximate Pareto optimal set and ~yref be
the reference point. Then, the gray area is the hypervolume of set A and the hatched area
is the contribution to the hypervolume of the solution ~x4. (b) Competition scheme based on
IH and its locality property. Suppose that we generate a new solution called ~ynew. Then,
we identify its nearest neighbor in the population and we call it ~ynearest. Also, we select
a random individual from the population and we call it ~yramdom. Finally, the individual
~yrandom is eliminated because it has a worse contribution to IH than ~ynew and ~ynearest.

~ynearest. After that, ~ynew, ~ynearest and ~yrandom will compete to survive. The

solution with the worst contribution to IH is eliminated. The core idea is to move

a solution within its neighborhood with the aim of improving its contribution

to IH . However, the authors said that it is necessary to consider the case in

which the new solution is located in an unexplored region (a region with few

solutions) as shown in Figure 6(b). In that case, it is not a good idea to remove

the new solution or its nearest neighbor. To address this problem, the authors

proposed to choose (randomly) another solution, ~yrandom. Then, ~yrandom will

also compete with the other two solutions (~ynew and ~ynearest). The authors

explained that they considered that the probability of choosing a solution in

a crowded region is higher than the probability of choosing a solution in an

unexplored region.

5.3.2. Selection mechanism based on MFF and IH

The selection mechanism proposed in [15] works as follows: If we want to

select N individuals from a population P , we assign first a fitness value to each

individual using the modified MFF. Then, we proceed to select the individuals
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Figure 7: Let’s assume that we want to select two individuals. If we use the technique based
on MFF and IH , first we select A and B (S = A,B). After that, we consider individual C;
its nearest neighbor is B and we choose A as a random solution. Individual B is eliminated
because it has the worst contribution, see (b). Finally, we consider D; its nearest neighbor is
C and we choose A as a random solution. Individual D is eliminated because it has the worst
contribution, see (b). Finally, we choose individuals A and C, see (c).

according to their fitness, verifying similarity between selected individuals, see

Algorithm 1. If we consider all individuals in the population and we do not

select N individuals, we select the remaining individuals considering only the

maximin fitness. If we already selected the N individuals but there are still non-

dominated individuals in P who have not participated in the selection process,

then, we proceed to use the contribution to IH as follows: Let S be the set of

current selected individuals. Then, for each non-dominated individual y who

has not participated in the selection process, we obtain its nearest neighbor in S

(we call it ynearest) and we choose a random individual called yrandom such that

ynearest 6= yrandom. Finally, we calculate the contribution to IH of y, ynearest

and yrandom. If y has a better contribution than ynearest or yrandom, then y

replaces the individual with the worst contribution (ynearest or yrandom). The

full selection mechanism is shown in Algorithm 5.

Figure 7 shows the selection process using MFF and IH . Since individuals

C and D are not considered, in (a), C competes with A and B, and C replaces

B. In (b), D competes with A and C, and it loses. Also, with this selection

mechanism, if we return to Figure 4, we can avoid that there are big gaps in

the front.

As we mentioned before, calculating IH or its contribution is a #P-hard
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problem. Therefore, although with the selection mechanism based on MFF and

IH , we can reduce the number of times that we need to calculate the contribution

to IH , if we want to solve MOPs with many objective functions, e.g., more than

six, this MOEA is not practical.

Input : P (population), n (number of individuals to choose N < ‖P‖).
Output: S (selected individuals).

1 AssignFitness(P);
2 Sort(P);
3 ND ← The non-dominated solutions in P;
4 S ← ∅;

/*Fill up the new population with the best copies according to the maximin fitness,
verifying that there is not a similar one */

5 S ← ∅;
6 foreach y ∈ P do

7 if |S| < N and VerifySimilarity(y, S, ǫ) = 0 then

8 S ← S ∪ y;
9 end

10 end

11 if |S| ≤ N then

/*Choose the remaining individuals considering only the maximin fitness */

12 foreach y ∈ P such that y has been not selected do

13 S ← S ∪ y;
14 end

15 else

/*Improve the diversity according to the contribution to IH */

16 foreach y ∈ ND who had not participated in the selection process do

17 if VerifySimilarity(y, S, ǫ) = 0 then

18 ynearest ← The nearest neighbor of y in S;
19 yrandom ← A randomly selected individual in S such that

ynearest 6= yrandom;
/*Calculate the contributions to the hypervolume */

20 Cnearest ← CH(ynearest,S);
21 Crandom ← CH(yrandom,S);
22 Cy ← CH(y,S);

/*Remove the individual with the worst contribution */
23 worst← Individual with the worst contribution (y, ynearest or yrandom);
24 if worst = ynearest or worst = yrandom then

25 Replace worst with y;
26 end

27 end

28 end

29 end

30 return S;

Algorithm 5: Maximin-Hypervolume Selection

In [33], the authors studied the competition scheme proposed in [28] and

also studied different ways to approximate IH or its contribution. Finally, they

showed that approximating the contribution to IH by adopting the technique

proposed by Bringmann and Friedrich in [34] in the selection mechanism pro-

posed by Menchaca and Coello in [28] produces good results. For this reason,

in this work, we propose to use a version of the selection mechanism based on

MFF and IH which approximates the contributions to IH , using the technique

proposed by Bringmann and Friedrich.
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6. Experimental Results

Each of the four selection mechanism described above were incorporated

into a MOEA that uses the crossover and mutation operators of NSGA-II

to create new individuals, giving rise to the four following MOEAs: “MC-

MOEA: Maximin-Clustering Multi-Objective Evolutionary Algorithm”, “MD-

MOEA: Maximin-Distances Multi-Objective Evolutionary Algorithm”, “MH-

MOEA: Maximin-Hypervolume Multi-Objective Evolutionary Algorithm” and

“MAH-MOEA: Maximin-Approximated Hypervolume Multi-Objective Evolu-

tionary Algorithm”. These MOEAs works as follows: If the size of the popu-

lation is P , then we create P new individuals. We use a binary tournament to

select the parents. At each tournament, two individuals are randomly selected

and the one with the higher maximin fitness value is chosen. After that, we

combine the population of parents and offspring to obtain a population of size

2P . Then, we use one of the four selection mechanisms to choose the P indi-

viduals that will take part of the following generation. This process is repeated

for a certain (pre-defined) number of generations.

For our experiments, we used the following test problems: DTLZ [35] and

WFG [36]. We used MOPs with up to ten objective functions. We used k = 5

for DTLZ1, DTLZ3 and DTLZ6 and k = 10 for the remaining DTLZs. And,

we used k factor = 2 and l factor = 10 for WFGs. Table 1 shows some fea-

tures of each test problem; these features were studied in [36]. We adopted the

parameters suggested by the authors of NSGA-II: pc = 0.9 (crossover proba-

bility), pm = 1/n (mutation probability), where n is the number of decision

variables. For the crossover and mutation operators, we adopted ηc = 15 and

ηm = 20, respectively. Our maximum number of fitness function evaluations

was set to 50,000 (we used a population size of 100 individuals and we iterated

for 500 generations). In the case of MAH-MOEA, we used 104 as our number

of samples.

6.1. Performance Indicators

To assess performance, we adopted the following indicators:

22



Table 1: Features of the test problems adopted. An objective function is separable if it can
be optimized by considering each parameter in turn, independently of one another, and the
resultant set of globally optimal parameter vectors is the cross-product of the optimal sets for
each individually optimized parameter. In the multi-objective sense, this means that the ideal
points for separable objectives can be determined considering only one parameter at a time.
An objective function is multimodal when it has multiple local optima and it is unimodal

when it has a single optimum. We consider that a problem is multimodal if it has at least
one multimodal objective function. A deceptive objective function has a special kind of
multimodality (it must have at least two optima: a true optimum and a deceptive optimum).
We consider that a problem is deceptive if it has at least one deceptive objective function.

MOP Separability Modality Geometry
DTLZ1 separable multimodal linear
DTLZ2 separable unimodal concave
DTLZ3 separable multimodal concave
DTLZ4 separable unimodal concave
DTLZ5 ? unimodal degenerate
DTLZ6 ? unimodal degenerate
DTLZ7 separable unimodal disconnected
WFG1 separable unimodal convex, mixed
WFG2 nonseparable multimodal convex, disconnected
WFG3 nonseparable unimodal linear, degenerate
WFG4 separable multimodal concave
WFG5 separable deceptive concave
WFG6 nonseparable unimodal concave
WFG7 separable unimodal concave

• Hypervolume indicator (IH). It is defined as the size of the space

covered by the Pareto optimal solutions. IH rewards both convergence

towards the Pareto front as well as the maximum spread of the solu-

tions obtained. To calculate IH , we normalized the approximations of

the Pareto optimal set, generated by the MOEAs, and we used yref =

[y1, · · · , yk] such that yi = 1.1 as our reference point. The normalization

was performed considering all approximations generated by the different

MOEAs (i.e., we place, in one set, all non-dominated solutions found by

the MOEAs which are being compared and from this set we calculate the

maximum and minimum for each objective function).

• Two Set Coverage (ISC). We decided to use this indicator with the

aim of assessing the convergence of the MOEAs. ISC was proposed by

Zitzler et al. [37] and it is a binary Pareto compliant indicator. Let A,B
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two approximations of the Pareto optimal set, ISC is defined as follows:

ISC(A,B) =
|~b ∈ B such that ∃~a ∈ A with ~a ≺ ~b|

|B|

If all points in A dominate or are equal to all points in B, then by def-

inition ISC = 1. ISC = 0 implies that no element in B is dominated by

any element of A. In general, both ISC(A,B) and ISC(B,A) have to be

considered.

• Spacing (IS). It was proposed by Schott [38]. It measures the spread

of solutions in the approximate Pareto optimal front. This indicator is

defined as follows:

IS(A) =

√

√

√

√

1

|A| − 1

|A|
∑

i=1

(

d− di
)2

where:

di = min
j,j 6=i

∑

k

|f i
k − f j

k |

d =
1

|A|

|A|
∑

i=1

di

k is the number of objective functions, i, j = 1, · · · |A|. When IS = 0 all

the solutions in A are uniformly spread.

It is important to keep in mind that we can obtain different results if we

use different indicators since each indicator can measure a different feature of

a multi-objective problem. Even if they measure the same feature, the use of

different indicators can provide different results, e.g., the hypervolume indicator

assesses both convergence and spread of solutions, and the R2-indicator also as-

sesses both features but the optimal distribution for the R2-indicator depends

of the convex weights that it adopts. If the convex weights are uniformly dis-

tributed, then the optimal distribution of these two indicators is different if

the Pareto front is not linear. In our case, we chose the hypervolume indica-
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tor because, as it is known, this is the only unary indicator that is known to

be strictly Pareto compliant [20]. Additionally, we chose the two set coverage

indicator and the spacing indicator because the first one assesses convergence

and it is also Pareto compliant and the second one assesses distribution but its

optimal distribution is uniform. In this way, our comparison among MOEAs

can be performed in a fair manner. However, it is worth noticing that the use

of the spacing indicator has to be considered in combination with the two set

coverage indicator because a set of solutions that presents a uniform distribution

is considered appropriate only if it constitutes a good approximation to the true

Pareto optimal front (i.e., convergence has precedence over distribution when

assessing performance of a MOEA).

