
Design and Analysis of Algorithms 2013
(Home work 3)

October 14, 2013

• Due on, October 30, before 10 a.m.

• Late home works will not be accepted.

• Please give precise arguments for all statements that you write.

• Please do not hesitate to contact me if you do not understand the prob-
lems.

• Collaboration is discouraged, but not prohibited. It is recommended that
you try to solve the problems on your own. You can discuss the questions
with your colleagues but you should not copy solutions. Always write
down your own answers. If copying is detected that may immediately
lead to a grade less than 7. (This would be followed strictly)

• Credits would be given to partial solutions also.

• When you write an algorithm, you should briefly discuss the main idea
of your algorithm, then write a pseudo code, argue about its correctness
and state and prove the running time of your algorithm.

• The answers should be typed or written clearly and a hard copy is to be
submitted.

1. [10 points] Give asymptotic tight bounds for T (n) for the following cases. Assume
that T (n) is a constant if n ≤ 2.

(a) T (n) = 2T (n/2) + n3.

(b) T (n) = 7T (n/3) + n2.

(c) T (n) = 3T (n/2) + n lg n.

(d) T (n) = 2T (n− 1) + 1.

2. [20 points] Give asymptotic tight bounds for M(n) for the following cases (i.e., find
f(n) such that M(n) = Θ(f(n))). Justify your answer, i.e., you should show by the
substitution method, why you think your bound is correct.

1



(a) M(n) = M(n/4) +M(n/2) + n2.

(b) M(n) = 2M(n/2) + n lg n.

3. [10 points]You are given an array A with n distinct elements. You are also told that
the sequence of values A[1], A[2], . . . , A[n] is unimodal: For some index p between 1 and
n, the values in the array entries increase up to a position p in A and then decrease the
remainder of the way until position n. Give a O(lg n) algorithm to find the maximum
of the array.

4. [10 points]Given an array A, we call a pair (i, j) as a significant inversion if i < j
and A[i] > 2A[j]. Give a O(n lg n) algorithm to count the significant inversions in A.

5. [10 points] Give a divide and conquer algorithm to multiply two polynomials of degree
n− 1 which run in time Θ(nlg 3).

6. [10 points] Given two sorted arrays A and B such that all elements in A and B are
distinct and each contain n elements. Give an O(lg n) algorithm to find the median of
all the elements present in A and B.

7. [10 points] Given an array A with n elements we would like to know whether there is
an element x in A which occurs more than n/2 times. Give an O(n) algorithm to do
this.

8. [10 points] Given two arrays A and B of size n and a number c, design an algorithm
which decides whether there exists i, j ∈ {1, 2, . . . , n}, such that A[i] +B[j] = c. Your
algorithm should run in O(n log n) time.

9. [20 points]Consider the following sorting algorithm called StrangeSort:

StrangeSort(A, i, j)

1. if A[i] > A[j];
2. exchange A[i]↔ A[j]
3. if i+ 1 ≥ j
4. return
5. k ← ⌊(j − i+ 1)/3⌋
6. StrangeSort(A, i, j − k)
7. StrangeSort(A, i+ k, j)
8. StrangeSort(A, i, j − k)

(a) Argue that if n = length[A], then StrangeSort(A, 1, n) correctly sorts the input
array A[1, 2, . . . , n].

(b) Give a recurrence for the worst case running time of StrangeSort and a tight
asymptotic bound on the worst case running time.

2


