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To be covered today
• Bayes decision theory
• Multivariate Normal Distribution
• Discriminant functions for the normal density
• Error Bounds

Materials: To read relevant portions from
• Duda and Hart, Chapter 2
• Mitchell, Chapter 6
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Bayes Rule
• Consider a two category classification into two

classes c1 and c2.
• Let P (ci) and p(xxx|ci) denote the prior

probabilities and the class conditional
probabilities respectively.

• Bayes Rule

P (ci|xxx) =
p(xxx|ci)P (ci)

p(xxx)
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Bayes Rule (contd.)
• Naturally if we have an example xxx such that

P (c1|xxx) > P (c2|xxx),

we would be inclined to assign class c1 to xxx.
• Probability of error:

P (error|xxx) = P (c1|xxx) if we decide c2

P (c2|xxx) if we decide c1

• Clearly by deciding c1 if P (c1|xxx) > P (c2|xxx) and
c2 otherwise, we can minimize the probability of
error.

Pattern Recognition and Machine Learning – p.4/18



Multicategory Case
• Suppose there are k classes c1, c2, . . . ck are

present thus for each of the k classes one can
calculate Pi = P (ci|xxx)

• Decide cl as the class of xxx if

pl = max pi

• Out of many ways to represent a classifier, one
possible way is through discriminant functions.

• Thus for the k classes we can calculate k
discriminant functions gi(xxx), i = 1, 2, . . . , k.

• Decide the class label cl to xxx if

gl(xxx) > gi(xxx),∀i 6= l
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Discriminant Functions
• Discriminant functions are not unique
• We can generally replace a discriminant function

g(xxx) by f(g(xxx)), where f(.) is a monotone
increasing function.

• Thus for the Bayesian minimum error rate
classification we can have the following
equivalent discriminant functions:

gi(xxx) =
p(xxx|ci)P (ci)

p(xxx)

= p(xxx|ci)P (ci)

= ln(p(xxx|ci)) + ln P (ci)
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Discriminant Funcs. (Contd.)
• Note, in the two category case, it is conventional

to have a single discriminant function as we had
in the case of logistic regression.

• Instead of using two different discriminant
functions g1(xxx) and g2(xxx), it is more common to
define a single function

g(xxx) = g1(xxx) − g2(xxx)

• Using this discriminant function we decide class
c1 if

g(xxx) > 0,

and decide class c2 otherwise.
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The Normal Density
• Univariate normal density

p(x) =
1√
2πσ

exp

[

−1

2

(

x − µ

σ

)2
]

• The expected value of x for this density is

µ = E [x] =

∫ ∞

−∞
xp(x)dx.

• The expected squared deviation or variance is

σ2 = E [(x − µ)2] =

∫ ∞

−∞
(x − µ)2p(x)dx.
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The Normal Density (contd.)
• Multivariate normal density

p(xxx) =
1

(2π)d/2|Σ|1/2
exp

[

−1

2
(xxx − µµµ)T Σ−1(xxx −µµµ)

]

,

where,
• xxx ∈ Rd

• µµµ ∈ Rd is the mean vector.
• Σ is the d × d covariance matrix.

• The above equation is often abbreviated as

p(xxx) ∼ N(µµµ, Σ)
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The Normal Density (contd.)
• Formally we have

µµµ = E [xxx] =

∫

xxxp(xxx)dxxx

and

Σ = E [(xxx−µµµ)(xxx−µµµ)T ] =

∫

(xxx−µµµ)(xxx−µµµ)Tp(xxx)dxxx

• Note: The expected value of a matrix or vector is
found by taking the expected values of its
components.

Pattern Recognition and Machine Learning – p.10/18



The Normal Density (contd.)
• Properties of Σ

• The covariance matrix Σ is always symmetric
and positive semidefinite. For our cases we
shall consider Σ to be positive definite and
thus |Σ| > 0.

• The diagonal entries σii are the variances of
the respective xi-s and the off-diagonal
elements are the co-variances of xi and xj .

• If xi and xj are statistically independent, then
σij = 0.

• If all the off diagonal entries of Σ are 0 then
p(xxx) reduces to the product of the univariate
densities of the components of xxx.
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DFs for Normal Density
• We saw that minimum error rate classification

can be achieved by use of discriminant functions
of the form

gi(xxx) = ln p(xxx|ci) + ln P (ci)

• In case p(xxx|ci) ∼ N(µµµi, Σi), the discriminant
functions can be easily evaluated. The form of
the discriminant function then becomes:

gi(xxx) = −1

2
(xxx − µµµi)

TΣ−1
i (xxx − µµµi) −

d

2
ln 2π −

1

2
ln |Σi| + ln P (ci)
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DFs for Normal Density(cont.)
• We shall investigate some special cases

• Case 1: Σi = σ2I yields linear boundary
• Case 2: Σi = Σ yields linear boundary
• Case 3: Arbitrary Σi yields hyperquadrics
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Error Bounds
• Consider a two class classification scenario.
• Suppose a classifier has partitioned the feature

space into two regions R1 and R2 corresponding
to the two classes c1 and c2.

• In this scenario, the probability of error would be

P (error)

= P (xxx ∈ R2, c1) + P (xxx ∈ R1, c2)

= P (xxx ∈ R2|c1)P (c1) + P (xxx ∈ R1|c2)P (c2)

=

∫

R2

p(xxx|c1)P (c1)dxxx +

∫

R1

p(xxx|c2)P (c2)dxxx
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Error Bounds (contd.)
• The probability of error can be written as

P (error) =

∫

P (error,xxx)dxxx

=

∫

P (error|xxx)p(xxx)dxxx

• Now, P (error|xxx) = min[P (c1|xxx), P (c2|xxx)]

• Also we have

min[a, b] ≤ aβb1−β, for a, b ≥ 0 and 0 ≤ β ≤ 1
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Error Bounds (contd.)
• Combining we have

P (error) ≤ P β(c1)P
1−β(c2)

∫

pβ(xxx|c1)p
1−β(xxx|c2)dxxx

• If the conditional probabilities are normal, then
we can compute the integral analytically which
gives

∫

pβ(xxx|c1)p
1−β(xxx|c2)dxxx = e−k(β)
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Error Bounds (contd.)

k(β) =
β(1 − β)

2
(µµµ2 −µµµ1)

T [βΣ1 + (1 − β)Σ2]
−1(µµµ2 −µµµ1)

+
1

2
ln

|βΣ1 + (1 − β)Σ2|
|Σ1|β|Σ2|(1−β)

.

• The minimum value of e−k(β) gives the Chernoff
Bound on the error probability.

• A less sharper bound called the Bhattacharyya
Bound is obtained by substituting β = 0.5
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Issues to be addressed in next
class

• In real life problems, we generally do not have
access to the probability values.

• How to estimate the probabilities from data?
• Refer Chapter 3 of Duda and Hart and Chapter 6

of Mitchell
• We shall discuss such techniques in the next class
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