Selected Topics on Cryptology 2011 (Home work)

June 27, 2011

- Due on July 7, 10 am.
- Late submissions will not be accepted.
- Please give precise arguments for all statements that you write.
- Please do not hesitate to contact me if you do not understand the problems.
- 1. Consider a cryptosystem in which $\mathcal{P} = \{a, b, c\}$, $\mathcal{K} = \{K_1, K_2, K_3\}$ and $C = \{1, 2, 3, 4\}$. Suppose the encryption matrix is as follows:

	a	b	c
K_1	1	2	3
K_2	2	3	4
K_3	3	4	1

Given that the keys are chosen with equal probability and the plaintext distribution is

$$\Pr[a] = \frac{1}{2}, \Pr[b] = \frac{1}{3}, \Pr[c] = \frac{1}{6}.$$

Find the probability distribution on C. Does this crypto-system provide perfect secrecy?

- 2. Let $\operatorname{Perm}(n)$ denote the set of all permutations from $\{0,1\}^n$ to $\{0,1\}^n$ and $\operatorname{Func}(n,\ell)$ be the set of all functions from $\{0,1\}^n$ to $\{0,1\}^\ell$. Find $|\operatorname{Perm}(n)|$ and $|\operatorname{Func}(n,\ell)|$.
- 3. Let $x \stackrel{\$}{\leftarrow} X$ denote the event of choosing x from the set X uniformly at random. Give the values of the following probabilities:
 - (a) $\Pr[x \stackrel{\$}{\leftarrow} \{0, 1\}^4 : x = 0100]$
 - (b) $\Pr[x \stackrel{\$}{\leftarrow} \{0,1\}^{10}, y \stackrel{\$}{\leftarrow} \{0,1\}^{10} : x = y]$

- 4. Given a pseudorandom function family $\mathcal{F}: \mathcal{K} \times \{0,1\}^n \to \{0,1\}^\ell$, construct a family $\mathcal{G}: \mathcal{K} \times \{0,1\}^n \to \{0,1\}^{2\ell}$ as $G_K(X) = F_K(X)||F_K(F_K(X))|$. Is \mathcal{G} pseudo-random, if so give a proof otherwise design an efficient adversary which breaks \mathcal{G} in the prf sense.
- 5. Let F be a length preserving pseudorandom function. Define a keyed permutation $F^{(3)}$ as follows:
 - Inputs: A key $k \in \{0,1\}^{3n}$ parsed as $k = (k_1, k_2, k_3, k_4)$ with $|k_i| = n$, and an input $x \in \{0,1\}^{2n}$ parsed as (L_0, R_0) with $|L_0| = |L_1| = n$.
 - Computation:
 - (a) $L_1 \leftarrow R_0$; $R_1 \leftarrow L_0 \oplus F_{k_1}(R_0)$;
 - (b) $L_2 \leftarrow R_1; R_2 \leftarrow L_1 \oplus F_{k_2}(R_1);$
 - (c) $L_3 \leftarrow R_2; R_3 \leftarrow L_2 \oplus F_{k_3}(R_2);$
 - (d) Output (L_3, R_3)

Show that $F^{(3)}$ as defined above is not a strong pseudorandom permutation.

6. Let $H: \mathcal{K} \times \{0,1\}^{\ell} \to \{0,1\}^{\ell_1}$ be a function family where $\ell > \ell_1$. Additionally the family H has the property that for all $x, x' \in \{0,1\}^{\ell}$ with $x \neq x'$

$$\Pr[K \stackrel{\$}{\leftarrow} \mathcal{K} : H_K(x) = H_K(x') \le \epsilon.$$

Such a function family is called an ϵ -universal family. Also let $F: \mathcal{S} \times \{0,1\}^{\ell_1} \to \{0,1\}^{\ell_2}$, be a function family. Given H and F we define a new family of functions $G: \mathcal{K} \times \mathcal{S} \times \{0,1\}^{\ell} \to \{0,1\}^{\ell_2}$, such that for every $(K,S) \in \mathcal{K} \times \mathcal{S}$, $G_{K,S}: \{0,1\}^{\ell} \to \{0,1\}^{\ell_2}$, is defined as $G_{K,S}(x) = F_S(H_K(x))$, where $x \in \{0,1\}^{\ell}$. Show that if H is ϵ -universal and F is pseudo-random then G is also pseudo-random.