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Abstract

In this paper, we propose a multi-objective evolutionary agorithm that incor-
porates some coevolutionary concepts. The primary design goal of the proposed
approach is to reduce the total number of objective function evaluations required
to produce a reasonably good approximation of the true Pareto front of a prob-
lem. The main idea of the proposed approach is to concentrate the search effort
on promising regions that arise during the evolutionary process as a byproduct of
a mechanism that subdivides decision variable space based on an estimate of the
relative importance of each decision variable. The proposed approach is validated
using several test functions taken from the speciaized literature and it is compared
with respect to three approaches that are representative of the state-of-the-art in
evolutionary multiobjective optimization.

1 Introduction

Despite the considerable volume of research on evolutionary multiobjective optimiza-
tion [4], little emphasis has been placed on certain algorithmic design aspects such as
efficiency [5, 10, 3]. Additionally, the use of coevolutionary mechanisms (which have
strong links to game theory [1]) has been scarce in the evolutionary multiobjective
optimization literature. The main motivation of the work reported here was precisely
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to take advantage of some coevolutionary concepts to design a multi-objective evo-
lutionary algorithm (MOEA) that can be more efficient (in terms of fitness function
evaluations). The main idea of the proposed algorithm is to obtain information along
the evolutionary process as to subdivide the search space into n subregions, and then
to use a subpopulation for each of these subregions. At each generation, these differ-
ent subpopulations (which evolve independently using Fonseca and Fleming’s ranking
scheme [7]) “cooperate” and “compete” among themselves and from these different
processes we obtain a single Pareto front. Each individual contained in the Pareto op-
timal set has a label that indicates the subpopulation to which it belongs. These labels
are used to determine which subpopulations contributed with more solutions. The size
of each subpopulation is adjusted based on their contribution to the current Pareto front
(i.e., subpopulations which contributed more are allowed a larger population size and
viceversa). The proposed approach uses the adaptive grid proposed in [10] to store
the nondominated vectors obtained along the evolutionary process, enforcing a more
uniform distribution of such vectors along the Pareto front.

2 Statement of the Problem

We are interested in solving problems of the type:

minimize [f1(X), f2(X),..., f(X)] (1)

subject to:
gl(x)zo |:152a7m (2)
hi(X)=0 i=1,2,...,p (3)

where k is the number of objective functions f; : R" — R. We call X = [x1,X2, ... ,xn]T
the vector of decision variables. We thus wish to determine from the set ¥ of all the
vectors that satisfy (2) and (3) to the vector x3,x5,...,x;, that are Pareto optimal. We
say that a vector of decision variables X* € 7 is Pareto optimum if there does not exist
another X € ¥ such that fi(X) < fj(X*) for every i = 1,...,k and fj(X) < fj(X*) for
at least one j. The vectors X* corresponding to the solutions included in the Pareto
optimal set are called nondominated. The objective function values corresponding to
the elements of the Pareto optimal set are called the Pareto front of the problem.

3 Coevolution

We call coevolution to a change in the genetic composition of a species (or group of
species) as a response to a genetic change of another one. In a more general sense, co-
evolution refers to a reciprocal evolutionary change between species that interact with
each other. The term “coevolution” is usually attributed to Ehrlich and Raven who pub-
lished a paper on their studies performed with butterflies and plants in the mid-1960s
[6]. The relationships between the populations of two different species A and B can be
described considering all their possible types of interactions. Such interaction can be
positive or negative depending on the consequences that such interaction produces on



Neutralism Populations A and B are independent and don’t interact.

Mutualism Both species benefit from the relationship.
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Commensalism One species benefits from the relationship but the other

is neither harmed nor benefited.

Competition - | - | Both species have a negative effect on each other since
they are competing for the same resources.

Predation + | - | The predator (A) benefits while the prey (B) is negatively
affected.

Parasitism + | - | The parasite (A) benefits while the host (B) is negatively
affected.

Table 1: All the possible interactions between two different species.

the population. All the possible interactions between two different species are shown
in Table 1.

