
Discrete Mathematics 2007: Lectures 3 and 4

Integers

Debrup Chakraborty

In these lecture we will learn about some basic properties of integers. Before going

further we will need a very important (but obvious ) property of non-negative integers

which we state next.

Well Ordering principle WOP: Let N0 = {0, 1, . . . , } be set of natural num-

bers. Then every non empty subset S ⊆ N0 contains a least element.

A least or minimal element of a subset S ⊆ N0 is an element s0 ∈ S for which s0 < s

for all s ∈ S. Similarly, a greatest or maximal element s0 of S is one for which s ≤ s0

for all s ∈ S. Notice that N0 has a least element 0, but has no greatest element since

for each n ∈ N0, n + 1 ∈ N0 and n < n + 1. It is easy to see that least and greatest

elements (if they exist) are always unique.

1 Divisibility

Consider the set of integers Z = {. . . ,−2,−1, 0, 1, 2, . . .}. For a and b in Z we say a

divides b or b is divisible by a if there exists c ∈ Z, such that b = ac. We denote this

by a|b. If a does not divide b we denote it by a 6 |b.
To begin with we state some simple facts without proofs:

Theorem 1. For a, b, c ∈ Z we have

1. a|a, 1|a and a|0

1



2. if a|b and c is any integer then a|bc

3. if a|b and a|c then a|(b± c)

4. if a|b and b|c then a|c

5. if a|b and b|a then a = ±b

6. a|b implies a| − b

7. if a|b and a|c, then for any integers m,n we have a|(bm + cn).

The next theorem that we state is popularly known as the division algorithm.

Theorem 2. (Division with remainder property) For a,b ∈ Z with b > 0, there exist

unique q,r ∈ Z such that a = bq + r and 0 ≤ r < b.

Proof. Consider the set S of non-negative integers of the form a − zb with z ∈ Z.

This set is clearly non-empty, and so contains a minimum. Let r be the smallest

integer in this set, with r = a − qb for q ∈ Z. By definition, we have r ≥ 0. Also,

we must have r < b, since otherwise, we would have 0 ≤ r − b < r and r − b =

a − (q + 1)b ∈ S, contradicting the minimality of r. That proves the existence of r

and q. To prove uniqueness, suppose that q′, r′ is a second such pair. Suppose that

r ≤ r′ .By interchanging the pairs if necessary, we can assume that r 6= r′. Since

a = qb + r = q′b + r′, 0 < r′ − r = (q − q′)b .Notice that this means q′ ≤ q since b > 0.

If q > q′, this implies b ≤ (q − q′)d, hence b ≤ r′ − r < b − r ≤ b, and so b < b which

is impossible. So q = q′ which implies that r′ − r = 0, contradicting the fact that

0 < r′ − r. So we must indeed have q′ = q and r′ = r.

We shall write r = a mod b that is, a mod b denotes the remainder in dividing a by

b. It is clear that b|a if and only if a mod b = 0.

2 Greatest Common Divisor

DEFINITION 1. The positive integer c is called the greatest common divisor of

integers a and b if
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1. c is a divisor of a and b.

2. Any divisor of a and b is a divisor of c

We denote the greatest common divisor of a and b by (a, b) or by gcd(a, b).

Theorem 3. If a and b are integers not both zero, then (a, b) exists; moreover, we can

find integers m0 and n0 such that (a, b) = m0a + n0b.

Proof. Let M be the set of all integers of the form ma+nb, where m and n rang freely

over the set of integers. Since at least one of a and b is nonzero so there are nonzero

integers in M. Also, if x = ma + nb ∈M then −x = (−m)a + (−n)b is also in M. So

M always have in it some positive integers. As a set of positive integers always have

a least element so, the positive integers in M will also have a least integer. Let c be

the smallest positive integer in M. As c ∈M, so c = m0a + n0b for some m0, no ∈ Z.

We claim that c is (a, b).

To see this, we first observe that if d|a and d|b then d|(m0a + n0b), i.e., d|c. Now we

must show that c|a and c|b. Given any element x ∈ M, by the division algorithm we

can say that x = tc + r where 0 ≤ r < c. Now as x ∈ M so x = ma + nb for some

m, n ∈ Z. Thus we have ma + nb = t(m0a + n0b) + r, so r = (m− tm0)a + (n− tn0)b.

