Selected Topics on Cryptology 2009 (Home work 2)

June 13, 2009

- Due on June 30, 10 am.
- Late submissions will not be accepted.
- Please give precise arguments for all statements that you write.
- Please do not hesitate to contact me if you do not understand the problems.
- 1. Let F be a pseudo-random function. Show that the following constructions are insecure as message authentication codes (in each case $K \in \{0,1\}^n$ is the private key):
 - (a) To authenticate a message $m = m_1 ||m_2|| \dots ||m_\ell||$ where $m_i \in \{0,1\}^n$, compute $t = F_k(m_1) \oplus F_K(m_2) \oplus \dots \oplus F_K(m_\ell)$ as the tag.
 - (b) To authenticate a message $m = m_1 ||m_2|| \dots ||m_\ell||$ where $m_i \in \{0,1\}^n$, do the following:

$$r \overset{\$}{\leftarrow} \{0,1\}^n$$

 $t \leftarrow F_k(r) \oplus F_k(m_1) \oplus F_K(m_2) \oplus \ldots \oplus F_K(m_\ell)$
send (r,t)

- 2. Let g is an element of prime order in the group \mathbb{Z}_p^* . Suppose we have an efficient algorithm which computes the Diffie Hellman function in base g, i.e., we have an algorithm \mathcal{A} such that $\mathcal{A}(g^x, g^y) = g^{xy}$ for all $x, y \in \{1, 2, \ldots, q\}$. Let $h = g^{\alpha}$ for some $\alpha \in \{1, 2, \ldots, q-1\}$. Show that given α there is an efficient algorithm \mathcal{B} which can compute the Diffie-Hellman problem at base h, i.e., $\mathcal{B}(h, \alpha, h^x, h^y) = h^{xy}$. Algorithm \mathcal{B} can use algorithm \mathcal{A} as a subroutine.
- 3. A natural way of applying hybrid encryption to the El-Gamal encryption scheme is as follows. The public key $pk = g^x$, where g is the generator of a group G, where G is of prime order and the DDH assumption hold on G. To encrypt a message m, the sender chooses $k \stackrel{\$}{\leftarrow} \{0,1\}^n$ and sends

$$(g^r, g^{rx}.k, \operatorname{Enc}_k(m)),$$

where $r \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ is is chosen at random, and Enc represents a symmetric key encryption scheme. The above scheme needs to transmit two group elements along with the cipher produced by the symmetric encryption scheme.

- (a) Suggest an improvement over this scheme, where the length of the cipher text would be shorter, i.e., suggest a scheme only one group element needs to be transmitted along with the cipher-text of the symmetric encryption.
- (b) Can you suggest a way of adding a message authentication to this scheme.