Evolutionary computation researchers have developed several coevolutionary ap-
proaches in which normally two or more species relate to each other using one of the
previously indicated schemes. Also, in most cases, such species evolve independently
through a genetic algorithm. The key issue in these coevolutionary algorithms is that
the fitness of an individual in a population depends on the individuals of a different pop-
ulation. There are two main classes of coevolutionary algorithms in the evolutionary
computation literature:

e Those based on competition relationships: In this case, the fitness of an individ-
ual is the result of a series of “encounters” with other individuals [12, 16].

e Those based on cooperation relationships: In this case, the fitness of an individ-
ual is the result of a collaboration with individuals of other species (or popula-
tions) [15, 14].

4 Related Work

There are very few references in the literature in which coevolutionary concepts are
used to solve multiobjective optimization problems. We will review the main ones in
this section.

Parmee & Watson [13] proposed a collaborative scheme in which they use one
population to optimize each of the objective functions of a problem. The method is
really created to converge to a single (ideal) trade-off solution. However, through the
use of penalties the algorithm can maintain diversity in the population. These penalties
relate to variability in the decision variables’ values. The authors also store solutions
produced during the evolutionary process so that the user can analyze the historical
paths traversed by the algorithm.



Jiangming Mao et.al. [11] applied the symbiotic genetic algorithm [8] to mul-
tiobjective optimization problems. This approach uses a single population in which
individuals are ranked based on Pareto dominance. Then their fitnesses are modified
based on two factors: (1) the symbiotic factor 6;j, and (2) the factor 8y that represents
the symbiotic relationships between the objective functions m and I. These two fac-
tors are computed through fuzzy inference rules. The authors also incorporate user’s
preferences through an aggregating function.

Barbosa and Barreto [2] proposed a cooperative approach for solving a graph layout
generation problem. The approach uses two populations (a separate genetic algorithm
is used for each of them and information is exchanged through a shared fitness func-
tion): a graph layout population (i.e., individuals that contain the coordinates of all
vertices in the graph) and a population of weights (i.e., individuals that contain, each
one, a set of weights to be applied on the different aesthetic objectives imposed on the
problem). Each of the solutions produced by the system are presented to a user who
ranks them based on (subjective) preferences. This ranking is used to determine fitness
of the population of weights.

Keerativuttitumrong et.al [9] proposed a cooperative scheme in which one popula-
tion is defined for each decision variable of the problem. The evolution of each of these
populations is controlled through Fonseca and Fleming’s MOGA [7]. In order to eval-
uate an individual in any population, individuals from the other populations must be
selected in order to complete a solution (this is because each population only encodes
one decision variable).

5 Description of Our Approach

The main idea of our approach is to try to focus the search efforts only towards the
promising regions of the search space. In order to determine what regions of the search
space are promising, our algorithm performs a relatively simple analysis of the current
Pareto front. The evolutionary process of our approach is divided in 4 stages. The
change of stage is controlled by a certain number of generations during which we
run the algorithm. Our current version equally divides the full evolutionary run into
four parts (i.e., the total number of generations is divided by four), and each stage is
allocated one of these four parts.

5.1 First Stage

During the first stage (first 25% of the total number of generations), the algorithm is
allowed to explore all of the search space, by using a population of individuals which
are selected using Fonseca and Fleming’s Pareto ranking scheme [7]. Additionally,
the approach uses the adaptive grid proposed by [10]. At the end of this first stage,
the algorithm analyses the current Pareto front (stored in the adaptive grid) in order
to determine what variables of the problem are more critical. This analysis consists
of looking at the current values of the decision variables corresponding to the current
Pareto front (line 6, Figure 3). This analysis is performed independently for each deci-
sion variable. The idea is to determine if the values corresponding to a certain variable
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Figure 1: Mechanism used to assign regions of the search space to each population.

are distributed along all the allowable interval or if such values are concentrated on a
narrower range. When the whole interval is being used, the algorithm concludes that
keeping the entire interval for that variable is important. However, if only a narrow
portion is being used, then the algorithm will try to identify portions of the interval that
can be discarded from the search process. As a result of this analysis, the algorithm de-
termines whether is convenient or not to subdivide (and, in such case, it also determines
how many subdivisions to perform) the interval of a certain decision variable. Each of
these different regions will be assigned a different population (line 7, Figure 3).

