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Infinite sets

Debrup Chakraborty

1 Countability

The natural numbers originally arose from counting elements in sets. There are two

very different possible sizes for sets, namely finite and infinite, and in this section we

discuss these concepts in detail. Finite sets are those for which we can indicate the

number of elements. Like the set of chairs in a given room, the set of pencils in a box

etc. On the other hand, there exists sets consisting of an infinite number of elements

e.g. set of natural numbers, all points on the real line, all circles in the plane, all

polynomials with rational coefficients etc. When we say that set is infinite we mean

that whatever number of elements are removed from the set still the set has some

elements remained in it. We can compare two finite sets by comparing their number of

elements. That is we can either count the number of elements in each sets. The other

method is that we can also try to establish a correspondence between the elements of

these sets by assigning to each element of one of the sets one and only one element of

the other. As we have seen earlier, such a correspondence is called a bijection or a 1-1

correspondence. For finite sets if the number of elements of two sets are same then

one can define a bijection between them. But is it possible to compare infinite sets in

similar fashion. That is, does it make sense to ask which is larger: set of circles in the

plane or set of rational numbers on the real line. Unlike finite sets counting the number

of elements of two infinite sets are not possible so the other method of establishing a

bijection for comparison is possible.

We start with a simple but very important principle which is called the pigeonhole

principle. Next we state a version of the principle and leave the proof as an exercise.
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Theorem 1. (Pigeonhole Principle) For finite sets X and Y , the following are true:

1. If there exists a injection between X and and Y , then |X| ≤ |Y |.

2. If there exist a surjection between X and Y , then |X| ≥ |Y |

3. If there exist a bijection between X and Y then |X| = |Y |.

DEFINITION 1. Countable set (denumerable set): A set is said to be countable if

a bijection can be set between its elements and the set of natural numbers. Thus, a

countable set is one whose elements can be indexed as follows: a1, . . . , an, . . ..

Example 1. The set of all integers Z is a countable set. To see this we can set up

the following 1-1 correspondence between the set of integers Z and the set of natural

numbers N.

0 -1 1 -2 2 . . .

↓ ↓ ↓ ↓ ↓
1 2 3 4 5 . . .

n ↔ 2n + 1 if n ≥ 0 and n ↔ −2n if n < 0.

Example 2. The set of all positive even integers is countable. The correspondence

being n ↔ 2n.

DEFINITION 2. An infinite set which is not countable is uncountable (or non-

denumerable)

Now we illustrate some properties of countable sets.

Property 1. Every subset of a countable set is either finite or countable.

Proof. Let A be a countable set and let B be a subset of A. If we enumerate the

elements of the set A : a1, a2, . . . , an, . . . and let n1, n2, . . . , be the natural numbers

which correspond to the elements in B in this enumeration, then if there is a largest

one among these natural numbers , B is finite, otherwise B is countable.

Property 2. The sum of arbitrary finite or countable set of countable sets is again a

finite or countable set.
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Proof. Let A1, A2, . . . be countable sets. All their elements can be written in the form

of an infinite table:

a11 a12 a13 a14 . . .

a21 a22 a23 a24 . . .

a31 a32 a33 a34 . . .

a41 a42 a43 a44 . . .

. . . . . . . . . . . . . . .

Where the elements of A1 are listed in the first row, the elements in A2 in the second

row and so on. Now we enumerate all these elements by the diagonal method,i.e. we

take a11 for the first element, a12 for the second, a21 for the third, and so on, taking

the elements in the order shown in the following table:

a11 −→ a12 a13 −→ a14 . . .

↙ ↗ ↙
a21 a22 a23 a24 . . .

↓ ↗ ↙
a31 a32 a33 a34 . . .

↙
a41 a42 a43 a44 . . .

. . . . . . . . . . . . . . . . . . . . . . . .

It is clear that in this enumeration every element of each of the sets Ai receives a

definite index, i.e. we have established a bijection between all elements of A1, A2, . . .

and the set of natural numbers.

Property 3. Every infinite set contains a countable subset.

Proof. Let M be an infinite set. Consider an arbitrary element a1 ∈ M . Since M is

infinite, we can find an element a2 ∈ M which is distinct from a1, then an element a3

distinct from a1 and a2 and so on. Continuing this process (which cannot terminate in a

finite number of steps since M is infinite), we obtain a countable set A = {a1, a2, a3 . . . , }
of the set M. This countable set is the smallest subset of the infinite set.

3



2 Equivalence of sets

DEFINITION 3. Two sets M and N are said to be equivalent denoted by M ∼ N ,

if a one-one correspondence (bijection) can be set up between their elements.

