Fundamentals of Algebra for Computer Science (Home work 3)

November 10, 2006

- Due on Wednesday, November 20, before 4 p.m.
- Late submissions will not be accepted.
- Please give precise arguments for all statements that you write.
- To disprove a fact it is enough to give a counter example.
- Please do not hesitate to contact me if you do not understand the problems.
- Each problem in this homework bear 5 points.

1. Ideals

- (a) A and B are ideals in a ring R such that $A \cap B = (0)$, prove that for every $a \in A$ and $b \in B$, ab = 0.
- (b) Let R be a commutative ring and A be an ideal of R. Let $N(A) = \{x \in R : x^n \in A, \text{ for some } n\}$. Prove that N(A) is an ideal of R which contains A.
- (c) The ideal $A = (a_0)$ is a maximal ideal of the Euclidean ring if and only if a_0 is a prime element of R.

2. The Euclidean Rings

- (a) Let F be a field, and F[x] the set of polynomials over F. Prove that F[x] is an Eucledian ring
- (b) In an Euclidean ring (a, b) can be found using the following algorithm:

$$b = q_0 a + r_1$$
, where $d(r_1) < d(a)$
 $a = q_1 r_1 + r_2$ where $d(r_2) < d(r_1)$
 $r_1 = q_2 r_2 + r_3$ where $d(r_3) < d(r_2)$
 \vdots \vdots
 $r_{n-1} = q_n r_n$

And $(a,b) = r_n$. Prove the correctness of this algorithm.

(c) Find the gcd of the following polynomials over F, the field of rational numbers:

i.
$$x^3 - 6x^2 + x + 4$$
 and $x^5 - 6x + 1$

ii.
$$x^2 + 1$$
 and $x^6 + x^3 + x + 1$

3. Vector Spaces

- (a) Let $T:U\to V$ be a vector space homomorphism with kernel K. Prove that K is a subspace of U.
- (b) If S and T are subseta of a vector space V then prove that

i.
$$S \subset T$$
 implies $L(S) \subset L(T)$.

ii.
$$L(L(S)) = L(S)$$

Where L(S) denote the linear span of S.

- (c) If V has a basis of n elements show that V is isomorphic to $F^{(n)}$
- (d) Let F be a field, and F[x] be polynomials over x. Prove that F[x] is not finite dimensional over F.

4. Fields

- (a) Show that $x^2 + x + 1$ is irreducible over \mathbb{Z}_2
- (b) Give an explicit construction of a finite field \mathbb{F}_{16} containing 16 elements.
- (c) Let \mathbb{F}_{16}^* be the set of units in \mathbb{F}_{16} . \mathbb{F}_{16}^* is a cyclic group, find all generators of this group.