6.2. Comparison of MOEAs based on MFF

In this section, we compare the four MOEAs based on MFF: MC-MOEA,

MD-MOEA, MH-MOEA and MAH-MOEA. Table 2 shows the results with re-

spect to IH for the DTLZ test problems with up to six objective functions. In

this table, we can see that MC-MOEA ranked fourth in all twenty-eight cases;

MD-MOEA ranked third in twenty-four cases, second in two cases and first

in two cases; MH-MOEA ranked first in twenty-five cases and only in three

cases ranked second; finally, MAH-MOEA ranked second in twenty-three cases,

third in four cases and first in one case. Table 6 shows the results of the sta-

tistical analysis that we made to validate our experiments, for which we used

Wilcoxon’s rank sum. In this case, we decided to compare the fourth place with

the third place (MC-MOEA and MD-MOEA, respectively), the third place with

the second place (MD-MOEA and MAH-MOEA, respectively) and the second

place with the first place (MAH-MOEA and MH-MOEA, respectively). For

MC-MOEA and MD-MOEA, we can see that in twenty-six cases we can reject

the null hypothesis (medians are equal) and only for DTLZ6 with four objec-

tive functions and DTLZ1 with five objective functions we can say that these

two algorithms have a similar behavior. For MD-MOEA and MAH-MOEA,

we can see that in twenty-five cases we can reject the null hypothesis and only
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for three problems both algorithms have a similar behavior. Finally, for MAH-

MOEA and MH-MOEA, we have that for sixteen cases we can reject the null

hypothesis and for twelve cases we can say that both algorithms have a similar

behavior. This result is interesting because we can say that MAH-MOEA is

really competitive with respect to MH-MOEA.

Since MD-MOEA outperformed MC-MOEA in all cases, we can say that

the technique based on Euclidean distances was able to correct some disad-

vantages of the technique based on clustering, e.g., it can avoid that the ap-

proximate Pareto front has big gaps. However, both MOEAs (MC-MOEA and

MD-MOEA) have difficulties when the MOP has a degenerate Pareto front

(see problems DTLZ5 and DTLZ6). We think that this problem arises because

these two selection mechanisms have as their aim to distribute the solutions

uniformly and then, it is hard for the MOEA to converge to a front with a lower

dimensionality than the dimensionality of the problem. However, we can see

that MH-MOEA and MAH-MOEA were able to correct this disadvantage. This

is because the aim of these selection mechanisms is to maximize IH and the

maximum IH corresponds to a distribution into the degenerate Pareto front.

An interesting thing is that MAH-MOEA, the version of MH-MOEA that

approximates the contribution to IH , obtained results very close to MH-MOEA

but at a lower computational cost (see Tables 2, 6 and 3). This is an important

result because, as we know, MOEAs based on the use of the exact IH values are

not practical when we want to solve MOPs with more than five or six objective

functions. In order to address this disadvantage, some authors have proposed

differents techniques to approximate IH or its contribution. However, the qual-

ity of the solutions obtained by these MOEAs considerably degrades in most

cases, unlike MAH-MOEA which does not lose much quality due to two reasons:

First, it approximates the contribution to IH in the competition scheme pro-

posed in [13] as the authors suggested in [33]. And second, it produces a ranking

using MFF to perform an initial selection and then it uses the contribution to

IH only to correct the possibles errors in this first selection procedure, i.e., IH

is not used as the primary selection mechanism.
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From Tables 2 and 3, we can say that the best option to solve MOPs with low

and high dimensionality (in objective function space) is MAH-MOEA. However,

if we need to obtain the approximate Pareto optimal set in the shorest time

possible, MD-MOEA is a good option but we should be careful when dealing

with MOPs having degenerate Pareto fronts.

Table 4 shows the results with respect to IH for the WFG test problems with

up to six objective functions and we can see that MC-MOEA ranked fourth in

twenty-three cases, third in three cases and first in two cases. MD-MOEA ranked

third in eighteen cases, fourth in four cases, second in one case and first in five

cases. MH-MOEA ranked first in sixteen cases, second in ten cases and third in

two cases. Finally, MAH-MOEA ranked second in seventeen cases, first in five

cases, third in five cases and fourth in one case. In the same way as with the

DTLZ test problems, we conducted a statistical analysis using Wilcoxon’s rank

sum to validate our experiments, see Table 6. For MC-MOEA and MD-MOEA,

we can see that in four problems both algorithms have a similar behavior and

in twenty-four cases we can reject the null hypothesis. For MD-MOEA and

MAH-MOEA, we can reject the null hypothesis in twenty-one cases and only in

seven cases both algorithms have a similar behavior. Finally, for MAH-MOEA

and MH-MOEA, we can say that for eighteen problems both algorithms have a

similar behavior and only in ten cases we can reject the null hypothesis. With

these results, we can corroborate that MAH-MOEA is really competitive with

MH-MOEA. Then, these two algorithms are the best, followed by MD-MOEA

in the third place and MC-MOEA in the fourth place. However, if we consider

the running time, MH-MOEA is the worst algorithm followed by MAH-MOEA

in the third place, MD-MOEA in the second place and MC-MOEA is the best

algorithm (see Table 5).

Finally, we can observe that MC-MOEA and MD-MOEA have difficulties in

problems WFG1, WFG4 and WFG7. However, we cannot identify particular

features of these problems which reflects the possible disadvantages of these

MOEAs in solving such types of problems.

It is important to note that if we use IH to compare the different MOEAs,
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then it is evident that MOEAs based on this indicator have advantages over

those which don’t adopt it, because the aim of the former type of MOEAs is to

maximize IH . For this reason, we decided to use two other indicators to compare

the approximate Pareto optimal sets obtained by the MOEAs. We adopted the

two set coverage indicator (ISC) to measure convergence to the Pareto front and

the spacing indicator (IS) to measure distribution of the solutions found. Since

we can use these two indicators to evaluate approximations which involve any

number of objective functions, we decided to use up to ten objective functions.

However, in this comparison we only considered MD-MOEA and MAH-MOEA

due to two reasons: First, Tables 2 and 4 show clearly that MD-MOEA obtained

better results than MC-MOEA. And second, although MH-MOEA is better than

MAH-MOEA, it cannot be used to solve MOPs with more than six objective

functions (its running time is too high, and it would require weeks or even

months to complete all the required experiments).

Table 7 shows the results for the DTLZ test problems with respect to ISC

and we can see that in fifty-four cases the solutions found by MAH-MOEA

were able to cover a larger percentage of the solutions found by MD-MOEA

than the percentage of solutions found by MAH-MOEA which are covered by

at least one solution found by MD-MOEA. However, only in the DTLZ6 test

problem we can assure that MAH-MOEA is better than MD-MOEA because

only in this problem the percentage of solutions found by MAH-MOEA which

are covered by at least one solution found by MD-MOEA is zero or close to

zero and the percentage of solutions found by MD-MOEA which are covered

by at least one solution found by MAH-MOEA is close to one. Table 8 shows

the results regarding IS and we can observe that MD-MOEA ranked second in

thirty-nine cases and first in seventeen cases. With these two tables, we can

corroborate the results found when we use IH : MAH-MOEA is better than

MD-MOEA in most cases. Figures 8 and 9 show the Pareto fronts obtained by

the four algorithms in their median with respect to the hypervolume indicator in

some of the test problems adopted. Here, we can see again that MAH-MOEA is

the best MOEA because it found well-distributed Pareto fronts, and its results
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are very similar with respect to MH-MOEA. Also, we can see that MD-MOEA

is better than MC-MOEA and it is competitive with respect MH-MOEA and

MAH-MOEA (only in DTLZ6 it obtained a worse distribution).

Finally, Tables 9 and 10 show the results with respect to the WFG test

problems. According to ISC , MD-MOEA was ranked in second place in twenty-

four cases and in first place in twenty cases. However, there are no cases in which

we can assure that one MOEA is better than the others. Regarding IS , we can

see that MD-MOEA was ranked in first place in forty-nine cases and it was

ranked in second place in seven cases. Therefore, for these test problems MAH-

MOEA and MD-MOEA are competitive because from ISC we cannot assure that

MAH-MOEA outperformed MD-MOEA in terms of convergence and from IS

we observe that MD-MOEA is better in most problems. Also, in these problems

we can see in a clearer way that the technique based on Euclidean distances is

effective.

As final conclusions of this section, we can say that MD-MOEA and MAH-

MOEA are the best options to solve MOPs with high and low dimensionality

in objective function space. Although MAH-MOEA is better than MD-MOEA

according to IH , regarding ISC and IS they are competitive. Also, MD-MOEA

is much faster than MAH-MOEA. However, it is important to be careful when

we use MD-MOEA because it has difficulties to solve a certain type of MOPs,

e.g., MOPs with a degenerate Pareto front.

6.3. MOEAs based on MFF vs MOEAs not based on MFF

In this section, we compare MD-MOEA and MAH-MOEA with respect to

two well-known MOEAs: The first one is MOEA/D. We chose this MOEA

because it has been a viable alternative to deal with many-objective opti-

mization problems in recent years. Also, its computational cost is very low.

MOEA/D [39] decomposes the MOP into N scalar optimization subproblems

and then it solves these subproblems simultaneously using an evolutionary al-

gorithm. For our experiments, we used the version in which MOEA/D adopts

PBI (Penalty Boundary Intersection) to decompose the MOP. We decided to
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Figure 8: Pareto fronts obtained by the four MOEAs (MC-MOEA, MD-MOEA, MH-MOEA
and MAH-MOEA) in the median (with respect to the hypervolume indicator) of their thirty
independent runs for the test problems DTLZ1 and DTLZ2.
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Figure 9: Pareto fronts obtained by the four MOEAs (MC-MOEA, MD-MOEA, MH-MOEA
and MAH-MOEA) in the median (with respect to the hypervolume indicator) of their thirty
independent runs for the test problems DTLZ6 and DTLZ7.
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use PBI because the resulting optimal solutions with PBI are normally much

better distributed than those obtained by the Tchebycheff approach [39]. To

generate the convex weights we used the technique proposed in [40] and after

that, we applied clustering (k-means) to obtain a specific number of weights.

The second one is SMS-EMOA [24]. We chose this MOEA because it is

the most popular hypervolume-based MOEA. SMS-EMOA creates an initial

population and then, it generates only one solution by iteration. After that,

it applies Pareto ranking. When the last front has more than one solution,

SMS-EMOA calculates the contribution to IH of each individual in the last

front and it eliminates the individual with the worst contribution. Beume et

al. [25] proposed not to use the contribution to IH when in the Pareto ranking

we obtain more than one front. In that case, they proposed to use the number

of solutions which dominate to one solution (the solution that is dominated

by more solutions is removed). In this work, we used the version proposed

by Beume et al. but instead of calculating the exact contribution to IH , we

approximate it using the same technique that we adopted for MAH-MOEA.