Which implies that r ∈ M. But also 0 ≤ r < c, this forces r to be zero, as c is the

smallest nonzero positive element in M. Thus, for any x ∈ M, x = tc, i.e., c divides

any element in M. In particular, as a = 1.a + 0.b ∈M and b = 0.a + 1.b ∈M, so c|a
and c|b. This completes the proof of the theorem.

2.1 Euclids Algorithm

We have proved the existence of the greatest common divisors and established an

important property of it, but we still do not know how to find the greatest common

divisor of two given integers. We learned such methods in school, here we shall analyze

one such method called the Euclids algorithm.

The basic idea of Euclids algorithm is following : If for any integer b > 0 , a = bq + r

where 0 ≤ r < b ,using theorem 2. If an integer d divides both b and r, then it

also divides a; likewise, if an integer d divides a and b, then it also divides r. From
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this observation, it follows that gcd(a, b) = gcd(b, r), and so by performing a division,

we reduce the problem of computing gcd(a, b) to the smaller problem of computing

gcd(b, r). Now we state Euclids algorithm

Theorem 4. Let a, b be integers, with a ≥ b ≥ 0. Using the division with remainder

property, define the integers r0, r1, . . . , rl+1, and q1, . . . , ql where l ≥ 0, as follows:

a = r0

b = r1

r0 = r1q1 + r2 (0 < r2 < r1)
...

ri−1 = riqi + ri+1 (0 < ri+1 < ri)
...

rl−2 = rl−1ql−1 + rl (0 < rl < rl−1)

rl−1 = rlql (rl+1 = 0)

Then we have rl = gcd(a, b).

Proof. For i = 1, . . . , l, we have ri−1 = riqi + ri+1, from which it follows that the

common divisors of ri−1 and ri are the same as the common divisors of ri and ri+1, and

hence gcd(ri−1, ri) = gcd(ri, ri+1). From this, it follows that gcd(a, b) = gcd(r0, r1) =

gcd(rl, rl+1) = gcd(rl, 0) = rl.

Example 1. Find g.c.d of {1547, 560}
1547 = 2× 560 + 427

560 = 1× 427 + 133

427 = 3× 133 + 28

133 = 4× 28 + 21

28 = 1× 21 + 7

21 = 7× 3 + 0

Hence g.c.d.(1547, 560) = 7.

According to Theorem 3 (a, b) can be written as a linear combination of a and b. Now
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let us try to express 7 as a linear combination of 1547 and 560.

7 = 28− 1× 21 = 28− 1× (133− 4× 28) = 5× 28− 133

= 5× (427− 3× 133)− 133 = 5× 427− 16× 133

= 5× 427− 16× (560− 427) = 21× 427− 16× 560

= 21× (1547− 2× 560)− 16× 560

= 21× 1547− 58× 560

Following the method in the above example one can always express the gcd of two

numbers as a linear combination of the numbers.

3 Primality

DEFINITION 2. Two integers a and b are called relatively prime if (a, b) = 1.

DEFINITION 3. An integer p > 1 is a prime if its only divisors are ±1 and ±p.

Lemma 1. If a is relatively prime to b but a|bc, then a|c.

Proof. Since a and b are relatively prime then we can find integers m and n such that

ma+nb = 1 using Theorem 3 . Thus mac+nbc = c. Now a|mac and, it is given a|nbc.

Hence a|c.

Corollary 1. If a prime number divides the product of certain integers it must divide

at least one of the integers.

Prime numbers are the building block of the set of integers as it can be seen through

Unique factorization Theorem.

Theorem 5. Unique Factorization Theorem: Any positive integer a > 1 can be factored

in a unique way as a = pα1
1 pα2

2 . . . pαt
t ,where p1 > p2 > . . . > pt are prime numbers and

where each αi > 0.

However we will prove this with Mathematical Induction later.
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4 Congruence

DEFINITION 4. Let n > 0 be a fixed integer. For a, b ∈ Z we define a ≡ b mod n

if n|(a− b). We call this relation as congruence modulo n.

Lemma 2. 1. The relation congruence modulo n defines an equivalence relation on

the set of integers.

2. this equivalence relation has n distinct equivalence classes.

3. If a ≡ b mod n and c ≡ d mod n, then a + c ≡ b + d mod n and ac ≡ bd mod n.

4. If ab ≡ ac mod n and a is relatively prime to n, then b ≡ c mod n.

More generally, if d = gcd(a, n), then ab ≡ ac mod n if and only if b ≡ c mod

(n/d)

Proof. 1. First of all we prove that congruence modulo n is equivalence relation.