We will illustrate this process with an example. Let’s suppose that our problem
has two variables and that, after the analysis, the algorithm determines that it is not
convenient to subdivide the interval of the first variable. Additionally, the algorithm
determines that the interval of the second variable must have two subdivisions. What
the algorithm does is to divide the interval of the second decision variable into three
parts of equal size (i.e., add two subdivisions to the interval). The process to decide
how many populations to have and to which region of the search space to assign each
of them is illustrated in Figure 1.

5.2 Second Stage

When reaching the second stage, the algorithm consists of a certain number of pop-
ulations looking each at different regions of the search space. At each generation,
the evolution of all the populations takes place independently and, later on, the non-
dominated elements from each population are stored in the adaptive grid where they
“cooperate” and “compete” in order to conform a single Pareto front (line 10, Figure 3).
After this, we count the number of individuals that each of the populations contributed
to the current Pareto front. Our algorithm is elitist (line 11, Figure 3), because after the
first generation of the second stage, all the populations that do not provide any individ-
ual to the current Pareto front are automatically eliminated and the sizes of the other
populations are properly adjusted (i.e., those populations that contributed more to the
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Figure 2: Graphical representation of the second stage of our algorithm.

current Pareto front get their sizes proportionally increased and those who contribute
less get their sizes decreased). Thus, populations contributing with more individuals to
the current Pareto front are “rewarded” with a number of extra individuals which is pro-
portional to the percentage contributed to the current Pareto front. These individuals to
be added or removed are randomly generated/chosen. Thus, populations compete with
each other to get as many extra individuals as possible. Figure 2 illustrates the second
stage of our algorithm.

5.3 Third Stage

During the third stage, we perform a check on the current populations in order to de-
termine how many (and which) of them can continue (i.e., those populations which
continue contributing individuals to the current Pareto front) (line 5, Figure 3). Over
these (presumably good) populations, we will apply the same process from the second
stage (i.e., they will be further subdivided and more populations will be created in order
to exploit these “promising regions” of the search space).

In order to determine the number of subdivisions that are to be used during the third
stage, we repeat the same analysis as before (i.e., the analysis performed during the first
stage). The individuals from the “good” populations are kept. All the good individuals
are distributed across the newly generated populations. A new count is undertaken so
that the algorithm can determine how many individuals are contributed by each of the
new populations to the current Pareto front. Again, populations that do not contribute
to the current Pareto front are eliminated. Note however, that we define a minimum
population size and this size is enforced for all populations at the beginning of the third
stage. After the first generation of the third stage, the size will be adjusted based on
the same criteria as before (i.e., the size of populations will be modified based on their
contribution to the current Pareto front).



5.4 Fourth Stage

During this stage, we apply the same procedure of the third stage in order to allow a
fine-grained search.

5.5 Decision Variables Analysis

The mechanism adopted for the decision variables analysis is very simple. Given a set
of values within an interval, we compute both the minimum average distance of each
element with respect to its closest neighbor and the total portion of the interval that
is covered by the individuals contained in the current Pareto front. Then, only if the
set of values covers less than 80% of the total of the interval, the algorithm considers
appropriate to divide it. Once the algorithm decides to divide the interval, the number
of divisions gets increased (without exceeding a total of 10 divisions per interval), as
explained next. Let’s define range as the percentage of the total of interval that is
occupied by the values of the variable under consideration. Let dyin be the minimum
average distance between individuals and let divisions be the number of divisions to
perform in the interval of the variable:

if (range <0.8xinterval)
while (dmin <0.2xinterval)

{

divisions + +;
interval =0.2xinterval;

5.6 ParametersRequired

Our proposed approach requires the following parameters:

1. Crossover rate (pc) and mutation rate (pm).
2. Maximum number of generations (Gmax).

3. Size of the initial population (popsizejnit) to be used during the first stage and
minimum size of the secondary population (popsizesy) to be used during the
further stages.