Since these four MOEAs use the same operators to create new individuals

(they use the same crossover and mutation operators adopted by NSGA-II), the

comparison of selection mechanisms is fair. For MOEA/D and SMS-EMOA, we

also adopted the parameters suggested by the authors of NSGA-II: pc = 0.9,

pm = 1/n, where n is the number of decision variables, ηc = 15 and ηm = 20.

In the case of MOEA/D, we used a neighborhood with size equal to 20 and in

the case of SMS-EMOA we used 104 as our number of samples.

Before we perform the comparison, it is important to mention that both

MOEA/D and SMS-EMOA have important disadvantages. SMS-EMOA is im-

practical to solve MOPs with many objective function because calculating IH or

its contribution involves a very high computational cost. In this work, we use a

version that approximates the contribution to IH . However, as we will see later

on, the competition scheme used by SMS-EMOA is not efficient and therefore,

the running time of this version of SMS-EMOA is also high. On the other hand,

MOEA/D needs to generate a set of well-distributed convex weights and this
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task becomes more difficult as we increase the number of objective functions.

Regarding IH and considering the DTLZ test problems, MD-MOEA ranked

second in eleven cases, third in nine cases, fourth in five cases and first in three

cases. MAH-MOEA ranked first in fourteen cases, second in ten cases, third

in three cases and fourth in one case. MOEA/D ranked fourth in nineteen

cases, third in five cases, second in three cases and first in one case. Finally,

SMS-EMOA ranked third in eleven cases, first in ten cases, second in four cases

and fourth in three cases. See Table 11. Table 15 shows the results of the

statistical analysis that we conducted to validate our experiments, for which

we used Wilcoxon’s rank sum and IH . In this case, we decided to compare

the MOEAs based on MFF (MD-MOEA and MAH-MOEA) with respect to

MOEA/D and SMS-EMOA. For MD-MOEA and MOEA/D, we can say that

only in one problem they have a similar behavior and in the twenty-seven re-

maining problems the null hypothesis (“medians are equal”) can be rejected.

The same occurs with MAH-MOEA and MOEA/D, since in only one problem

they have a similar behavior. In the case of MD-MOEA and SMS-EMOA only

in two problems both algorithms have a similar behavior and in the twenty-six

remaining problems the null hypothesis can be rejected. Finally, with respect to

MAH-MOEA and SMS-EMOA only in two cases they have a similar behavior

and in the twenty-six remaining problems the null hypothesis can be rejected.

From these results, we can say that MAH-MOEA is the best algorithm, fol-

lowed by SMS-EMOA in the second place, MD-MOEA in the third place and

MOEA/D in the fourth place. Another interesting thing is that MAH-MOEA

is much faster than SMS-EMOA. It is also worth noticing that MD-MOEA is

ranked second with respect to the running time but it is not much slower than

MOEA/D which is in the first place. See Table 12.

With respect to the WFG test problems, we can see in Table 13 that MD-

MOEA ranked third in seventeen cases, first in 6 cases, second in three cases

and fourth in two cases. MAH-MOEA ranked second in twenty-five cases and

first in three cases. MOEA/D ranked fourth in twenty-three cases and third

in five cases. Finally, SMS-EMOA ranked first in nineteen cases, third in six
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cases and fourth in three cases. We applied a statistical analysis to validate our

experiments in the same way as done with the DTLZ test problems, see Table 15.

For MD-EMOA and MOEA/D in all twenty-eight problems, the null hypothesis

can be rejected. And the same occurs for MAH-MOEA and MOEA/D. For

MD-MOEA and SMS-EMOA, in two problems these two algorithms have a

similar behavior and in the twenty-six remaining problems we can reject the

null hypothesis. And, for MAH-MOEA and SMS-EMOA, we can see that in two

cases both algorithms have a similar behavior and for all twenty-six problems

the null hypothesis can be rejected. Then, for these problems SMS-EMOA is

the best algorithm, followed by MAH-MOEA in the second place, MD-MOEA

in the third place and MOEA/D in the fourth place. However, also in these

problems MAH-MOEA is much faster than SMS-EMOA and MD-MOEA is not

much slower than MOEA/D.

As conclusions of this section, we can say that MOEAs based on MFF are

a good option to solve MOPs with low and high dimensionality because they

can outperform well-known MOEAs such as SMS-EMOA and MOEA/D, e.g.,

both MD-MOEA and MAH-MOEA outperformed MOEA/D in the two sets

of test problems adopted (DTLZ and WFG) and MAH-MOEA outperformed

SMS-EMOA in the DTLZ test problems. In addition, both MD-MOEA, MAH-

MOEA are much faster than SMS-EMOA and MD-MOEA is not much slower

than MOEA/D.

7. Conclusions and Future Work

In this paper, we have studied three selection mechanisms based on MFF.

The first one combines MFF with a clustering technique, the second one com-

bines MFF with a technique based on Euclidean distances and the third one com-

bines MFF with IH . Since calculating IH or its contribution is a #P -hard prob-

lem, we propose to approximate the contribution to IH as the authors suggested

in [33]. Each of the four selection mechanisms was incorporated into a MOEA

that uses simulated binary crossover (SBX) and parameter-based mutation
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(PM), giving rise the following MOEAs: “Maximin-Clustering Multi-Objective

Evolutionary Algorithm (MC-MOEA)”, “Maximin-Distances Multi-Objective

Evolutionary Algorithm (MD-MOEA)”, “Maximin-Hypervolume Multi-Objective

Evolutionary Algorithm (MH-MOEA)” and “Maximin-Approximated Hyper-

volume Multi-Objective Evolutionary Algorithm (MAH-MOEA)”. According to

our experimental results, the best algorithm is MAH-MOEA because it obtains

results with a high quality and also it can also be used in MOPs with many ob-

jective functions (in this work we tested it with up to ten objective functions).

MAH-MOEA is followed by MD-MOEA, in terms of performance. MD-MOEA

obtained good results in most problems, but it has difficulties in MOPs with

degenerate Pareto fronts. We think that this is due to the fact that the aim of

the selection mechanism used by MD-MOEA is to obtain a uniform distribution.

Consequently, it is hard for MD-MOEA to converge to a Pareto front with a

dimensionality lower than the dimensionality of the MOP. If the time to obtain

the approximate Pareto optimal set is an important factor, MD-MOEA is the

best option because it obtains competitive results with respect to MAH-MOEA

but at a much lower computational cost.

Besides, in this work we compare MD-MOEA and MAH-MOEA, with re-

spect to two well-known MOEAs: MOEA/D and SMS-EMOA (in a version that

approximates the contribution to IH). These MOEAs use a selection mecha-

nism based on decomposition and another based on IH , respectively. Our re-

sults showed that both MD-MOEA and MAH-MOEA outperformed MOEA/D

in the two sets of test problems adopted (DTLZ and WFG) and MAH-MOEA

outperformed SMS-EMOA in the DTLZ test problems. With respect to the

running time, both algorithms (MD-MOEA and MAH-MOEA) are efficient

because MAH-MOEA is much faster than SMS-EMOA and it also obtained

good results (it outperformed SMS-EMOA in the DTLZ test problems) and

MD-MOEA is not much slower than MOEA/D, while obtaining better results.

Therefore, we can say that MD-MOEA and MAH-MOEA are a good option to

solve MOPs with low and high dimensionality because they obtain approxima-

tions of the Pareto optimal set with a high quality and the computational cost
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of both MOEAs is affordable. Additionally, the running time of MD-MOEA

is quite good. Also, these MOEAs do not need additional information such as

MOEA/D that requires a set of well-distributed convex weights.

Another interesting feature of MOEAs based on MFF is that they can be

used to solve MOPs in an interactive way when the decision maker defines

his/her preferences. For example, a MOEA based on MFF can present at each

generation a set of non-dominated solutions to the user and then he/she chooses

the solutions which will be considered when calculating the maximin fitness of

each indidividual.

As part of our future work, we want to study the constraints used to avoid

selecting weakly dominated solutions because we think that this is one of the

reasons for which SMS-EMOA obtains better results than our MAH-MOEA in

some problems. For example, the constraint used in the MOEAs presented here

does not check if the selected solution is worst than the new solution that we

want to select. However, we cannot select such a solution, because it is similar

to the solution that has been previously selected.
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ipič, J. Smith (Eds.), Parallel Problem Solving from Nature PPSN XIII,

38



13th International Conference, Springer. Lecture Notes in Computer Sci-

ence Vol. 8672, Ljubljana, Slovenia, 2014, pp. 652–661.

[16] R. Balling, The Maximin Fitness Function; Multiobjective City and Re-

gional Planning, in: C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb,

L. Thiele (Eds.), Evolutionary Multi-Criterion Optimization. Second In-

ternational Conference, EMO 2003, Springer. Lecture Notes in Computer

Science. Volume 2632, Faro, Portugal, 2003, pp. 1–15.

[17] X. Li, Better Spread and Convergence: Particle Swarm Multiobjective Op-

timization Using the Maximin Fitness Function, in: K. D. et al. (Ed.), Ge-

netic and Evolutionary Computation–GECCO 2004. Proceedings of the Ge-

netic and Evolutionary Computation Conference. Part I, Springer-Verlag,

Lecture Notes in Computer Science Vol. 3102, Seattle, Washington, USA,

2004, pp. 117–128.

[18] X. Li, J. Branke, M. Kirley, On Performance Metrics and Particle Swarm

Methods for Dynamic Multiobjective Optimization Problems, in: 2007

IEEE Congress on Evolutionary Computation (CEC’2007), IEEE Press,

Singapore, 2007, pp. 576–583.

[19] H. Li, X. Huang, Q. Feng, Optimizing expressway maintenance plan-

ning by coupling ant algorithm and geography information system trans-

portation in hubei province, china, in: Geoscience and Remote Sensing

Symposium (IGARSS), 2011 IEEE International, 2011, pp. 2977 –2979.

doi:10.1109/IGARSS.2011.6049841.

[20] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, V. G. da Fonseca,

Performance Assessment of Multiobjective Optimizers: An Analysis and

Review, IEEE Transactions on Evolutionary Computation 7 (2) (2003)

117–132.

[21] J. Knowles, D. Corne, Properties of an Adaptive Archiving Algorithm for

Storing Nondominated Vectors, IEEE Transactions on Evolutionary Com-

putation 7 (2) (2003) 100–116.

39



[22] S. Huband, P. Hingston, L. White, L. Barone, An Evolution Strategy with

Probabilistic Mutation for Multi-Objective Optimisation, in: Proceedings

of the 2003 Congress on Evolutionary Computation (CEC’2003), Vol. 3,

IEEE Press, Canberra, Australia, 2003, pp. 2284–2291.

[23] E. Zitzler, S. Künzli, Indicator-based Selection in Multiobjective Search,

in: X. Y. et al. (Ed.), Parallel Problem Solving from Nature - PPSN VIII,

Springer-Verlag. Lecture Notes in Computer Science Vol. 3242, Birming-

ham, UK, 2004, pp. 832–842.