Since n|0 so n|(a− a) which ⇒ a ≡ a mod n for every a, this proves reflexivity.

Further if a ≡ b mod n then n|(a−b),and so n|(b−a) = −(a−b);thus b ≡ a mod n,

this proves symmetry. Finally, if a ≡ b mod n and b ≡ c mod n then n|(a − b)

and n|(b − c) ⇒ n|{(a − b) + (b − c)}, that is , n|(a − c). This is nothing but

a ≡ c mod n, hence transitivity.

2. For any integer a, the collection of all integers b congruent to a modulo n is the

congruence class of a mod n. This is also called the residue class of a mod n,

or equivalence class of a with respect to the equivalence relation of congruence

modulo n. Given an integer a and a modulus n, the equivalence class {b ∈ Z :

b ≡ a mod n} = {a+nz : z ∈ Z} of a modulo n is often denoted by [a]; we call it

the congruence class of a. By Euclidean algorithm , for any integer a, a = kn+ r

where 0 ≤ r < n. But then, a ∈ [r] and so [a] = [r].Thus there are at most n

distinct congruence classes; namely [0], [1], . . . [n − 1]. These classes are distinct

too, for if, [i] = [j] with, say, 0 ≤ i < j < n, then n|(j−i) where j−i is a positive

integer less than n, which cannot be possible. Hence we proved second lemma.

Thus for fixed n, each equivalence class with respect to congruence modulo n has

one and only one representative between 0 and n− 1. (This is just another way

of saying that any integer is congruent modulo n to one and only one integer

between 0 and n− 1).
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3. To prove part 3, suppose that a ≡ c mod n and c ≡ d mod n; therefore, n|(a− b)

and n|(c−d) ⇒ n|(a−b+c−d) ⇒ n|(a + c)− (b + d) which proves (a+c) ≡ (b+

d) mod n. In addition n|(a− b)c + (c− d)b = ac− bd. Therefore ac ≡ bd mod n.

4. Finally if ab ≡ ac mod n and a is relatively prime to n, then n|a(b − c). Using

Lemma 1 we can say n|(b− c) ⇒ b ≡ c mod n.

Example 2. Consider the residue classes modulo 6. These are:

[0] = {. . . ,−12,−6, 0, 6, 12, . . .}
[1] = {. . . ,−11,−5, 1, 7, 13, . . .}
[2] = {. . . ,−10,−4, 2, 8, 14, . . .}
[3] = {. . . ,−9,−3, 3, 9, 15, . . .}
[4] = {. . . ,−8,−2, 4, 10, 16, . . .}
[5] = {. . . ,−7,−1, 5, 11, 17, . . .}

We can equip Zn with binary operations defining addition and multiplication in a

natural way as follows: for a, b ∈ Z and [a]n,[b]n ∈ Zn we define [a]n + [b]n := [a + b]n,

and we define [a]n[b]n := [ab]n.

The set Z has following interesting properties as given in the next theorem.

Theorem 6. Let n be a positive integer, and consider the set Zn of residue classes

modulo n with addition and multiplication of residue classes as defined above. For all

α, β, γ ∈ Z, we have

1. α + β = β + α (addition is commutative)

2. (α + β) + γ = α + (β + γ) (addition is associative)

3. α + [0]n = α (existence of additive identity)

4. α− α = [0]n (existence of additive inverses)

5. α.β = β.α (multiplication is commutative)

6. (α.β).γ = α.(β.γ) (multiplication is associative)

7. α.(β + γ) = α.β + α.γ(multiplication distributes over addition)
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8. α[1]n = α (existence of multiplicative identity).

DEFINITION 5. Multiplicative Inverse modulo n: For a positive integer n, and

a ∈ Z, we say that a′ ∈ Z is a multiplicative inverse of a modulo n if aa′ ≡ 1 mod n.

Theorem 7. An integer a has a multiplicative inverse modulo n if and only if gcd(a, n) =

1. If gcd(a, n) = 1, let s and t be integers so that sa+tn = 1. Then s is a multiplicative

inverse of a modulo n. That is, s = a′ in the definition above.

Proof. suppose that gcd(a, n) = 1. From above, we know that the gcd is expressible

as 1 = gcd(a, n) = sa + tn for some s, t ∈ Z. Rearranging this equation, we have

sa = 1 + (−t)m which shows that sa ≡ 1 mod n. Thus, this s is a multiplicative

inverse of a modulo n.
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