
Design and Analysis of Algorithms 2011
(Home work 2)

September 20, 2011

• All problems except problem 15 is due on Monday, October 3, before 10
a.m. See problem 15 for submission instructions of that problem.

• Late home works will not be accepted.

• Please give precise arguments for all statements that you write.

• Please do not hesitate to contact me if you do not understand the prob-
lems.

• Collaboration is discouraged, but not prohibited. It is recommended that
you try to solve the problems on your own. You can discuss the questions
with your colleagues but you should not copy solutions. Always write
down your own answers. If copying is detected that may immediately
lead to a grade less than 7. (This would be followed strictly)

• Credits would be given to partial solutions also.

• When you write an algorithm, you should briefly discuss state and prove
the running tthe main idea of your algorithm, then write a pseudo code,
argue about its correctness and running time of your algorithm.

• The answers (except for problem 15) should be typed or written clearly
and a hard copy is to be submitted.

Playing With Numbers: [5× 10 = 50 points]

1. If gcd(m,n) = 1, given a and b, prove that there exists an x such that x ≡ a mod m
and x ≡ b mod n.

2. Let n be a positive composite integer. Show that there exist a prime p dividing n such
that p ≤

√
n.

3. Show that for any integers a and b with d = gcd(a, b) ̸= 0, we have gcd(a
d
, b
d
) = 1.

1



4. Let a, b, n1, n2 ∈ Z with n1 > 0 and n2|n1. Show that if a ≡ b mod n1 then a ≡
b mod n2.

5. Let a, b, n ∈ Z, such that n > 0 and a ≡ b mod n. Show that gcd(a, n) = gcd(b, n).

6. Find d = gcd(1024, 888) and find x, y ∈ Z such that d = 1024x+ 888y.

7. If Fn be the n-th Fibonacci number, show that for any n ≥ 1, gcd(Fn+1, Fn) = 1.

8. What is 22
2009

(mod3)?

9. Is the difference of 530,000 and 6123,456 a multiple of 31?

10. Calculate 2125(mod127).

Algorithms with numbers [15× 4 = 60 points]

11. In this exercise we shall learn to compute square roots in Z∗
p where p is a prime, such

that p ≡ 3(mod4). We say that x ∈ Z∗
p has square root, if there exist a y ∈ Z∗

p such
that x ≡ y2 (mod p), and y is called the square root of x.

(a) Find the elements in Z∗
7 which has a square root. What are their square roots?

(b) Show that p+1
4

is an integer.

(c) If a ∈ Z∗
p and a has a square root. Then show that a

p+1
4 is a square root of a.

(d) Suppose p is a prime such that p ≡ 3(mod4). Write an algorithm which takes
as input an a ∈ Z∗

p and returns the two square roots of a if the square roots
exists, otherwise returns ”no square roots exist”. What is the running time of
your algorithm.

12. Assuming that you know ϕ(N) for a given modulus N , devise an algorithm to compute
a−1(modN) using the modular exponentiation algorithm. State the running time of
your algorithm.

13. Give a polynomial time algorithm for computing ab
c
(modp) given a, b, c and a prime

p.

14. (a) Suppose we have available a black box B(.), which when given as input an n bit
integer a returns a2 in O(n) time. Use this black-box B(.) to multiply two n bit num-
bers a and b in O(n) time.

(b) Prof. Calculus claims that there is an algorithm for squaring integers which is
asymptotically faster than multiplying two integers. Argue that this claim of Prof.
Calculus is false.

2



Programming Exercise [75 points]

15. Implement in C the Miller-Rabin test. You should take into account the following for
your implementation:

• Your implementation should take as input arbitrary long integers and give as
output either PRIME or COMPOSITE depending on whether the input is a
prime or a composite.

• Implementing Miller-Rabin would require certain basic operations on integers,
like modular multiplication, exponentiation, comparing two integers etc. Your
program should be modular, and you should write separate functions for each of
these operations so that you can re-use the code later if required.

• You should not use any multi-precision libraries for this implementation.

Important: The due date for this exercise is October 21 midnight. You should mail
your code along with relevant instructions to compile and run your code to
debrup.otro@gmail.com.

3