[24] M. Emmerich, N. Beume, B. Naujoks, An EMO Algorithm Using the

Hypervolume Measure as Selection Criterion, in: C. A. Coello Coello,

A. Hernández Aguirre, E. Zitzler (Eds.), Evolutionary Multi-Criterion Op-

timization. Third International Conference, EMO 2005, Springer. Lecture

Notes in Computer Science Vol. 3410, Guanajuato, México, 2005, pp. 62–
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Table 2: Results obtained in the DTLZ test problems with up to six objective functions.
We compare MC-MOEA, MD-MOEA, MH-MOEA and MAH-MOEA using the hypervolume
indicator IH . We show average values over 30 independent runs. The values in parentheses
correspond to the standard deviations.
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mc-moea md-moea mh-moea mah-moea

DTLZ Test Problems

Number of times it came fist
Number of times it came second

Number of times it came third
Number of times it came fourth

~f
mc-moea

IH
md-moea

IH
mh-moea

IH
mah-moea

IH
DTLZ1 (3) 1.1593 (0.013) 1.1823 (0.003) 1.1897 (0.001) 1.1896 (0.001)
DTLZ2 (3) 0.6964 (0.008) 0.7319 (0.003) 0.7535 (0.002) 0.7525 (0.002)
DTLZ3 (3) 1.3043 (0.021) 1.3281 (0.000) 1.3265 (0.000) 1.3263 (0.000)
DTLZ4 (3) 0.7015 (0.008) 0.7304 (0.006) 0.7491 (0.004) 0.7492 (0.004)
DTLZ5 (3) 0.2552 (0.005) 0.2651 (0.000) 0.2661 (0.001) 0.2661 (0.000)
DTLZ6 (3) 1.0453 (0.067) 1.0989 (0.008) 1.0998 (0.007) 1.0975 (0.009)
DTLZ7 (3) 0.5377 (0.040) 0.5519 (0.041) 0.5645 (0.043) 0.5638 (0.043)
DTLZ1 (4) 1.4241 (0.016) 1.4375 (0.005) 1.4471 (0.002) 1.4444 (0.002)
DTLZ2 (4) 1.0480 (0.019) 1.1249 (0.010) 1.1672 (0.003) 1.1647 (0.005)
DTLZ3 (4) 1.4630 (0.001) 1.4638 (0.000) 1.4638 (0.000) 1.4638 (0.000)
DTLZ4 (4) 1.1455 (0.016) 1.1912 (0.010) 1.2261 (0.006) 1.2252 (0.006)
DTLZ5 (4) 0.3928 (0.017) 0.4668 (0.023) 0.5492 (0.005) 0.5469 (0.004)
DTLZ6 (4) 1.2518 (0.045) 1.2742 (0.024) 1.3617 (0.003) 1.3600 (0.003)
DTLZ7 (4) 0.6659 (0.014) 0.7062 (0.016) 0.7305 (0.019) 0.7262 (0.018)
DTLZ1 (5) 1.5861 (0.069) 1.6011 (0.003) 1.6061 (0.001) 1.6031 (0.001)
DTLZ2 (5) 1.3004 (0.025) 1.4063 (0.015) 1.4680 (0.004) 1.4519 (0.006)
DTLZ3 (5) 1.6089 (0.002) 1.6098 (0.000) 1.6098 (0.000) 1.6098 (0.000)
DTLZ4 (5) 1.4341 (0.018) 1.4801 (0.011) 1.5182 (0.006) 1.5096 (0.007)
DTLZ5 (5) 0.7294 (0.019) 0.8122 (0.033) 0.9249 (0.007) 0.9180 (0.015)
DTLZ6 (5) 0.4890 (0.074) 1.3396 (0.063) 1.5522 (0.002) 1.5450 (0.005)
DTLZ7 (5) 0.7562 (0.026) 0.8534 (0.009) 0.8716 (0.015) 0.8699 (0.010)
DTLZ1 (6) 1.7002 (0.088) 1.7652 (0.004) 1.7688 (0.001) 1.7669 (0.001)
DTLZ2 (6) 1.6061 (0.027) 1.6757 (0.014) 1.7264 (0.004) 1.7114 (0.006)
DTLZ3 (6) 1.7707 (0.001) 1.7710 (0.000) 1.7713 (0.000) 1.7712 (0.000)
DTLZ4 (6) 1.6978 (0.024) 1.7234 (0.008) 1.7495 (0.002) 1.7407 (0.003)
DTLZ5 (6) 0.8283 (0.030) 0.9563 (0.067) 1.1347 (0.019) 1.1170 (0.041)
DTLZ6 (6) 0.5754 (0.050) 1.0454 (0.174) 1.7039 (0.004) 1.6984 (0.004)
DTLZ7 (6) 0.7382 (0.054) 0.9319 (0.022) 0.9438 (0.020) 0.9380 (0.026)

43



Table 3: Results obtained in the DTLZ test problems with up to six objective functions. We
compare MC-MOEA, MD-MOEA, MH-MOEA and MAH-MOEA with respect to the running
time required by each MOEA to obtain the approximation of the Pareto optimal set. The
results are in seconds. We show average values over 30 independent runs. The values in
parentheses correspond to the standard deviations.
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DTLZ Test Problems

Number of times it came fist
Number of times it came second

Number of times it came third
Number of times it came fourth
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mc-moea

time
md-moea

time
mh-moea

time
mah-moea

time
DTLZ1 (3) 0.6277 (0.010) 0.8317 (0.025) 341.8550 (48.468) 26.5683 (6.888)
DTLZ2 (3) 0.9857 (0.011) 1.7247 (0.016) 362.5860 (46.285) 80.2447 (11.191)
DTLZ3 (3) 0.6150 (0.016) 0.7897 (0.028) 410.8940 (51.899) 26.4793 (5.165)
DTLZ4 (3) 1.0137 (0.009) 1.7187 (0.018) 441.8840 (25.976) 77.7587 (9.585)
DTLZ5 (3) 0.8377 (0.009) 1.2467 (0.019) 362.4503 (36.636) 9.6463 (2.308)
DTLZ6 (3) 0.7157 (0.032) 1.0763 (0.020) 358.8433 (17.170) 26.3760 (12.040)
DTLZ7 (3) 0.9210 (0.018) 1.0917 (0.036) 370.5477 (18.106) 28.6033 (7.032)
DTLZ1 (4) 0.8150 (0.013) 1.0227 (0.015) 350.6833 (13.917) 17.1963 (2.158)
DTLZ2 (4) 1.2033 (0.015) 2.0807 (0.009) 380.9720 (12.960) 56.9457 (9.412)
DTLZ3 (4) 0.8083 (0.013) 1.0830 (0.029) 403.1007 (26.826) 23.3403 (2.858)
DTLZ4 (4) 1.2520 (0.011) 2.0533 (0.020) 424.2623 (37.408) 52.1267 (9.269)
DTLZ5 (4) 1.2420 (0.017) 2.3523 (0.028) 418.8673 (56.864) 50.0157 (6.454)
DTLZ6 (4) 0.9953 (0.011) 1.6473 (0.020) 386.8503 (13.442) 49.7007 (6.381)
DTLZ7 (4) 1.1347 (0.019) 1.1903 (0.026) 354.2237 (11.950) 16.5777 (2.984)
DTLZ1 (5) 0.9823 (0.015) 1.1693 (0.037) 495.2057 (40.617) 12.5180 (1.662)
DTLZ2 (5) 1.3807 (0.017) 2.3043 (0.014) 893.2087 (23.893) 29.8747 (3.466)
DTLZ3 (5) 0.9920 (0.009) 1.2967 (0.028) 558.4480 (23.573) 17.2507 (2.455)
DTLZ4 (5) 1.4673 (0.022) 2.2767 (0.021) 843.5720 (16.920) 28.0337 (3.063)
DTLZ5 (5) 1.4577 (0.011) 2.4603 (0.021) 1516.0527 (91.143) 44.2683 (5.359)
DTLZ6 (5) 1.3483 (0.016) 2.2447 (0.044) 980.2290 (39.726) 46.6733 (5.942)
DTLZ7 (5) 1.3380 (0.016) 1.3070 (0.035) 324.5770 (35.547) 7.3807 (1.137)
DTLZ1 (6) 1.1350 (0.017) 1.3033 (0.070) 3137.1263 (406.976) 10.5600 (1.946)
DTLZ2 (6) 1.5407 (0.046) 2.4600 (0.023) 7760.6740 (199.641) 19.9033 (1.739)
DTLZ3 (6) 1.1487 (0.010) 1.4473 (0.030) 3859.2973 (340.664) 15.7413 (2.575)
DTLZ4 (6) 1.6273 (0.014) 2.4343 (0.026) 6662.2467 (190.364) 18.3560 (2.040)
DTLZ5 (6) 1.6177 (0.025) 2.6093 (0.028) 7964.5500 (1610.847) 37.3323 (5.122)
DTLZ6 (6) 1.5197 (0.018) 2.8480 (0.049) 5459.3457 (126.423) 44.0187 (5.048)
DTLZ7 (6) 1.5173 (0.017) 1.4347 (0.047) 618.1323 (159.834) 3.7347 (0.632)
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Table 4: Results obtained in the WFG test problems with up to six objective functions.
We compare MC-MOEA, MD-MOEA, MH-MOEA and MAH-MOEA using the hypervolume
indicator IH . We show average values over 30 independent runs. The values in parentheses
correspond to the standard deviations.
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IH
WFG1 (3) 1.0315 (0.061) 1.0043 (0.057) 1.1414 (0.046) 1.1274 (0.049)
WFG2 (3) 0.6980 (0.091) 0.7559 (0.091) 0.7559 (0.091) 0.7559 (0.091)
WFG3 (3) 0.5476 (0.011) 0.6156 (0.004) 0.6320 (0.003) 0.6312 (0.002)
WFG4 (3) 0.5549 (0.015) 0.6584 (0.008) 0.7430 (0.002) 0.7414 (0.002)
WFG5 (3) 0.4479 (0.012) 0.5325 (0.005) 0.5531 (0.001) 0.5529 (0.001)
WFG6 (3) 0.5081 (0.008) 0.5483 (0.003) 0.5615 (0.003) 0.5602 (0.004)
WFG7 (3) 0.5324 (0.012) 0.6099 (0.013) 0.7354 (0.004) 0.7342 (0.005)
WFG1 (4) 1.1074 (0.045) 1.0396 (0.027) 1.2004 (0.049) 1.2045 (0.045)
WFG2 (4) 0.6485 (0.132) 0.6338 (0.134) 0.6338 (0.134) 0.6338 (0.134)
WFG3 (4) 0.1807 (0.057) 0.5674 (0.009) 0.5865 (0.009) 0.5801 (0.009)
WFG4 (4) 0.4842 (0.045) 0.8193 (0.017) 1.0055 (0.005) 0.9955 (0.007)
WFG5 (4) 0.3934 (0.019) 0.5501 (0.008) 0.5901 (0.002) 0.5870 (0.003)
WFG6 (4) 0.3125 (0.055) 0.5510 (0.016) 0.5714 (0.012) 0.5712 (0.010)
WFG7 (4) 0.5361 (0.018) 0.6163 (0.018) 0.8721 (0.008) 0.8623 (0.008)
WFG1 (5) 1.1905 (0.036) 1.0896 (0.030) 1.2266 (0.031) 1.2095 (0.031)
WFG2 (5) 0.6027 (0.183) 0.6349 (0.203) 0.6349 (0.203) 0.6349 (0.203)
WFG3 (5) 0.0000 (0.000) 0.5753 (0.018) 0.5724 (0.022) 0.5742 (0.018)
WFG4 (5) 0.5167 (0.044) 0.9373 (0.022) 1.2261 (0.011) 1.2076 (0.009)
WFG5 (5) 0.3200 (0.028) 0.5744 (0.014) 0.6136 (0.012) 0.6142 (0.008)
WFG6 (5) 0.0020 (0.007) 0.5557 (0.023) 0.5697 (0.031) 0.5735 (0.025)
WFG7 (5) 0.5125 (0.018) 0.6113 (0.023) 0.9623 (0.019) 0.9482 (0.019)
WFG1 (6) 1.3749 (0.023) 1.2711 (0.036) 1.3562 (0.029) 1.3288 (0.031)
WFG2 (6) 0.6486 (0.198) 0.7530 (0.164) 0.7530 (0.164) 0.7530 (0.164)
WFG3 (6) 0.0000 (0.000) 0.5635 (0.027) 0.5630 (0.037) 0.5575 (0.032)
WFG4 (6) 0.6202 (0.053) 1.0276 (0.032) 1.4082 (0.012) 1.4025 (0.015)
WFG5 (6) 0.1658 (0.016) 0.5893 (0.023) 0.6005 (0.022) 0.6099 (0.024)
WFG6 (6) 0.0016 (0.006) 0.6030 (0.034) 0.6140 (0.031) 0.6134 (0.032)
WFG7 (6) 0.4872 (0.020) 0.6100 (0.023) 0.8517 (0.092) 0.9036 (0.071)
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Table 5: Results obtained in the WFG test problems with up to six objective functions. We
compare MC-MOEA, MD-MOEA, MH-MOEA and MAH-MOEA with respect to the running
time required by each MOEA to obtain the approximation of the Pareto optimal set. The
results are in seconds. We show average values over 30 independent runs. The values in
parentheses correspond to the standard deviations.
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WFG1 (3) 2.0607 (0.016) 3.0037 (0.036) 407.7103 (16.770) 97.5580 (11.196)
WFG2 (3) 1.4210 (0.197) 1.3063 (0.081) 384.3690 (16.681) 1.5803 (0.314)
WFG3 (3) 1.7350 (0.025) 2.7167 (0.036) 412.2397 (17.685) 87.2683 (15.644)
WFG4 (3) 1.7633 (0.010) 2.9810 (0.040) 404.2377 (16.539) 78.2380 (14.106)
WFG5 (3) 1.7807 (0.014) 3.1817 (0.119) 402.1483 (16.008) 122.2553 (17.817)
WFG6 (3) 1.6670 (0.013) 2.6367 (0.115) 406.3600 (18.357) 95.7627 (14.819)
WFG7 (3) 2.1950 (0.011) 3.7967 (0.053) 404.4447 (17.979) 138.2930 (26.767)
WFG1 (4) 2.2793 (0.016) 3.1263 (0.028) 446.1657 (25.163) 55.2243 (6.841)
WFG2 (4) 1.5113 (0.188) 1.3700 (0.040) 361.7037 (13.118) 1.7497 (0.150)
WFG3 (4) 1.8777 (0.026) 2.3457 (0.082) 387.6740 (22.302) 37.7127 (6.090)
WFG4 (4) 2.0153 (0.021) 3.5377 (0.070) 452.5403 (25.090) 66.3593 (11.242)
WFG5 (4) 1.9810 (0.010) 3.3533 (0.029) 391.5327 (19.290) 75.2213 (11.970)
WFG6 (4) 1.8187 (0.009) 2.2033 (0.062) 380.4550 (20.296) 39.5240 (5.911)
WFG7 (4) 2.5327 (0.016) 4.1817 (0.043) 455.2317 (27.525) 85.7517 (9.854)
WFG1 (5) 2.4997 (0.018) 3.1180 (0.048) 1514.0497 (79.687) 25.0433 (3.385)
WFG2 (5) 1.7283 (0.237) 1.5483 (0.055) 269.0003 (38.875) 2.0567 (0.346)
WFG3 (5) 2.0820 (0.019) 1.8530 (0.023) 266.8000 (28.414) 2.7177 (0.374)
WFG4 (5) 2.2467 (0.011) 3.8390 (0.030) 1651.3397 (74.059) 52.2173 (8.366)
WFG5 (5) 2.1750 (0.011) 3.1130 (0.119) 336.6403 (25.775) 45.3483 (6.833)
WFG6 (5) 2.0200 (0.012) 1.8200 (0.014) 283.3267 (61.769) 3.6643 (0.604)
WFG7 (5) 2.9070 (0.013) 4.5740 (0.035) 1779.0997 (149.456) 49.3623 (6.280)
WFG1 (6) 2.6130 (0.015) 3.0127 (0.039) 13890.5980 (909.094) 13.4993 (1.680)
WFG2 (6) 1.9440 (0.201) 1.6703 (0.060) 231.7187 (18.578) 1.9280 (0.205)
WFG3 (6) 2.2267 (0.017) 1.9417 (0.018) 233.8433 (16.113) 2.9970 (0.399)
WFG4 (6) 2.4050 (0.019) 4.0547 (0.035) 14471.2413 (18.960) 47.5760 (7.722)
WFG5 (6) 2.2907 (0.029) 2.5957 (0.090) 331.3267 (23.342) 18.0147 (3.537)
WFG6 (6) 2.1507 (0.011) 1.9097 (0.022) 234.4510 (12.421) 2.7093 (0.111)
WFG7 (6) 3.0050 (0.012) 4.7223 (0.048) 14228.5130 (998.589) 44.0367 (6.551)
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Table 6: Statistical analysis using Wilcoxon’s rank sum. For this, we used IH , see Tables 2
and 4. P is the probability of observing the given result (the null hypothesis is true). Small
values of P cast doubt on the validity of the null hypothesis. H = 0 indicates that the null
hypothesis (“medians are equal”) cannot be rejected at the 5% level. H = 1 indicates that
the null hypothesis can be rejected at the 5% level.

