Bayesian Learning

Debrup Chakraborty

To be covered today

- Bayes decision theory
- Multivariate Normal Distribution
- Discriminant functions for the normal density
- Error Bounds

Materials: To read relevant portions from

- Duda and Hart, Chapter 2
- Mitchell, Chapter 6

Bayes Rule

- Consider a two category classification into two classes c_1 and c_2 .
- Let $P(c_i)$ and $p(\boldsymbol{x}|c_i)$ denote the prior probabilities and the class conditional probabilities respectively.
- Bayes Rule

$$P(c_i|\boldsymbol{x}) = \frac{p(\boldsymbol{x}|c_i)P(c_i)}{p(\boldsymbol{x})}$$

Bayes Rule (contd.)

• Naturally if we have an example *x* such that

$$P(c_1|\boldsymbol{x}) > P(c_2|\boldsymbol{x}),$$

we would be inclined to assign class c_1 to \boldsymbol{x} .

• Probability of error:

$$P(error|\mathbf{x}) = P(c_1|\mathbf{x})$$
 if we decide c_2
 $P(c_2|\mathbf{x})$ if we decide c_1

• Clearly by deciding c_1 if $P(c_1|\mathbf{x}) > P(c_2|\mathbf{x})$ and c_2 otherwise, we can minimize the probability of error.

Multicategory Case

- Suppose there are k classes $c_1, c_2, \ldots c_k$ are present thus for each of the k classes one can calculate $P_i = P(c_i | \boldsymbol{x})$
- Decide c_l as the class of \boldsymbol{x} if

$$p_l = \max p_i$$

- Out of many ways to represent a classifier, one possible way is through **discriminant functions**.
- Thus for the k classes we can calculate k discriminant functions $g_i(\mathbf{x})$, i = 1, 2, ..., k.
- Decide the class label c_l to \boldsymbol{x} if

$$g_l(\boldsymbol{x}) > g_i(\boldsymbol{x}), \forall i \neq l$$

Discriminant Functions

- Discriminant functions are not unique
- We can generally replace a discriminant function $g(\mathbf{x})$ by $f(g(\mathbf{x}))$, where f(.) is a monotone increasing function.
- Thus for the Bayesian minimum error rate classification we can have the following equivalent discriminant functions:

$$g_i(\mathbf{x}) = \frac{p(\mathbf{x}|c_i)P(c_i)}{p(\mathbf{x})}$$

$$= p(\mathbf{x}|c_i)P(c_i)$$

$$= \ln(p(\mathbf{x}|c_i)) + \ln P(c_i)$$

Discriminant Funcs. (Contd.)

- Note, in the two category case, it is conventional to have a single discriminant function as we had in the case of logistic regression.
- Instead of using two different discriminant functions $g_1(\mathbf{x})$ and $g_2(\mathbf{x})$, it is more common to define a single function

$$g(\boldsymbol{x}) = g_1(\boldsymbol{x}) - g_2(\boldsymbol{x})$$

• Using this discriminant function we decide class c_1 if

$$g(\boldsymbol{x}) > 0,$$

and decide class c_2 otherwise.

The Normal Density

Univariate normal density

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} exp \left[-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right]$$

• The expected value of x for this density is

$$\mu = \mathcal{E}[x] = \int_{-\infty}^{\infty} x p(x) dx.$$

• The expected squared deviation or variance is

$$\sigma^2 = \mathcal{E}[(x - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 p(x) dx.$$

The Normal Density (contd.)

Multivariate normal density

$$p(\boldsymbol{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right],$$

where,

- $oldsymbol{x} \in \mathcal{R}^d$
- $\mu \in \mathbb{R}^d$ is the mean vector.
- Σ is the $d \times d$ covariance matrix.
- The above equation is often abbreviated as

$$p(\boldsymbol{x}) \sim N(\boldsymbol{\mu}, \Sigma)$$

The Normal Density (contd.)

Formally we have

$$\mu = \mathcal{E}[x] = \int x p(x) dx$$

and

$$\Sigma = \mathcal{E}[(\boldsymbol{x} - \boldsymbol{\mu})(\boldsymbol{x} - \boldsymbol{\mu})^T] = \int (\boldsymbol{x} - \boldsymbol{\mu})(\boldsymbol{x} - \boldsymbol{\mu})^T p(\boldsymbol{x}) d\boldsymbol{x}$$

• **Note:** The expected value of a matrix or vector is found by taking the expected values of its components.