6 Comparison of Results

To validate our approach, we used the methodology normally adopted in the evolution-
ary multiobjective optimization literature [4]. We performed both quantitative compar-
isons (adopting four metrics) and qualitative comparisons (plotting the Pareto fronts
produced) with respect to three MOEASs that are representative of the state-of-the-
art in the are: the microGA for multiobjective optimization [3], the Pareto Archived



1l.gen=0
2. populations =1
3. while (gen < Gmax)

{
4. if(gen = Gmax/4 or Gmax/2 or 3« Gmax/4)
5. check_active_populations()
6 decision_variables_analysis()

(compute number of subdivisions)
7. construct_new_subpopulations()
(update populations)

}
8. for (i =1;i < populations;i+ +)
9. if (population i contributes

to the current Pareto front)

10. evolve_and_compete(i)
11. elitism()
12. reassign_resources()
13. gen—++

Figure 3: Pseudocode of our algorithm.

Evolution Strategy (PAES) [10] and the Nondominated Sorting Genetic Algorithm 11
(NSGA-II) [5]. For our comparative study, we implemented for four following metrics:

1. Two Set Coverage (SC): This metric was proposed in [22], and it can be termed
relative coverage comparison of two sets. Consider X', X" C X’ as two sets
of phenotype decision vectors. SC is defined as the mapping of the order pair
(X’,X") to the interval [0,1]:

[{a”"eX";Fa'eX’:a' = a"}|
X"

SC(X',x") £ (4)

If all points in X’ dominate or are equal to all points in X", then by definition
SC = 1. SC = 0 implies the opposite. In general, SC(X’,X") and SC(X",X")
both have to be considered due to set intersections not being empty. Of course,
this metric can be used for both spaces (objective function or decision variable
space), but in this case we applied it in objective function space. The advantage

of this metric is that it is easy to calculate and provides a relative comparison
based upon dominance numbers between generations or algorithms.

2. Spacing (SP): This metric was proposed by Schott [18] as a way of measuring
the range (distance) variance of neighboring vectors in the Pareto front known.
This metric is defined as:



SP= (5)

233 d-ar

where di = minj (3, |fl,— fh)), i, j = 1,...,n, m is the number of objectives, d
is the mean of all d;, and n is the number of vectors in the Pareto front found by
the algorithm being evaluated. A value of zero for this metric indicates all the
nondominated solutions found are equidistantly spaced.

3. Generational Distance (GD): The concept of generational distance was intro-
duced by Van Veldhuizen & Lamont [20, 21] as a way of estimating how far are
the elements in the Pareto front produced by our algorithm from those in the true
Pareto front of the problem. This metric is defined as:

/<n 2
GD = Zzldl (6)
n

where n is the number of nondominated vectors found by the algorithm being
analyzed and d; is the Euclidean distance (measured in objective space) between
each of these and the nearest member of the true Pareto front. It should be
clear that a value of GD = 0 indicates that all the elements generated are in the
true Pareto front of the problem. Therefore, any other value will indicate how
“far” we are from the global Pareto front of our problem. Similar metrics were
proposed by Rudolph [17], Schott [18], and Zitzler et al. [22].

4. Error Ratio (ER): This metric was proposed by Van Veldhuizen [19] to indicate
the percentage of solutions (from the nondominated vectors found so far) that
are not members of the true Pareto optimal set:

DL€
ER= 2=, (7)

where n is the number of vectors in the current set of nondominated vectors
available; e; = 0 if vector i is @ member of the Pareto optimal set, and e; =1
otherwise. It should then be clear that ER = 0 indicates an ideal behavior, since
it would mean that all the vectors generated by our MEA belong to the Pareto
optimal set of the problem. This metric addresses the third issue from the list
previously provided.

For each of the test functions shown below, we perform 30 runs per algorithm. The
Pareto fronts that we will show correspond to the median of the 30 runs with respect to
the ER metric.