~f mc-moea & md-moea
P (H)

md-moea & mah-moea
P (H)

mah-moea & mh-moea
P (H)

DTLZ1 (3) 0.000000 (1) 0.000000 (1) 0.464273 (0)
DTLZ2 (3) 0.000000 (1) 0.000000 (1) 0.203559 (0)
DTLZ3 (3) 0.000000 (1) 0.000000 (1) 0.100764 (0)
DTLZ4 (3) 0.000000 (1) 0.000000 (1) 0.958731 (0)
DTLZ5 (3) 0.000000 (1) 0.000000 (1) 0.125965 (0)
DTLZ6 (3) 0.000000 (1) 0.784460 (0) 0.180900 (0)
DTLZ7 (3) 0.000002 (1) 0.000001 (1) 0.510598 (0)
DTLZ1 (4) 0.000168 (1) 0.000000 (1) 0.000002 (1)
DTLZ2 (4) 0.000000 (1) 0.000000 (1) 0.048413 (1)
DTLZ3 (4) 0.000000 (1) 0.000586 (1) 0.428630 (0)
DTLZ4 (4) 0.000000 (1) 0.000000 (1) 0.355472 (0)
DTLZ5 (4) 0.000000 (1) 0.000000 (1) 0.005570 (1)
DTLZ6 (4) 0.067869 (0) 0.000000 (1) 0.046756 (1)
DTLZ7 (4) 0.000000 (1) 0.000001 (1) 0.010763 (1)
DTLZ1 (5) 0.055546 (0) 0.002624 (1) 0.000000 (1)
DTLZ2 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ3 (5) 0.000007 (1) 0.111927 (0) 0.183242 (0)
DTLZ4 (5) 0.000000 (1) 0.000000 (1) 0.000015 (1)
DTLZ5 (5) 0.000000 (1) 0.000000 (1) 0.010315 (1)
DTLZ6 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ7 (5) 0.000000 (1) 0.000001 (1) 0.464273 (0)
DTLZ1 (6) 0.000038 (1) 0.006096 (1) 0.000000 (1)
DTLZ2 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ3 (6) 0.039873 (1) 0.003337 (1) 0.000004 (1)
DTLZ4 (6) 0.000001 (1) 0.000000 (1) 0.000000 (1)
DTLZ5 (6) 0.000000 (1) 0.000000 (1) 0.005570 (1)
DTLZ6 (6) 0.000000 (1) 0.000000 (1) 0.000001 (1)
DTLZ7 (6) 0.000000 (1) 0.153667 (0) 0.428963 (0)
WFG1 (3) 0.129670 (0) 0.000000 (1) 0.277189 (0)
WFG2 (3) 0.007959 (1) 1.000000 (0) 1.000000 (0)
WFG3 (3) 0.000000 (1) 0.000000 (1) 0.087710 (0)
WFG4 (3) 0.000000 (1) 0.000000 (1) 0.004033 (1)
WFG5 (3) 0.000000 (1) 0.000000 (1) 0.446413 (0)
WFG6 (3) 0.000000 (1) 0.000000 (1) 0.332841 (0)
WFG7 (3) 0.000000 (1) 0.000000 (1) 0.420386 (0)
WFG1 (4) 0.000000 (1) 0.000000 (1) 0.728265 (0)
WFG2 (4) 0.946956 (0) 1.000000 (0) 1.000000 (0)
WFG3 (4) 0.000000 (1) 0.000003 (1) 0.005322 (1)
WFG4 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG5 (4) 0.000000 (1) 0.000000 (1) 0.000006 (1)
WFG6 (4) 0.000000 (1) 0.000004 (1) 0.813003 (0)
WFG7 (4) 0.000000 (1) 0.000000 (1) 0.000077 (1)
WFG1 (5) 0.000000 (1) 0.000000 (1) 0.033874 (1)
WFG2 (5) 0.403538 (0) 1.000000 (0) 1.000000 (0)
WFG3 (5) 0.000000 (1) 0.841801 (0) 0.888303 (0)
WFG4 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG5 (5) 0.000000 (1) 0.000000 (1) 0.876635 (0)
WFG6 (5) 0.000000 (1) 0.006669 (1) 0.888303 (0)
WFG7 (5) 0.000000 (1) 0.000000 (1) 0.009883 (1)
WFG1 (6) 0.000000 (1) 0.000000 (1) 0.001767 (1)
WFG2 (6) 0.055546 (0) 1.000000 (0) 1.000000 (0)
WFG3 (6) 0.000000 (1) 0.515261 (0) 0.374931 (0)
WFG4 (6) 0.000000 (1) 0.000000 (1) 0.264326 (0)
WFG5 (6) 0.000000 (1) 0.001680 (1) 0.074827 (0)
WFG6 (6) 0.000000 (1) 0.283778 (0) 0.807275 (0)
WFG7 (6) 0.000000 (1) 0.000000 (1) 0.024157 (1)
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Table 7: Results obtained in the DTLZ test problems with up to ten objective functions.
We compare MD-MOEA and MAH-MOEA with respect to ISC . In this case, A is the set
composed by all solutions found by MD-MOEA considering all 30 independent runs and B is
the set composed by all solutions found by MAH-MOEA considering all 30 independent runs.
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Number of times it came fist
Number of times it came second

