
Solving Linear Homogeneous Recurrence Relations
with Constant Coefficients: The Method of

Characteristic Roots

In class we studied the method of characteristic roots to solve a linear homogeneous
recurrence relation with constant coefficients. This handout is to supplement the material
that we saw in class1.

1 Linear Homogeneous Recurrence Relations With Constant
Coefficients

The Fibonacci recurrence is defined by f0 = 0, f1 = 1 and

fn = fn−1 + fn−2, n ≥ 2. (1)

In the class we saw some algorithms to find fn for any given n, in this handout we would
see a general method to solve certain kind of recurrences, this method would enable us to
find fn analytically.

The Fibonacci recurrence falls under a general class of recurrence relations which are
called linear homogeneous recurrence relations with constant coefficients. The general form
of such recurrence is

an = c1an−1 + c2an−2 + · · ·+ cpan−p, n ≥ p, (2)

where c1, c2, . . . cp are constants and cp ≠ 0. Such a recurrence is called linear as all
terms ak occur to the first power and it is called homogeneous as there is no term which
does not involve some ak, n − p ≤ k ≤ n − 1. Since the coefficients ci, 1 ≤ i ≤ p are are
constants hence the recurrence in eq. (2) is a linear homogeneous recurrence relations with
constant coefficients. It is easy to see that the Fibonacci recurrence as described in (1), also
falls under this general category.

2 The Method of Characteristic Roots

The recurrence in eq. (2) has a unique solution when the values of the first p terms
a0, a1, . . . ap−1 are specified, these are called the initial conditions. Given a0, a1, . . . ap−1,
we van use the recurrence in (2) to find ap, and then using the values of a1, . . . ap we can
find the value of ap+1 and so on.

For having a general solution of the recurrence in (2), we replace ak by xk in (2) and
solve for x. Making the substitution we obtain

xn − c1x
n−1 − c2x

n−2 − · · · − cpx
n−p = 0. (3)

Dividing both sides of eq. (3) by xn−p we obtain

xp − c1x
p−1 − c2x

p−2 − · · · − cp = 0. (4)

1 The discussion closely follows the text:Applied Combinatorics, by Fred Roberts, Prentice Hall
1984



Equation (4) is called the characteristic equation of the recurrence (2). It is a p degree
polynomial equation and so would have p roots, let us call these p roots as α1, α2, . . . , αp.
Some of these roots may be repeated roots (i.e., all of α1, α2, . . . , αp may not be distinct),
also it may be so that some of the roots are complex numbers. These roots are called the
characteristic roots. For example consider the Fibonacci recurrence in (1), the characteristic
equation of this recurrence would be x2 − x − 1 = 0 and the characteristic roots would be

α1 = 1+
√
5

2 and α2 = 1−
√
5

2 .
Now, if α is a characteristic root of the recurrence in 2, and if we take an = αn, it follows

that the sequence (an) satisfies the recurrence. Thus corresponding to each characteristic
root we have a sequence which would be the solution to the recurrence. But for the case of

the Fibonacci recurrence we notice that neither fn = ( 1+
√
5

2 )n nor fn = ( 1−
√
5

2 )n satisfies
the initial conditions f0 = 0 and f1 = 1.

Now we see that if the sequences (a′n) and (a′′n) both satisfies the recurrence (2) then a
sequence (a′′′n ) where a′′′n = λ1a

′′
n +λ2a

′
n and λ1 and λ2 constants should also satisfy (2). To

see this, observe that
a′n = c1a

′
n−1 + c2a

′
n−2 + · · ·+ cpa

′
n−p (5)

and
a′′n = c1a

′′
n−1 + c2a

′′
n−2 + · · ·+ cpa

′′
n−p (6)

Multiplying the above equations by λ1 and λ2 respectively and adding gives us

a′′′n = λ1(c1a
′
n−1 + c2a

′
n−2 + · · ·+ cpa

′
n−p) + λ2(c1a

′′
n−1 + c2a

′′
n−2 + · · ·+ cpa

′′
n−p)

= c1(λ1a
′
n−1 + λ2a

′′
n−1) + c2(λ1a

′
n−2 + λ2a

′′
n−2) + · · · cp(λ1a

′
n−p + λ2a

′′
n−p)

= c1a
′′′
n−1 + c2a

′′′
n−2 + · · ·+ cpa

′′′
n−p.

Thus (a′′′n ) satisfies (2).
In general, suppose that α1, α2, . . . , αp are the characteristic roots of recurrence the

recurrence in (2). Then our reasoning shows that if λ1, λ2, . . . , αp are constants, and if

an = λ1α
n
1 + λ2α

n
2 + · · ·+ λpα

n
p ,

then an satisfies (2). Additionally, it turns out that every solution of (2) can be expressed in
this form provided the roots α1, α2, . . . , αp are distinct. Thus we can summarize these facts
in the following theorem.

