Design and Analysis of Algorithms 2008
(Home work 3)

October 7, 2008

e Due on Thursday, October 23, before 8 a.m.
e You have a total of 7 late days in the whole term.
e Please give precise arguments for all statements that you write.

e Please do not hesitate to contact me if you do not understand the prob-
lems.

e Marks distribution: Problem 1: 10, Prob. 2: 40, Prob 3: 20 and Prob 4:
10.

e (Collaboration is encouraged, but you should not copy solutions, but write
down your own answers. You should not use any part of code that is not
developed by you except the sample codes that I provide. If copying is
detected that may immediately lead to a grade less than 7. (This would
be followed strictly)

e Credits would be given to partial solutions also.

e The answers to questions 1, 3 and 4 should be typed or written clearly
and a hard copy is to be submitted. The codes of question 2 should be
sent to me by email. Please zip or tar all the files into a single archive
before mailing me.

1. Write a non recursive version of the procedure Heapify.

2. Implementations (In each of the following the codes should take input from a file and
write the output in another file. You should write your codes in C preferably in linux)

(a) Implement Heapsort using recursive version of Heapify. Implement the the pro-
cedures parent, left-child and right-child as functions.

(b) Implement Heapsort using the non-recursive version of Heapify as developed in
Problem 1. Implement the the procedures parent, left-child and right-child using
mMacros.

(c¢) Implement Quicksort with a randomized pivot.

(d) Implement Quicksort using the gsort function provided in stdlib.h.
3. Time comparisons

(a) Run the four programs of problem 2 on n randomly generated points where n =
100, 200, 300, . .., 10000. Measure the running time of all the programs and show
their variations with n in a single plot.

To measure time you may use the following code. The variable timeRequired in
the following code will give the number of CPU cycles utilized by your sorting
procedure. I shall put a sample code soon in the web-page.

typedef unsigned long long uint64;
uint64 read_clock_tick()
{ unsigned int h,1;

asm__ ("xor %heax,%heax \t \n"
"cpuid \t \n"
" rdtsc \t \n"
"mov %%edx, %0 \t \n"
"mov %%eax, %1 \t \n"

:"=m" (h),
"=m" (1)
)5
return((uint64)h<<32) + 1;
}
main()

{ uint64 start,end;
start = read_clock_tick();

/* Your sorting procedure should be here,
you should not include any input/output
operations in this areax*/

end =read_clock_tick();

timeRequired = end-start;

printf ("The time required for sorting
= %1d CPU cycles", timeRequired);

4. Suppose A = [r1,xs,...,2,] is an array of n integers, and let x be an integer. Design
an algorithm to find if the sum of any two integers in A is equal to z. Full credit would
be given if you can design an algorithm whose running time is O(nlgn).