~f ISC(A,B) ISC(B,A)

DTLZ1 (3) 0.0040 0.0577
DTLZ2 (3) 0.0457 0.4613
DTLZ3 (3) 0.0320 0.1180
DTLZ4 (3) 0.0453 0.4700
DTLZ5 (3) 0.1610 0.4800
DTLZ6 (3) 0.6693 0.6390
DTLZ7 (3) 0.0903 0.2870
DTLZ1 (4) 0.0077 0.0283
DTLZ2 (4) 0.0227 0.2827
DTLZ3 (4) 0.0153 0.0773
DTLZ4 (4) 0.0213 0.2647
DTLZ5 (4) 0.0317 0.4537
DTLZ6 (4) 0.0137 0.9117
DTLZ7 (4) 0.0640 0.2723
DTLZ1 (5) 0.0110 0.0277
DTLZ2 (5) 0.0153 0.1567
DTLZ3 (5) 0.0063 0.0893
DTLZ4 (5) 0.0160 0.1377
DTLZ5 (5) 0.0193 0.5630
DTLZ6 (5) 0.0040 0.9790
DTLZ7 (5) 0.0433 0.1357
DTLZ1 (6) 0.0103 0.0553
DTLZ2 (6) 0.0067 0.1380
DTLZ3 (6) 0.0090 0.0880
DTLZ4 (6) 0.0067 0.1143
DTLZ5 (6) 0.0270 0.5767
DTLZ6 (6) 0.0000 0.9867
DTLZ7 (6) 0.0280 0.0650

~f ISC(A,B) ISC(B,B)

DTLZ1 (7) 0.0090 0.3713
DTLZ2 (7) 0.0013 0.1653
DTLZ3 (7) 0.0097 0.2893
DTLZ4 (7) 0.0023 0.0840
DTLZ5 (7) 0.0260 0.5730
DTLZ6 (7) 0.0000 0.9887
DTLZ7 (7) 0.0287 0.0373
DTLZ1 (8) 0.0253 0.8963
DTLZ2 (8) 0.0000 0.1813
DTLZ3 (8) 0.0060 0.7860
DTLZ4 (8) 0.0013 0.0617
DTLZ5 (8) 0.0227 0.5470
DTLZ6 (8) 0.0000 0.9867
DTLZ7 (8) 0.0173 0.0140
DTLZ1 (9) 0.1243 0.9667
DTLZ2 (9) 0.0000 0.3167
DTLZ3 (9) 0.0033 0.9230
DTLZ4 (9) 0.0023 0.0337
DTLZ5 (9) 0.0303 0.4677
DTLZ6 (9) 0.0000 0.9887
DTLZ7 (9) 0.0070 0.0073
DTLZ1 (10) 0.0773 0.9837
DTLZ2 (10) 0.0000 0.7277
DTLZ3 (10) 0.0017 0.9673
DTLZ4 (10) 0.0000 0.0370
DTLZ5 (10) 0.0387 0.2883
DTLZ6 (10) 0.0000 0.9817
DTLZ7 (10) 0.0033 0.0037
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Table 8: Results obtained in the DTLZ test problems with up to ten objective functions. We
compare MD-MOEA and MAH-MOEA with respect to IS . We show average values over 30
independent runs. The values in parentheses correspond to the standard deviations.
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~f md-moea
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mah-moea
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DTLZ1(3) 0.0383(0.051) 0.0227(0.014)
DTLZ2(3) 0.0494(0.003) 0.0519(0.005)
DTLZ3(3) 39.7739(16.843) 0.0835(0.114)
DTLZ4(3) 0.0485(0.004) 0.0534(0.005)
DTLZ5(3) 0.0107(0.001) 0.0149(0.002)
DTLZ6(3) 0.0477(0.050) 0.0244(0.015)
DTLZ7(3) 0.0515(0.012) 0.0548(0.011)
DTLZ1(4) 0.3313(1.026) 0.0716(0.139)
DTLZ2(4) 0.0821(0.010) 0.0976(0.007)
DTLZ3(4) 30.1241(24.519) 0.1443(0.152)
DTLZ4(4) 0.0852(0.008) 0.0979(0.007)
DTLZ5(4) 0.1303(0.028) 0.0871(0.009)
DTLZ6(4) 0.2187(0.036) 0.1289(0.020)
DTLZ7(4) 0.1223(0.015) 0.1222(0.018)
DTLZ1(5) 0.1476(0.311) 0.1434(0.437)
DTLZ2(5) 0.1128(0.011) 0.1406(0.012)
DTLZ3(5) 5.9726(12.907) 0.2318(0.270)
DTLZ4(5) 0.1160(0.013) 0.1379(0.011)
DTLZ5(5) 0.2209(0.029) 0.1379(0.021)
DTLZ6(5) 0.4020(0.044) 0.2472(0.058)
DTLZ7(5) 0.1837(0.033) 0.1735(0.030)
DTLZ1(6) 0.5147(1.209) 0.1094(0.109)
DTLZ2(6) 0.1471(0.015) 0.1782(0.016)
DTLZ3(6) 8.5028(15.487) 0.6253(2.037)
DTLZ4(6) 0.1416(0.012) 0.1777(0.018)
DTLZ5(6) 0.2670(0.033) 0.1933(0.026)
DTLZ6(6) 0.6232(0.066) 0.3207(0.070)
DTLZ7(6) 0.2478(0.047) 0.2520(0.055)

~f md-moea
IS

mah-moea
IS

DTLZ1(7) 4.7387(8.298) 0.1142(0.170)
DTLZ2(7) 0.1752(0.018) 0.2028(0.027)
DTLZ3(7) 17.6441(27.499) 0.6413(1.399)
DTLZ4(7) 0.1736(0.021) 0.2011(0.018)
DTLZ5(7) 0.3055(0.034) 0.2296(0.046)
DTLZ6(7) 0.7690(0.102) 0.3620(0.061)
DTLZ7(7) 0.2959(0.081) 0.2948(0.077)
DTLZ1(8) 44.9282(15.636) 3.1587(3.930)
DTLZ2(8) 0.2151(0.023) 0.2337(0.021)
DTLZ3(8) 121.0272(70.941) 2.0211(4.517)
DTLZ4(8) 0.1982(0.024) 0.2265(0.020)
DTLZ5(8) 0.3297(0.035) 0.2416(0.040)
DTLZ6(8) 0.8535(0.075) 0.3994(0.049)
DTLZ7(8) 0.3472(0.080) 0.3425(0.078)
DTLZ1(9) 53.2934(10.620) 9.9927(4.748)
DTLZ2(9) 0.2740(0.076) 0.2477(0.026)
DTLZ3(9) 163.9581(73.838) 0.8544(0.974)
DTLZ4(9) 0.2206(0.023) 0.2521(0.024)
DTLZ5(9) 0.3472(0.040) 0.2594(0.045)
DTLZ6(9) 0.9396(0.103) 0.4521(0.052)
DTLZ7(9) 0.5877(0.906) 0.5839(0.907)
DTLZ1(10) 56.1186(11.811) 13.1724(5.369)
DTLZ2(10) 0.4853(0.102) 0.2714(0.028)
DTLZ3(10) 186.9971(41.579) 3.5598(8.554)
DTLZ4(10) 0.2555(0.034) 0.2882(0.033)
DTLZ5(10) 0.3324(0.049) 0.2802(0.052)
DTLZ6(10) 0.9776(0.088) 0.4803(0.053)
DTLZ7(10) 0.9527(1.374) 0.8445(1.303)
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Table 9: Results obtained in the WFG test problems with up to ten objective functions. We
compare MD-MOEA and MAH-MOEA with respect to ISC . We show average values over 30
independent runs. The values in parentheses correspond to the standard deviations.
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~f md-moea
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WFG1 (3) 0.0000 0.0017
WFG2 (3) 0.6703 0.6703
WFG3 (3) 0.0140 0.5907
WFG4 (3) 0.0003 0.9870
WFG5 (3) 0.0000 0.2183
WFG6 (3) 0.0157 0.6220
WFG7 (3) 0.0153 0.1930
WFG1 (4) 0.0000 0.0000
WFG2 (4) 0.8647 0.8647
WFG3 (4) 0.0217 0.1677
WFG4 (4) 0.0000 0.6527
WFG5 (4) 0.0000 0.1337
WFG6 (4) 0.0300 0.2420
WFG7 (4) 0.0030 0.0010
WFG1 (5) 0.0000 0.0000
WFG2 (5) 0.8357 0.8357
WFG3 (5) 0.1807 0.1787
WFG4 (5) 0.0000 0.3083
WFG5 (5) 0.0000 0.0317
WFG6 (5) 0.3310 0.3520
WFG7 (5) 0.0000 0.0000
WFG1 (6) 0.0000 0.0000
WFG2 (6) 0.8113 0.8113
WFG3 (6) 0.3297 0.3210
WFG4 (6) 0.0000 0.1350
WFG5 (6) 0.0000 0.0020
WFG6 (6) 0.4010 0.3943
WFG7 (6) 0.0000 0.0000

~f md-moea
ISC

mah-moea
ISC

WFG1 (7) 0.0000 0.0000
WFG2 (7) 0.7737 0.7737
WFG3 (7) 0.2647 0.2687
WFG4 (7) 0.0007 0.0543
WFG5 (7) 0.0013 0.0020
WFG6 (7) 0.3477 0.3410
WFG7 (7) 0.0000 0.0000
WFG1 (8) 0.0000 0.0000
WFG2 (8) 0.7787 0.7787
WFG3 (8) 0.1923 0.1923
WFG4 (8) 0.0000 0.0267
WFG5 (8) 0.0013 0.0030
WFG6 (8) 0.2877 0.3213
WFG7 (8) 0.0000 0.0000
WFG1 (9) 0.0000 0.0000
WFG2 (9) 0.7750 0.7750
WFG3 (9) 0.1383 0.1383
WFG4 (9) 0.0000 0.0177
WFG5 (9) 0.0093 0.0103
WFG6 (9) 0.2753 0.2383
WFG7 (9) 0.0000 0.0000
WFG1 (10) 0.0000 0.0000
WFG2 (10) 0.7377 0.7377
WFG3 (10) 0.1050 0.1050
WFG4 (10) 0.0000 0.0057
WFG5 (10) 0.0147 0.0147
WFG6 (10) 0.2247 0.2097
WFG7 (10) 0.0000 0.0000