6.1 Test Function 1

£ x —50<x<1.0
—24+x 1.0<x<3.0
4—X 3.0<x<4.0
—4+x 4.0<x<10.0

Minimize fo(x) = (x—5)% —5.0<x<10.0

Minimize f1(x)

The parameters used by our algorithm are (all the algorithms were implemented
using binary representation): popsizejnit = 20, popsizerec = 20, pc = 0.8 Yy pm =
1/codesize (codesize = length of the chromosome). The same parameters were adopted
for all the other algorithms, except for the population size, which was defined as 100
for the NSGA-11. The maximum number of generations was defined as to produce the
same number of total number of evaluations of the fitness function as our approach (in
this case, the total number of evaluations was 500). Table 2 shows the values of the
metrics for each of the MOEAS compared.
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Figure 4: Pareto fronts obtained by our approach (CO-MOEA), the microGA [3], PAES
[10] and the NSGA-I1I [5] for test function 1.
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Test function 1 (500 evaluations)
CO-MOEA | MicroGA | PAES | NSGA-II
best 0.0 0.0 0.0 0.0
median 0.01 0.04 0.02 0.02
ER worst 0.07 0.09 0.46 0.07
average 0.015 0.04 0.12 0.028
std. dev. 0.0158 0.024 0.1639 | 0.0183
best 0.0006 0.0008 | 0.0001 | 0.0006
median 0.0008 0.0025 | 0.0123 | 0.0009
GD | worst 0.004 0.0323 | 0.1369 | 0.0096
average 0.0001 0.0058 | 0.0381 | 0.0019
std. dev. 0.0006 0.0074 | 0.0471 | 0.0019
best 0.048 0.041 0.006 0.031
median 0.057 0.224 0.056 0.056
SP worst 0.136 0.549 3.669 0.146
average 0.066 0.239 0.429 0.061
std. dev. 0.020 0.1141 | 0.8178 | 0.0256
Test Function 1 - Two Set Coverage Metric SC
X SC(X,CO-MOEA) SC(X,microGA)
CO-MOEA 0.0 0.048
microGA 0.0 0.0
PAES 0.0 0.048
NSGA-II 0.01 0.048
X SC(X,PAES) SC(X,NSGA-II)
CO-MOEA 0.02 0.01
microGA 0.02 0.0
PAES 0.0 0.01
NSGA-II 0.02 0.0

Table 2: Comparison of results between our approach (denoted by CO-MOEA), the
microGA [3], PAES [10] and the NSGA-II [5] for test function 1.

6.2 Test Function 2

Minimize fl(Xl,Xz) = X1
Minimize fy(x1,x2) = (1.0+10.0xp)
NG X1
1.0- 1 - in(2md
(10— 1551005 10+ 10,0 "eT#)

0.0 <x1,X2< 1.0

(8)

In this example, our approach used: popsizejyir = 100, popsizerec = 30. Table 3
shows the values of the metrics for each of the MOEAS compared.
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Test Function 2 (6300 evaluations)
CO-MOEA | microGA | PAES | NSGA-II
best 0.46 0.42 0.02 0.0
median 0.61 0.77 0.07 0.02
ER | worst 0.68 0.98 0.15 0.08
average 0.60 0.75 0.07 0.03
std. dev. 0.0610 0.1453 | 0.0297 | 0.0211
best 0.0003 0.0008 | 0.0001 | 0.0007
median 0.001 0.0089 | 0.0006 | 0.0008
GD | worst 0.042 0.238 0.0659 | 0.0009
average 0.0049 0.0681 | 0.0066 | 0.0008
std. dev. 0.0085 0.0860 | 0.0163 | 0.0000
best 0.006 0.017 0.007 0.006
median 0.012 0.042 0.014 0.008
SP worst 0.379 1.539 0.624 0.086
average 0.039 0.356 0.054 0.010
std. dev. 0.0727 0.5070 | 0.1411 | 0.0143
Test Function 2 - Two Set Coverage Metric SC
X SC(X,CO-MOEA) SC(X,microGA)
CO-MOEA 0.0 0.54
microGA 0.14 0.0
PAES 0.37 0.63
NSGA-II 0.55 0.57
X SC(X,PAES) SC(X,NSGA-II)
CO-MOEA 0.01 0.01
microGA 0.0 0.0
PAES 0.0 0.0
NSGA-II 0.07 0.0

Table 3: Comparison of results between our approach (denoted by CO-MOEA), the
microGA [3], PAES [10] and the NSGA-II [5] for test function 2.

