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To be covered today
• Estimation of the probabilities
• Naive Bayes Classifier

Materials

• Chapter 3 of Duda
• Chapter 6 of Mitchell
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Bayes Desicion Theory
• In the last class we saw that with Bayes Decision

theory we can make optimal classifiers
• But Bayes theorem needs the knowledge of the

prior probabilities and the class conditional
probabilities.

• In practice obtaining those probabilities are quite
difficult.

• Today we shall learn about some techniques to
estimate the probabilities from data

• Also we shall see how Bayes theory can be used
in case of discrete features.
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Parameter Estimation
• To apply Bayes theory we need two probabilities.

The prior probabilities and the class conditional
probabilities.

• Estimating the prior probabilities are quite easy,
but obtaining an estimate for the class conditional
probabilities from the training data is difficult.
This is because in most classification problems
the amount of available data is always small and
the problems are generally posed in very high
dimensions.
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Parameter Estimation (Contd.)
• However if by some means we can parametrize

the class conditional probabilities, we can
estimate the parameters and thus have an estimate
of the probabilities.

• Like if we know, that the class conditional
probabilities are normals then we can estimate
the parameters for the normal density.

• Two schools of thought for parameter estimation
• Maximum Likelihood Estimation
• Bayesian Parameter Estimation
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Parameter Estimation: MLE
• We assume we have a training set T which

represnts k classes.
• Assume

T =
k

⋃

i=1

Ti

The data points from the ith class are in Ti.
• Also we assume that the data points in Ti are

independent of that in Tj , where i 6= j.
• Assume that points in each Ti has been

independently and identically sampled from some
normal distribution with unknown parameters.
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Parameter Estimation: MLE
• For simplicity we assume the class conditional

probabilities as univariate normals and derive the
MLE. But a straight forward gereralization is
possible (with some extra computations) to the
multivariate case.

• Consider the set Ti. With the points in Ti we wish
to compute the class conditional density p(x|ci).

• Also it is assumed that the points in Ti are IID
and p(x|ci) ∼ N(µ, σ).

• We compute the following probability:

p(Ti|θθθ)
• This is the likelihood of the data, and we need to
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MLE (contd.)
• As points in Ti are IID thus we can say that

p(Ti|θθθ) =
n

∏

i=1

p(xi|θθθ)

=
n

∏

i=1

1√
2πθ2

exp

[

−1

2

(

x − θ1

θ2

)2
]
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MLE (contd.)
• As usual we shall maximize the log-likelihood

instead of the likelihood. Thus the function to
maximize is:

l(θθθ) =
n

∑

i=1

[

ln

(

1√
2πθ2

)

− 1

2

(

x − θ1

θ2

)2
]

Pattern Recog. and Machine Learning – p.9/21



MLE (contd.)
• Maximizing l(θθθ), we get the MLE estimates of

the mean and the variance as

µ̂ =
1

n

n
∑

i=1

xi

σ̂ =
1

n

n
∑

i=1

(xi − µ̂)2
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MLE (contd.)
• In the multivariate case the estimates would be

µ̂µµ =
1

n

n
∑

i=1

xxxi

Σ̂ =
1

n

n
∑

i=1

(xxxi − µ̂µµ)(xxxi − µ̂µµ)T
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Estimating the Prior Probabili-
ties

• As mentioned earlier, estimating the prior
probabilities are relatively easy.

• An intuitive estimates for the priors can be as

P (ci) =
|Ti|
|T |
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Bayesian Estimation
• There is a second school of thought called the

Bayesian Paradigm for estimating parameters.
• Generally the estimates obtained by using the

Bayesian techniques are not much different from
that obtained through MLE, but it is a different
way of looking into things.

• In the bayesian paradigm, the parameter values
are not assumed to be fixed as in case of MLE.

• Here it is assumed that the parameters also have a
certain prior distribution, and by looking at the
data their distribution gets modified.
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Naive Bayes Classifier
• A classifier for data with binary features
• Uses many unrealistic assumptions
• But still performs very good for certain

classification tasks
• Document Categorization
• Spam filtering etc.
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Naive Bayes Classifier (contd.)
• Let us consider the case of email classification

into spam and non spam.
• The features vectors in this case represents

whether a word is present in an email or not.
• According to Bayes theory

P (ci|xxx) =
P (xxx|ci)P (ci)

P (xxx)
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Naive Bayes Classifier (contd.)
• We make an assumption that the individual words

in a document/email are independent (which is
ofcourse not true).

• But this simplifies things and thus we can write
the class conditional probability as

P (xxx|ci) =

p
∏

j=1

P (xj|ci)

• And compute the posterior as

P (ci|xxx) = P (ci)

p
∏

j=1

P (xj|ci)
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Computing the probabilities
Let us decide on the following notations

• n(xj, ci) = No of e-mails in class ci containing
the word xj.

• N(ci) = No of emails in class ci.
• NT = Total no of emails.

Thus,

P (xj|ci) =
n(xj, ci)

N(ci)

P (ci) =
N(ci)

NT
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Computing the probabilities
• This computation of probabilities may sometimes

lead to problems.
• A better estimate of the probability:

P (xj|ci) =
ni,j + 1

ni + |Vocabulary|

P (ci) =
ni

N
,

• N = Total number of words in all emails
• ni = Number of words in emails in class ci

• ni,j = Number of times the word xj occurs in
emails with class ci

• |Vocabulary| = Number of words in the
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MDL Principle
Occam’s razor: prefer the shortest hypothesis

MDL: prefer the hypothesis h that minimizes

hMDL = arg min
h∈H

LC1
(h) + LC2

(D|h)

where LC(x) is the description length of x under
encoding C
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MDL Principle

hMAP = arg max
h∈H

P (D|h)P (h)

= arg max
h∈H

log2 P (D|h) + log2 P (h)

= arg min
h∈H

− log2 P (D|h) − log2 P (h)

Interesting fact from information theory:
The optimal (shortest expected coding
length) code for an event with probability p
is − log2 p bits.
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MDL Principle
So interpret :

• − log2 P (h) is length of h under optimal code
• − log2 P (D|h) is length of D given h under

optimal code
→ prefer the hypothesis that minimizes

length(h) + length(misclassifications)
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