50



Table 10: Results obtained in the WFG test problems with up to ten objective functions. We
compare MD-MOEA and MAH-MOEA with respect to IS . We show average values over 30
independent runs. The values in parentheses correspond to the standard deviations.
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WFG1(3) 0.0545(0.009) 0.0815(0.022)
WFG2(3) 0.0224(0.009) 0.0224(0.009)
WFG3(3) 0.0181(0.002) 0.0242(0.002)
WFG4(3) 0.1586(0.015) 0.1821(0.016)
WFG5(3) 0.0885(0.010) 0.1049(0.010)
WFG6(3) 0.0380(0.006) 0.0453(0.005)
WFG7(3) 0.1226(0.011) 0.1511(0.013)
WFG1(4) 0.0643(0.008) 0.0979(0.012)
WFG2(4) 0.0349(0.013) 0.0349(0.013)
WFG3(4) 0.0286(0.003) 0.0356(0.003)
WFG4(4) 0.3332(0.028) 0.4306(0.035)
WFG5(4) 0.1580(0.015) 0.1813(0.014)
WFG6(4) 0.0837(0.020) 0.0846(0.016)
WFG7(4) 0.2277(0.023) 0.3390(0.024)
WFG1(5) 0.0703(0.007) 0.0971(0.009)
WFG2(5) 0.0390(0.017) 0.0390(0.017)
WFG3(5) 0.0505(0.004) 0.0500(0.004)
WFG4(5) 0.5066(0.065) 0.7625(0.076)
WFG5(5) 0.2592(0.040) 0.2649(0.035)
WFG6(5) 0.1152(0.020) 0.1307(0.027)
WFG7(5) 0.3302(0.038) 0.5677(0.050)
WFG1(6) 0.0736(0.009) 0.0887(0.012)
WFG2(6) 0.0521(0.025) 0.0521(0.025)
WFG3(6) 0.0744(0.014) 0.0755(0.014)
WFG4(6) 0.7314(0.086) 1.1253(0.095)
WFG5(6) 0.4318(0.062) 0.4621(0.059)
WFG6(6) 0.1510(0.031) 0.1605(0.031)
WFG7(6) 0.4422(0.058) 0.6964(0.129)

~f md-moea
IS

mah-moea
IS

WFG1(7) 0.0807(0.011) 0.0824(0.009)
WFG2(7) 0.0516(0.018) 0.0516(0.018)
WFG3(7) 0.0900(0.024) 0.0906(0.024)
WFG4(7) 0.9768(0.112) 1.6140(0.152)
WFG5(7) 0.5441(0.072) 0.5752(0.083)
WFG6(7) 0.1831(0.039) 0.1833(0.042)
WFG7(7) 0.5718(0.056) 0.6547(0.141)
WFG1(8) 0.0877(0.013) 0.0908(0.016)
WFG2(8) 0.0614(0.017) 0.0614(0.017)
WFG3(8) 0.0950(0.016) 0.0950(0.016)
WFG4(8) 1.2455(0.117) 1.9606(0.270)
WFG5(8) 0.6427(0.061) 0.6614(0.072)
WFG6(8) 0.2072(0.046) 0.2139(0.041)
WFG7(8) 0.6796(0.066) 0.6442(0.171)
WFG1(9) 0.1019(0.014) 0.1016(0.013)
WFG2(9) 0.0754(0.033) 0.0754(0.033)
WFG3(9) 0.1036(0.020) 0.1036(0.020)
WFG4(9) 1.5718(0.213) 2.1582(0.318)
WFG5(9) 0.7540(0.080) 0.7505(0.081)
WFG6(9) 0.2350(0.039) 0.2381(0.045)
WFG7(9) 0.8251(0.106) 0.6846(0.161)
WFG1(10) 0.1149(0.014) 0.1149(0.014)
WFG2(10) 0.0761(0.030) 0.0761(0.030)
WFG3(10) 0.1129(0.026) 0.1129(0.026)
WFG4(10) 1.8951(0.216) 2.3724(0.330)
WFG5(10) 0.8311(0.100) 0.8390(0.115)
WFG6(10) 0.2894(0.052) 0.2653(0.041)
WFG7(10) 0.9441(0.105) 0.7823(0.177)
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Table 11: Results obtained in the DTLZ test problems with up to six objective functions.
We compare MD-MOEA, MAH-MOEA, MOEA/D and SMS-EMOA using the hypervolume
indicator IH . We show average values over 30 independent runs. The values in parentheses
correspond to the standard deviations.

 0

 5

 10

 15

 20

 25

 30

 35

 40

md-moea mah-moea moead sms-emoa

DTLZ Test Problems

Number of times it came fist
Number of times it came second

Number of times it came third
Number of times it came fourth

~f md-moea
IH

mah-moea
IH

moead
IH

sms-emoa
IH

DTLZ1 (3) 1.1823 (0.003) 1.1896 (0.001) 1.2683 (0.001) 1.3128 (0.001)
DTLZ2 (3) 0.7319 (0.003) 0.7525 (0.002) 0.7203 (0.000) 0.7645 (0.002)
DTLZ3 (3) 1.3281 (0.000) 1.3263 (0.000) 1.3307 (0.000) 1.3309 (0.000)
DTLZ4 (3) 0.7304 (0.006) 0.7492 (0.004) 0.7255 (0.000) 0.7699 (0.002)
DTLZ5 (3) 0.2651 (0.000) 0.2661 (0.000) 0.2467 (0.001) 0.2662 (0.000)
DTLZ6 (3) 1.0989 (0.008) 1.0975 (0.009) 0.5129 (0.022) 0.5979 (0.012)
DTLZ7 (3) 0.5519 (0.041) 0.5638 (0.043) 0.4509 (0.027) 0.5366 (0.060)
DTLZ1 (4) 1.4375 (0.005) 1.4444 (0.002) 1.4134 (0.003) 1.4621 (0.001)
DTLZ2 (4) 1.1249 (0.010) 1.1647 (0.005) 0.9237 (0.001) 1.0700 (0.004)
DTLZ3 (4) 1.4638 (0.000) 1.4638 (0.000) 1.4638 (0.000) 1.4630 (0.001)
DTLZ4 (4) 1.1912 (0.010) 1.2252 (0.006) 0.9169 (0.001) 1.0645 (0.005)
DTLZ5 (4) 0.4668 (0.023) 0.5469 (0.004) 0.4921 (0.004) 0.5618 (0.004)
DTLZ6 (4) 1.2742 (0.024) 1.3600 (0.003) 1.2083 (0.006) 1.3085 (0.007)
DTLZ7 (4) 0.7062 (0.016) 0.7262 (0.018) 0.3875 (0.022) 0.6922 (0.043)
DTLZ1 (5) 1.6011 (0.003) 1.6031 (0.001) 1.6095 (0.000) 1.6103 (0.000)
DTLZ2 (5) 1.4063 (0.015) 1.4519 (0.006) 1.0345 (0.004) 1.2717 (0.017)
DTLZ3 (5) 1.6098 (0.000) 1.6098 (0.000) 1.6096 (0.000) 1.5998 (0.007)
DTLZ4 (5) 1.4801 (0.011) 1.5096 (0.007) 1.0317 (0.005) 1.2778 (0.016)
DTLZ5 (5) 0.8122 (0.033) 0.9180 (0.015) 0.7215 (0.022) 0.9540 (0.006)
DTLZ6 (5) 1.3396 (0.063) 1.5450 (0.005) 1.3358 (0.012) 1.4298 (0.009)
DTLZ7 (5) 0.8534 (0.009) 0.8699 (0.010) 0.1285 (0.089) 0.7547 (0.021)
DTLZ1 (6) 1.7652 (0.004) 1.7669 (0.001) 1.7696 (0.000) 1.7675 (0.009)
DTLZ2 (6) 1.6757 (0.014) 1.7114 (0.006) 1.0435 (0.010) 1.4695 (0.020)
DTLZ3 (6) 1.7710 (0.000) 1.7712 (0.000) 1.7702 (0.000) 1.7640 (0.007)
DTLZ4 (6) 1.7234 (0.008) 1.7407 (0.003) 1.0187 (0.007) 1.4427 (0.018)
DTLZ5 (6) 0.9563 (0.067) 1.1170 (0.041) 0.8622 (0.014) 1.2291 (0.006)
DTLZ6 (6) 1.0454 (0.174) 1.6984 (0.004) 1.4940 (0.021) 1.6855 (0.005)
DTLZ7 (6) 0.9319 (0.022) 0.9380 (0.026) 0.0255 (0.005) 0.7375 (0.009)
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Table 12: Results obtained in the DTLZ test problems with up to six objective functions. We
compare MD-MOEA, MAH-MOEA, MOEA/D and SMS-EMOA with respect to the running
time required by each MOEA to obtain the approximation of the Pareto optimal set. The
results are in seconds. We show average values over 30 independent runs. The values in
parentheses correspond to the standard deviations.
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DTLZ1 (3) 0.8317 (0.025) 26.5683 (6.888) 0.5180 (0.009) 1368.8483 (56.345)
DTLZ2 (3) 1.7247 (0.016) 80.2447 (11.191) 0.5732 (0.008) 3186.9297 (33.957)
DTLZ3 (3) 0.7897 (0.028) 26.4793 (5.165) 0.5092 (0.008) 2516.9973 (131.555)
DTLZ4 (3) 1.7187 (0.018) 77.7587 (9.585) 0.5839 (0.003) 3209.5767 (28.945)
DTLZ5 (3) 1.2467 (0.019) 9.6463 (2.308) 0.5773 (0.023) 485.1490 (13.942)
DTLZ6 (3) 1.0763 (0.020) 26.3760 (12.040) 0.5055 (0.025) 1872.8680 (494.697)
DTLZ7 (3) 1.0917 (0.036) 28.6033 (7.032) 0.5600 (0.034) 3047.7933 (245.354)
DTLZ1 (4) 1.0227 (0.015) 17.1963 (2.158) 0.5386 (0.013) 953.9040 (72.115)
DTLZ2 (4) 2.0807 (0.009) 56.9457 (9.412) 0.6048 (0.010) 2696.8443 (28.356)
DTLZ3 (4) 1.0830 (0.029) 23.3403 (2.858) 0.5312 (0.010) 1652.6900 (191.963)
DTLZ4 (4) 2.0533 (0.020) 52.1267 (9.269) 0.6281 (0.007) 3186.0707 (23.889)
DTLZ5 (4) 2.3523 (0.028) 50.0157 (6.454) 0.5903 (0.001) 1559.1663 (56.480)
DTLZ6 (4) 1.6473 (0.020) 49.7007 (6.381) 0.5942 (0.008) 1758.4097 (30.011)
DTLZ7 (4) 1.1903 (0.026) 16.5777 (2.984) 0.6512 (0.008) 3240.0063 (293.247)
DTLZ1 (5) 1.1693 (0.037) 12.5180 (1.662) 0.5706 (0.005) 1029.0453 (92.775)
DTLZ2 (5) 2.3043 (0.014) 29.8747 (3.466) 0.6248 (0.001) 1879.0867 (19.569)
DTLZ3 (5) 1.2967 (0.028) 17.2507 (2.455) 0.5796 (0.016) 1617.6280 (75.710)
DTLZ4 (5) 2.2767 (0.021) 28.0337 (3.063) 0.6812 (0.001) 2191.7757 (21.185)
DTLZ5 (5) 2.4603 (0.021) 44.2683 (5.359) 0.6527 (0.040) 1788.9270 (49.232)
DTLZ6 (5) 2.2447 (0.044) 46.6733 (5.942) 0.6370 (0.006) 1957.4123 (25.557)
DTLZ7 (5) 1.3070 (0.035) 7.3807 (1.137) 0.6935 (0.005) 2822.8597 (171.838)
DTLZ1 (6) 1.3033 (0.070) 10.5600 (1.946) 0.6036 (0.016) 1523.3607 (158.557)
DTLZ2 (6) 2.4600 (0.023) 19.9033 (1.739) 0.6551 (0.005) 1605.2567 (13.806)
DTLZ3 (6) 1.4473 (0.030) 15.7413 (2.575) 0.5999 (0.013) 1751.4160 (130.305)
DTLZ4 (6) 2.4343 (0.026) 18.3560 (2.040) 0.7307 (0.001) 1827.7093 (18.135)
DTLZ5 (6) 2.6093 (0.028) 37.3323 (5.122) 0.7436 (0.001) 1815.6567 (68.869)
DTLZ6 (6) 2.8480 (0.049) 44.0187 (5.048) 0.6892 (0.005) 2128.5127 (27.407)
DTLZ7 (6) 1.4347 (0.047) 3.7347 (0.632) 0.7247 (0.004) 2522.0583 (54.170)
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Table 13: Results obtained in the WFG test problems with up to six objective functions.
We compare MD-MOEA, MAH-MOEA, MOEA/D and SMS-EMOA using the hypervolume
indicator IH . We show average values over 30 independent runs. The values in parentheses
correspond to the standard deviations.