6.3 Test Function 3

_72\2 2

Minimize fi(xx) = 22, el 4
2 13

inimi (X1+X2—3)2

M f _ KX1irXo—9)"

inimize f2(x1,X2) e

(2x2—x1)?

o B

B 2
Minimize f3(x1,x2) = w
(a=X+1)*

l .
>7 +15;

—4.0<x1,Xx2<4.0
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Figure 5: Pareto fronts obtained by our approach (CO-MOEA), the microGA [3], PAES
[10] and the NSGA-I1 [5] for test function 2.

In this case, our approach used: popsizejnit = 20, popsizerec = 20. Table 4 shows
the values of the metrics for each of the MOEAs compared.

6.4 Test Function 4

Minimize fl(Xl,Xz) =X1
Minimize fy(x1,X2) = @
where:

Xp—0.2 Xo—0.6

g(xz) = 2.0 — e~ (Gow)? — 0.8e=(Foa )?
0.1<x1,x2<1.0

In this example, our approach used: popsizejnit = 100, popsizerec = 30. Table 5
shows the values of the metrics for each of the MOEASs compared.



Test Function 3 (1700 evaluations)
CO-MOEA | microGA | PAES | NSGA-II
best 0.02 0.04 0.0 0.03
median 0.08 0.1 0.03 0.06
ER | worst 0.12 0.16 0.22 0.12
average 0.07 0.10 0.05 0.06
std. dev. 0.0253 0.033 0.0566 | 0.0221
best 0.099 0.0706 | 0.0134 | 0.1992
median 0.147 0.1353 | 0.0802 | 0.2503
GD | worst 0.246 0.2175 | 0.2952 | 0.2982
average 0.150 0.1412 | 0.1009 | 0.2501
std. dev. 0.0306 0.0352 | 0.0708 | 0.0291
best 0.163 0.225 0.085 0.159
median 0.224 0.3 0.240 0.201
SP worst 1.3 0.767 1.156 0.313
average 0.247 0.367 0.323 0.208
std. dev. 0.2038 0.1576 | 0.2265 | 0.0373
Test Function 3 - Two Set Coverage Metric SC
X SC(X,CO-MOEA) SC(X,microGA)
CO-MOEA 0.0 0.17
microGA 0.02 0.0
PAES 0.01 0.09
NSGA-II 0.09 0.10
X SC(X,PAES) SC(X,NSGA-II)
CO-MOEA 0.11 0.09
microGA 0.03 0.05
PAES 0.0 0.06
NSGA-II 0.03 0.0

Table 4: Comparison of results between our approach (denoted by CO-MOEA), the
microGA [3], PAES [10] and the NSGA-II [5] for test function 3.

7 Discussion of Results

Based on the values of the ER, GD and SC metrics, the performance of all the algo-
rithms compared seems good in test function 1. However, when we look at Figure 4,
it is clear that both the microGA and PAES had serious difficulties to converge to the
true Pareto front of this problem. The bad distribution of points obtained by the mi-
croGA and PAES is reflected by their values obtained for the SP metric. It is also worth
mentioning that despite the fact the the NSGA-II generated a front with some holes,
the values of its SP metric were similar to our approach. Graphically, our approach
obtained the best front for test function 1, but the NSGA-11 obtained a very similar one.

In test function 2, we can see that the NSGA-II had the best overall performance
(both with respect to all the metrics and with respect to the graphical results shown in
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Figure 6: Pareto fronts obtained by our approach (CO-MOEA), the microGA [3], PAES
[10] and the NSGA-II [5] for test function 3.