Theorem 1. Suppose a liner homogeneous recurrence with constant coefficients as in (2)
has characteristic roots α1, α2, . . . , αp. Then if λ1, λ2, . . . , λp are constants, every expression
of the form

an = λ1α
n
1 + λ2α

n
2 + · · ·+ λpα

n
p (7)

is a solution to the recurrence. Moreover if the characteristic roots are distinct, then every
solution to the recurrence have the form of eq. (7) for some constants λ1, λ2, . . . , λp. We
call the expression in (7) as the general solution.

Using this result we can now solve the Fibonacci recurrence. We already found out that
the characteristic equation for the Fibonacci recurrence is x2 − x − 1 = 0, and thus the

characteristic roots are α1 = 1+
√
5

2 and α2 = 1−
√
5

2 . Thus according to Theorem the general
solution for the Fibonacci recurrence would be

fn = λ1

(
1 +

√
5

2

)n

+ λ2

(
1−

√
5

2

)n

. (8)



For some constants λ1 and λ2. Thus solving the Fibonacci recurrence now reduces to finding
the values of the constants λ1 and λ2 such that the general solution conforms with the given
initial conditions f0 = 0 and f0 = 1. Substituting the initial conditions in the general
solution we obtain

f0 = λ1

(
1 +

√
5

2

)0

+ λ2

(
1−

√
5

2

)0

= 0

f1 = λ1

(
1 +

√
5

2

)1

+ λ2

(
1−

√
5

2

)1

= 1

which translates to the following system of linear equations

λ1 + λ2 = 0

(1 +
√
5)λ1 + (1−

√
5)λ2 = 2

This system of equations have an unique solution λ1 = 1√
5
and λ2 = − 1√

5
. Thus, the unique

solution to the Fibonacci recurrence is

fn =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

.

2.1 The Case of Multiple Roots

Consider the recurrence
an = 6an−1 − 9an−2, (9)

with a0 = 1, a1 = 2. Its characteristic equation is x2 − 6x+9 = 0, or (x− 3)2 = 0. The two
characteristic roots are 3 and 3, i.e., 3 is a multiple root. Hence the second part of Theorem
2 does not apply. Though it is still true that 3n is a solution of (9), and it is also true that
λ1(3)

n + λ2(3)
n is always a solution, it is not true that every solution of (9) is of the form

λ1(3)
n +λ2(3)

n. In particular there is no solution of the form λ1(3)
n +λ2(3)

n for (9) which
satisfies the given initial conditions. For the initial conditions would give us the equations

λ1 + λ2 = 1

3λ1 + 3λ2 = 2.

There are no λ1 and λ2 which satisfies these two equations simultaneously.
Suppose α is a characteristic root with multiplicity u; i.e., α appears as a root of the

characteristic equation u many times. Then it turns out that not only an = αn satisfy
the recurrence but so do α = nαn, an = n2αn, . . . , and nu−1αn. So for our example of the
recurrence in eq. (9) as we have the characteristic root α = 3 with multiplicity u = 2, so both
an = 3n and an = n3n are its solution. So for some constants λ1 and λ2, an = λ13

n+λ2n3
n

is a solution to (9). Using the initial conditions a0 = 1 and a1 = 2, we get the equations

λ1 = 1

3λ1 + 3λ2 = 2

These equations have the unique solution λ1 = 1, λ2 = − 1
3 . Hence an = 3n − 1

3n3
n is a

solution to the recurrence (9) with initial conditions a0 = 1 and a1 = 2. It follows that this
must be the unique solution.



This procedure generalizes as follows. Suppose that a recurrence (2) has characteristic
roots α1, α2, . . . , αq, with αi having multiplicity ui. This means that

q∑
i=1

ui = p.

Then,

αn
1 , nα

n
1 , . . . , n

u1−1αn
1 , α

n
2 , nα

n
2 , . . . , n

u2−1αn
2 , . . . , α

n
q , nα

n
q , . . . , n

uq−1αn
q

must all be solutions of the recurrence. Let us call these solutions as the basic solutions.
There are p of these basic solutions in all. Let us denote them by b1, b2, . . . , bp. Then for any
constants λ1, λ2, . . . λp,

an = λ1b1 + λ2b2 + . . .+ λpbp

is also a solution of the recurrence and every solution of it is of this form. Thus we can
summarize as

Theorem 2. Suppose that a linear homogeneous recurrence with constant coefficient as in
(2) has basic solutions b1, b2, . . . , bp. Then the general solution is given by

an = λ1b1 + λ2b2 + . . .+ λpbp (10)

for some constants λ1, λ2, . . . , λp.

To end this discussion let us consider solving a recurrence using the results we stated.
Consider the recurrence

an = 7an−1 − 16an−2 + 12an−3, (11)

a0 = 1, a1 = 2, a2 = 0. Then the characteristic equation would be

x3 − 7x2 + 16x− 12 = 0

The characteristic roots would be 2,2,3. Thus the general solution would be of the form

λ12
n + λ2n2

n + λ33
n

Using the initial conditions solve for λ1, λ2, λ3 and thus obtain an unique solution to (11)
(EXERCISE!).