The concept of equivalence can be applied to infinite as well as finite sets. It is clear

that two finite sets are equivalent if and only if they contain the same number of

elements. The definition we introduced for countable sets can now be restated as: a

set is said to be countable if it is equivalent to the set of natural numbers.

Theorem 2. Every infinite set is equivalent to some proper subset of itself.

Proof. Let M be a infinite set. From property 3 we can say that M contain a countable

subset A, let

A = {a1, a2, . . . , n, . . .}.
We partition A into two countable subsets as

A1 = {a1, a3, a5, . . .} and A2 = {a2, a4, a6, . . .}.

As A and A1 are both countable so a one-to-one correspondence can be set up between

them. This correspondence can be extended to a one-to-one correspondence between

the sets

A1 ∪ (M \ A) = M \ A2 and A ∪ (M \ A) = M.

We already have a 1-1 correspondence between A1 and A, now setting and identity

map in the set M \ A, we obtain a 1-1 correspondence between M and M \ A2. And

M \ A2 is a proper subset of M .

3 The set of real numbers is not countable

We already defined uncountable sets, the following theorem asserts the existence of

such sets.

Theorem 3. The set of real numbers in the closed interval [0, 1] is uncountable
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Proof. Let us assume that the set of real numbers in the interval [0, 1] is countable.

Thus, we can write all the real numbers in [0, 1],which can be expressed in the form of

an infinite decimal in the form of a sequence

0.a11 a12 a13 . . . a1n . . .

0.a21 a22 a23 . . . a2n . . .

0.a31 a32 a33 . . . a3n . . .

. . . . . . . . . . . . . . .

0.an1 an2 an3 . . . ann . . .

. . . . . . . . . . . . . . .

(1)

Where aik is one of the elements of {0, 1, 2, . . . , 9}. Now let us construct the decimal

b = 0.b1b2 . . . bn . . .

such that bi = 2 if aii = 1 and bi = 1 if aii 6= 1. This construction guarantees that

b does not belong to any of the decimals listed in Eq. (1). This thus contradicts our

assumption that the set of real numbers in the interval [0, 1] is countable.

4 The Cardinal Number

If two finite sets are equivalent, they consists of the same number of elements. If M

and N are two arbitrary equivalent sets we say that M and N have the same cardinal

number (the same cardinality, the same potency). Thus, cardinal number is what

all equivalent sets have in common. For finite sets the concept of cardinal number

coincides with the number of elements in the set. The cardinal number of the set of

natural numbers (i.e., any countable set) is denoted by the symbol ℵ0 (read as ”aleph

zero”). Sets which are equivalent to real numbers are said to have the cardinality of

the continuum, which is denoted by c.

If a set A is equivalent to some subset of a set B but is not equivalent to B, then we

say that the cardinality of A is less than that of B.

We pointed out that the countable sets were the smallest of all infinite sets. We also

showed that there exist infinite sets whose infiniteness is of higher order than that of

countable sets. But do there exist infinite cardinal numbers exceeding the cardinal

5



number of the continuum. Does there exist some ”highest” cardinal number or not?

The following theorem provides answer to such questions.

Theorem 4. Let M be a set with cardinality m. Further, let M be the set whose

elements are all possible subsets of the set M. Then M has greater cardinality than m.

Proof. It is easy to see that the cardinality of M cannot be less than the cardinality of

M ; in fact, those subsets of M each of which contain only one element form a subset of

M which is equivalent to M . It remains to prove that cardinality of M is not same as

that of the cardinality of M . Let us assume in the contrary; i.e., we assume that there

is a one-to-one correspondence between the elements of M and M. Let a ↔ A, b ↔ B,

. . ., be a bijection between the elements of the set M and M. Now, let X be the set

of elements in M which do not belong to those subsets to which they correspond (for

example, if a ∈ A then a /∈ X, if b /∈ B then b ∈ X, and so forth ). X is a subset of M ,

i.e., it is an element of M. By assumption X must correspond to some element x ∈ M .

Let us investigate whether this element x belongs to the subset X. First let us assume

that x /∈ X. But by definition X consists of all those elements which are not contained

in the subset to which they correspond and consequently the element x ought to be

in X. Conversely, if we assume x ∈ X, then we conclude that x cannot belong to X

since X contains only those elements which do not belong to the subset to which it

correspond. Thus the element corresponding to the subset X should simultaneously

belong to or not belong to the set X. This implies that such an element does not exist,

i.e., a one-to-one correspondence between M and M is not possible. This completes

the proof.

Thus for an arbitrary cardinal number we can in reality construct a set of greater

cardinality and then a set with a still greater cardinality, and so on, obtaining in this

way a hierarchy of cardinal numbers which is not bounded in any way.
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