Figure 5). It is also clear that the microGA presented the worst performance for this
test function. Based on the values of the ER and SC metrics, we can conclude that our
approach had problems to reach the true Pareto front of this problem. Note however,
that the values of GD and SP indicate that our approach converged very closely to the
true Pareto front and that it achieved a good distribution of solutions. PAES had a good
performance regarding closeness to the true Pareto front, but its performance was not
so good regarding uniform distribution of solutions (this is corroborated graphically as
well).

The performance of the 4 algorithms compared in test function 3 is very similar to
that obtained in test function 1. They all converged to the true Pareto front, but their
distribution of results was not as uniform as desirable (see the values of the SP metric
from Table 4 and Figure 6). Nevertheless, our approach and the microGA produced
the best Pareto fronts (both in terms of closeness to the true Pareto front and in terms
of distribution of solutions) for this problem (see Figure 6).

Based on the values of the ER and SC metrics, the microGA and the NSGA-II had
the best performance in test function 4. However, when we analyze the graphical re-
sults obtained for this problem (see Figure 7), the Pareto front obtained by our approach

15



Test Function 4 (9600 evaluations)

CO-MOEA | microGA | PAES | NSGA-II
best 0.16 0.05 0.0 0.0
median 0.28 0.15 0.24 0.01
ER worst 1.0 1.0 1.0 1.0
average 0.40 0.19 0.44 0.243
std. dev. 0.277 0.180 0.4271 | 0.4251
best 0.01 0.0045 | 0.0027 | 0.0085
median 0.075 0.0349 | 0.0517 | 0.0091
GD | worst 0.18 0.154 0.2257 | 0.2028
average 0.080 0.042 0.0771 | 0.0314
std. dev. 0.0361 0.0415 | 0.0717 | 0.0562
best 0.041 0.033 0.029 0.026
median 0.193 0.071 0.087 0.033
SP worst 15 0.906 0.504 0.056
average 0.274 0.220 0.110 0.034
std. dev. 0.2186 0.2328 | 0.1065 | 0.0066
Test Function 4 - Two Set Coverage Metric SC
X SC(X,CO-MOEA) SC(X,microGA)
CO-MOEA 0.0 0.09
microGA 0.24 0.0
PAES 0.06 0.04
NSGA-II 0.35 0.12
X SC(X,PAES) SC(X,NSGA-II)
CO-MOEA 0.01 0.01
microGA 0.16 0.02
PAES 0.0 0.01
NSGA-II 0.24 0.0
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Table 5: Comparison of results between our approach (denoted by CO-MOEA), the
microGA [3], PAES [10] and the NSGA-II [5] for test function 4.

looks quite similar to the fronts obtained by both the microGA and the NSGA-I1I. Also
note the poor distribution of solutions obtained by PAES. An interesting aspect of this
test function is that it has a local attractor. In the experiments performed, all the ap-
proaches converged at least once to this false attractor (this explains that the worst value
of the ER metric is 1.0 for all of them). This had an obvious impact on the standard
deviation of the ER metric for all the algorithms compared. It is also worth noticing
that the microGA had the lowest standard deviation for the ER metric because it only
converged once to the false attractor of this test function.
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Figure 7: Pareto fronts obtained by our approach (CO-MOEA), the microGA [3], PAES
[10] and the NSGA-I1 [5] for test function 4.

8 Conclusions and Future Work

We have proposed a coevolutionary multi-objective evolutionary algorithm whose main
idea is to divide the search space into different subregions, as to detect the most “promis-
ing” of such regions, focusing the search on them. The proposed algorithm performs a
relatively simple analysis to detect what decision variables are the most important and,
based on such analysis, it divides the search space.

The proposed approach was validated using several test functions taken from the
specialized literature. Our comparative study showed that the proposed approach is
competitive with respect three other algorithms that are representative of the state-of-
the-art in evolutionary multiobjective optimization.

Currently, the main drawback of our proposed approach is the number of popu-
lations that it could potentially need to handle. Thus, as part of our future work, we
are considering a redesign of the algorithm in which such multiple populations are no
longer needed. Additionally, we are considering the use of a clustering algorithm to
determine the most critical decision variables of the problem. We believe that the use
of clustering techniques will provide more accurate informaiton regarding the regions
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of the search space that are worth exploring in more detail.
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