 0

 5

 10

 15

 20

 25

 30

 35

 40

md-moea mah-moea moead sms-emoa

WFG Test Problems

Number of times it came fist
Number of times it came second

Number of times it came third
Number of times it came fourth

~f md-moea
IH

mah-moea
IH

moead
IH

sms-emoa
IH

WFG1 (3) 1.0043 (0.057) 1.1274 (0.049) 0.9178 (0.017) 1.2126 (0.024)
WFG2 (3) 0.7559 (0.091) 0.7559 (0.091) 0.1593 (0.204) 0.7460 (0.132)
WFG3 (3) 0.6156 (0.004) 0.6312 (0.002) 0.5001 (0.026) 0.6357 (0.002)
WFG4 (3) 0.6584 (0.008) 0.7414 (0.002) 0.5952 (0.013) 0.7515 (0.002)
WFG5 (3) 0.5325 (0.005) 0.5529 (0.001) 0.4715 (0.010) 0.5573 (0.002)
WFG6 (3) 0.5483 (0.003) 0.5602 (0.004) 0.4538 (0.007) 0.5639 (0.002)
WFG7 (3) 0.6099 (0.013) 0.7342 (0.005) 0.4908 (0.056) 0.7495 (0.004)
WFG1 (4) 1.0396 (0.027) 1.2045 (0.045) 1.1014 (0.061) 1.4089 (0.008)
WFG2 (4) 0.6338 (0.134) 0.6338 (0.134) 0.0577 (0.111) 0.1102 (0.139)
WFG3 (4) 0.5674 (0.009) 0.5801 (0.009) 0.2813 (0.035) 0.5665 (0.013)
WFG4 (4) 0.8193 (0.017) 0.9955 (0.007) 0.6576 (0.026) 1.0160 (0.004)
WFG5 (4) 0.5501 (0.008) 0.5870 (0.003) 0.3677 (0.015) 0.5913 (0.002)
WFG6 (4) 0.5510 (0.016) 0.5712 (0.010) 0.2890 (0.016) 0.5817 (0.008)
WFG7 (4) 0.6163 (0.018) 0.8623 (0.008) 0.2920 (0.036) 0.9224 (0.007)
WFG1 (5) 1.0896 (0.030) 1.2095 (0.031) 1.1550 (0.069) 1.4687 (0.010)
WFG2 (5) 0.6349 (0.203) 0.6349 (0.203) 0.1387 (0.148) 0.0001 (0.000)
WFG3 (5) 0.5753 (0.018) 0.5742 (0.018) 0.1566 (0.037) 0.2116 (0.092)
WFG4 (5) 0.9373 (0.022) 1.2076 (0.009) 0.6592 (0.024) 1.2305 (0.008)
WFG5 (5) 0.5744 (0.014) 0.6142 (0.008) 0.2357 (0.014) 0.6457 (0.003)
WFG6 (5) 0.5557 (0.023) 0.5735 (0.025) 0.2536 (0.015) 0.4463 (0.052)
WFG7 (5) 0.6113 (0.023) 0.9482 (0.019) 0.2163 (0.014) 1.0149 (0.012)
WFG1 (6) 1.2711 (0.036) 1.3288 (0.031) 1.0911 (0.030) 1.5042 (0.024)
WFG2 (6) 0.7530 (0.164) 0.7530 (0.164) 0.0839 (0.107) 0.0000 (0.000)
WFG3 (6) 0.5635 (0.027) 0.5575 (0.032) 0.1615 (0.050) 0.1057 (0.056)
WFG4 (6) 1.0276 (0.032) 1.4025 (0.015) 0.5982 (0.029) 1.4082 (0.009)
WFG5 (6) 0.5893 (0.023) 0.6099 (0.024) 0.1555 (0.017) 0.6664 (0.014)
WFG6 (6) 0.6030 (0.034) 0.6134 (0.032) 0.2319 (0.019) 0.4075 (0.057)
WFG7 (6) 0.6100 (0.023) 0.9036 (0.071) 0.1842 (0.014) 1.0398 (0.051)
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Table 14: Results obtained in the WFG test problems with up to six objective functions. We
compare MD-MOEA, MAH-MOEA, MOEA/D and SMS-EMOA in terms of the running time
required by each MOEA to obtain the approximation of the Pareto optimal set. The results
are in seconds. We show average values over 30 independent runs. The values in parentheses
correspond to the standard deviations.
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Number of times it came fist
Number of times it came second
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time

moead
time

sms-emoa
time

WFG1 (3) 3.0037 (0.036) 97.5580 (11.196) 1.3196 (0.214) 4308.4217 (25.228)
WFG2 (3) 1.3063 (0.081) 1.5803 (0.314) 1.1146 (0.176) 1513.2233 (155.007)
WFG3 (3) 2.7167 (0.036) 87.2683 (15.644) 0.9307 (0.007) 2084.2703 (17.679)
WFG4 (3) 2.9810 (0.040) 78.2380 (14.106) 1.0456 (0.120) 4153.4260 (30.095)
WFG5 (3) 3.1817 (0.119) 122.2553 (17.817) 0.9530 (0.014) 3551.4573 (41.543)
WFG6 (3) 2.6367 (0.115) 95.7627 (14.819) 0.9624 (0.014) 3064.4163 (27.785)
WFG7 (3) 3.7967 (0.053) 138.2930 (26.767) 1.1576 (0.005) 5333.1087 (47.859)
WFG1 (4) 3.1263 (0.028) 55.2243 (6.841) 1.6046 (0.012) 2830.8050 (29.269)
WFG2 (4) 1.3700 (0.040) 1.7497 (0.150) 1.2374 (0.144) 1471.5220 (222.983)
WFG3 (4) 2.3457 (0.082) 37.7127 (6.090) 1.4797 (0.384) 1690.0347 (18.244)
WFG4 (4) 3.5377 (0.070) 66.3593 (11.242) 1.4224 (0.004) 3919.7280 (52.832)
WFG5 (4) 3.3533 (0.029) 75.2213 (11.970) 0.9704 (0.004) 3103.7243 (30.165)
WFG6 (4) 2.2033 (0.062) 39.5240 (5.911) 1.0423 (0.059) 2524.6620 (34.021)
WFG7 (4) 4.1817 (0.043) 85.7517 (9.854) 1.2276 (0.009) 3888.7363 (56.772)
WFG1 (5) 3.1180 (0.048) 25.0433 (3.385) 1.7252 (0.011) 1695.3017 (19.921)
WFG2 (5) 1.5483 (0.055) 2.0567 (0.346) 1.2578 (0.184) 1803.4930 (258.393)
WFG3 (5) 1.8530 (0.023) 2.7177 (0.374) 1.9463 (0.057) 1598.1797 (31.162)
WFG4 (5) 3.8390 (0.030) 52.2173 (8.366) 1.5348 (0.006) 2923.8940 (48.865)
WFG5 (5) 3.1130 (0.119) 45.3483 (6.833) 1.0555 (0.011) 3149.2743 (70.538)
WFG6 (5) 1.8200 (0.014) 3.6643 (0.604) 1.1502 (0.013) 2355.6050 (41.596)
WFG7 (5) 4.5740 (0.035) 49.3623 (6.280) 1.4021 (0.037) 2869.6150 (55.364)
WFG1 (6) 3.0127 (0.039) 13.4993 (1.680) 1.8216 (0.007) 1263.6903 (21.408)
WFG2 (6) 1.6703 (0.060) 1.9280 (0.205) 1.0977 (0.103) 2278.2863 (262.298)
WFG3 (6) 1.9417 (0.018) 2.9970 (0.399) 1.7925 (0.307) 1892.1680 (25.837)
WFG4 (6) 4.0547 (0.035) 47.5760 (7.722) 1.6597 (0.007) 2553.0097 (49.627)
WFG5 (6) 2.5957 (0.090) 18.0147 (3.537) 1.2348 (0.061) 2927.7660 (222.317)
WFG6 (6) 1.9097 (0.022) 2.7093 (0.111) 1.1737 (0.012) 2463.2440 (27.182)
WFG7 (6) 4.7223 (0.048) 44.0367 (6.551) 1.7574 (0.008) 2381.4430 (59.016)
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Table 15: Statistical analysis using Wilcoxon’s rank sum. For this, we used IH , see Tables 11
and 13. P is the probability of observing the given result (the null hypothesis is true). Small
values of P cast doubt on the validity of the null hypothesis. H = 0 indicates that the null
hypothesis (“medians are equal”) cannot be rejected at the 5% level. H = 1 indicates that
the null hypothesis can be rejected at the 5% level.

~f md-moea & moead
P (H)

md-moea & sms-emoa
P (H)

mah-moea & moead
P (H)

mah-moea & sms-emoa
P (H)

DTLZ1 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ2 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ3 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ4 (3) 0.000068 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ5 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.332841 (0)
DTLZ6 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ7 (3) 0.000000 (1) 0.239850 (0) 0.000000 (1) 0.239850 (0)
DTLZ1 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ2 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ3 (4) 0.000252 (1) 0.000000 (1) 0.135171 (0) 0.000001 (1)
DTLZ4 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ5 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ6 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ7 (4) 0.000000 (1) 0.491783 (0) 0.000000 (1) 0.000000 (1)
DTLZ1 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ2 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ3 (5) 0.000232 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ4 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ5 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ6 (5) 0.264326 (0) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ7 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ1 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000030 (1)
DTLZ2 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ3 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ4 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ5 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ6 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ7 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG1 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG2 (3) 0.000000 (1) 0.599689 (0) 0.000000 (1) 0.599689 (0)
WFG3 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG4 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG5 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG6 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000008 (1)
WFG7 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG1 (4) 0.000000 (1) 0.000000 (1) 0.000001 (1) 0.000000 (1)
WFG2 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG3 (4) 0.000000 (1) 0.923442 (0) 0.000000 (1) 0.000077 (1)
WFG4 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG5 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG6 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000111 (1)
WFG7 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG1 (5) 0.000081 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG2 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG3 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG4 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG5 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG6 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG7 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG1 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG2 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG3 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG4 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.141278 (0)
WFG5 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG6 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG7 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
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