Design and Analysis of Algorithms 2008 (Home work 2)

September 23, 2008

- Due on Thursday, October 2, before 8 a.m.
- You have a total of 7 late days in the whole term.
- Please give precise arguments for all statements that you write.
- Please do not hesitate to contact me if you do not understand the problems.
- Each problem in this homework bear 10 points.
- Collaboration is encouraged, but you should not copy solutions, but write down your own answers. If copying is detected that may immediately lead to a grade less than 7. (This would be followed strictly)
- Credits would be given to partial solutions also.
- The answers should be typed or written clearly and a hard copy is to be submitted.
- 1. Here is a list of functions in one variable, n.

$$\frac{17n^5}{100}$$
, 8, $\frac{n^2}{n+1}$, $2^{6 \lg n}$, $n^2 \lg n$, $n^2 + 27n$, $2^n + n$

Place these functions in a list such that f(n) is any function in the list and g(n) is in right of it then f(n) = O(g(n)). You do not need to prove your answer.

- 2. Prove or disprove the following:
 - (a) If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).
 - (b) $(n+a)^b = \Theta(n^b)$, for any real constants a and b, where b > 0.
- 3. Solve the following recurrence relations:

(a)
$$f(1) = 1$$
, $f(2) = 1$, $f(n) = f(n-1) + f(n-2)$ for $n > 2$.

(b)
$$f(1) = f(2) = 1$$
, and $f(n) = 5f(n-1) - 6f(n-2)$ for $n \ge 3$.

- 4. Find the number of n digit words generated from the alphabet $\{0, 1, 2, 3\}$ in each of which the number of zeros is even.
- 5. Give asymptotic tight bounds for T(n) for the following cases. Assume that T(n) is a constant if $n \leq 2$.
 - (a) $T(n) = 2T(n/2) + n^3$.
 - (b) $T(n) = 7T(n/3) + n^2$.
 - (c) $T(n) = 3T(n/2) + n \lg n$.