The Normal Density (contd.)

- Properties of Σ
 - The covariance matrix Σ is always symmetric and positive semidefinite. For our cases we shall consider Σ to be positive definite and thus $|\Sigma| > 0$.
 - The diagonal entries σ_{ii} are the variances of the respective x_i -s and the off-diagonal elements are the co-variances of x_i and x_j .
 - If x_i and x_j are statistically independent, then $\sigma_{ij} = 0$.
 - If all the off diagonal entries of Σ are 0 then p(x) reduces to the product of the univariate densities of the components of x.

DFs for Normal Density

 We saw that minimum error rate classification can be achieved by use of discriminant functions of the form

$$g_i(\mathbf{x}) = \ln p(\mathbf{x}|c_i) + \ln P(c_i)$$

• In case $p(\boldsymbol{x}|c_i) \sim N(\boldsymbol{\mu}_i, \Sigma_i)$, the discriminant functions can be easily evaluated. The form of the discriminant function then becomes:

$$g_i(\boldsymbol{x}) = -\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_i)^T \Sigma_i^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(c_i)$$

DFs for Normal Density(cont.)

- We shall investigate some special cases
 - Case 1: $\Sigma_i = \sigma^2 I$ yields linear boundary
 - Case 2: $\Sigma_i = \Sigma$ yields linear boundary
 - Case 3: Arbitrary Σ_i yields hyperquadrics

Error Bounds

- Consider a two class classification scenario.
- Suppose a classifier has partitioned the feature space into two regions R_1 and R_2 corresponding to the two classes c_1 and c_2 .
- In this scenario, the probability of error would be

$$P(error)$$
= $P(\mathbf{x} \in R_2, c_1) + P(\mathbf{x} \in R_1, c_2)$
= $P(\mathbf{x} \in R_2 | c_1) P(c_1) + P(\mathbf{x} \in R_1 | c_2) P(c_2)$
= $\int_{R_2} p(\mathbf{x} | c_1) P(c_1) d\mathbf{x} + \int_{R_1} p(\mathbf{x} | c_2) P(c_2) d\mathbf{x}$

Error Bounds (contd.)

• The probability of error can be written as

$$P(error) = \int P(error, \mathbf{x}) d\mathbf{x}$$
$$= \int P(error|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

- Now, $P(error|\boldsymbol{x}) = \min[P(c_1|\boldsymbol{x}), P(c_2|\boldsymbol{x})]$
- Also we have

$$\min[a, b] \le a^{\beta} b^{1-\beta}$$
, for $a, b \ge 0$ and $0 \le \beta \le 1$

Error Bounds (contd.)

Combining we have

$$P(error) \le P^{\beta}(c_1)P^{1-\beta}(c_2) \int p^{\beta}(\mathbf{x}|c_1)p^{1-\beta}(\mathbf{x}|c_2)$$

• If the conditional probabilities are normal, then we can compute the integral analytically which gives

$$\int p^{\beta}(\boldsymbol{x}|c_1)p^{1-\beta}(\boldsymbol{x}|c_2)d\boldsymbol{x} = e^{-k(\beta)}$$

Error Bounds (contd.)

$$k(\beta) = \frac{\beta(1-\beta)}{2} (\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1)^T [\beta \Sigma_1 + (1-\beta)\Sigma_2]^{-1} (\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1) + \frac{1}{2} \ln \frac{|\beta \Sigma_1 + (1-\beta)\Sigma_2|}{|\Sigma_1|^{\beta} |\Sigma_2|^{(1-\beta)}}.$$

- The minimum value of $e^{-k(\beta)}$ gives the **Chernoff Bound** on the error probability.
- A less sharper bound called the **Bhattacharyya Bound** is obtained by substituting $\beta = 0.5$

Issues to be addressed in next class

- In real life problems, we generally do not have access to the probability values.
- How to estimate the probabilities from data?
- Refer Chapter 3 of Duda and Hart and Chapter 6 of Mitchell
- We shall discuss such techniques in the next class