Fundamentals of Algebra for Computer Science (Home work 1)

September 14, 2006

- Due on Wednesday, September 27, before 4 p.m.
- Late submissions will not be accepted.
- Please give precise arguments for all statements that you write.
- To disprove a fact it is enough to give a counter example.
- Please do not hesitate to contact me if you do not understand the problems
- Each problem in this homework bear 5 points.
- 1. Given two sets A and B, their symmetric difference is defined as

$$A\triangle B = (A - B) \cup (B - A)$$

Prove that $A \triangle B = (A \cup B) - (A \cap B)$

- 2. For the given set and relations below determine which define equivalence relations.
 - (a) S be the set of all people in the world today, $a \sim b$ if a and b have an ancestor in common
 - (b) S be the set of all people in the world today, $a \sim b$ if a lives within 100 Km of b.
 - (c) S be the set of all straight lines in aplane, $a \sim b$ if a is parallel to b.
 - (d) S be the set of all triangles and $a \sim b$ if a and b are similar.
 - (e) S be the set of all real numbers, $a \sim b$ if $a = \pm b$.
- 3. Prove or disprove the following
 - (a) If $\sigma \circ \tau$ is onto then both σ and τ are onto.
 - (b) If $\sigma \circ \tau$ is one to one then both σ and τ are one to one.

- 4. If (m, n) = 1, given a and b, prove that there exists an x such that $x \equiv a \mod m$ and $x \equiv b \mod n$.
- 5. If (a, n) = 1, prove that one can find a $[b] \in \mathbb{Z}_n$ such that [a][b] = [1].
- 6. Let S^* denote the power set of S. Show that S^* with \triangle as the binary operation forms a group.
- 7. Let (G, *) be a group such that $(a * b)^2 = a^2 * b^2$ for all $a, b \in G$. Show that G must be abelian.
- 8. Show that if every element of the group G is its own inverse, then G is abelian.
- 9. If H and K are subgroups of G, show that $H \cap K$ is also a subgroup of G.
- 10. Let H and K be subgroups of an abelian group G. Define $HK = \{hk : h \in H, k \in K\}$. Is HK a subgroup of G?