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PCA (Motivation)
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• This data is in two dimensions but the two
attributesx1 andx2 are strongly correlated

• We can view that the data originally lies along a
diagonal axis, with some noise
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PCA (Motivation)
• We shall try to device a method to try to find the

best direction in which the data can be projected
so as to maximize the variance in the data.

• By PCA we can find a lower dimensional
representation of a given data. Thus, this is a
dimensionality reduction technique.
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Normalization prior to PCA
• Assume the data set to beX = {xxx1,xxx2, . . . ,xxxm}

1. Letµ = 1
m

∑m
i=1 xxx(i)

2. Replace eachxxx(i) with xxx(i) − µ.

3. Letσ2
j = 1

m

∑m
i=1(xxx

(i)
j )2

4. Replace eachxxx(i)
j with xxx

(i)
j /σj
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Normalization prior to PCA
• Steps 1-2 zero out the mean
• Steps 3-4 rescale each co-ordinate to have unit

variance
• These steps can be omitted for data which are

known to have zero mean and unit variance in all
attributes.

• This rescaling keeps the data in same scale for
each attribute, and makes the individual attributes
comparable.

• This does not hamper the structure of the data.
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Normalization prior to PCA
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Normalization prior to PCA
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PCA
• Now after this normalization, our task would be

to compute the major axis of variation of the data.
• We can pose this problem in the following

manner:

Find the unit vector uuu so that when the
data is projected in the direction
corresponding to uuu, the variance of the
projected data is maximized
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PCA
• Given an unit vectoruuu and a pointxxx, the length of

the projectionxxx ontouuu is given byxxxTuuu.
• Hence to maximize the variance of the

projections, we can propose the following
optimization problem:

max
uuu

1

m

m
∑

i=1

(xxx(i)Tuuu)2

such that ||uuu|| = 1
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PCA
• Now,

1

m

m
∑

i=1

(xxx(i)Tuuu)2 =
1

m

m
∑

i=1

uuuTxxx(i)xxx(i)Tuuu

= uuuT

(

1

m

m
∑

i=1

xxx(i)xxx(i)T

)

uuu

• Let

Σ =
1

m

m
∑

i=1

xxx(i)xxx(i)T

• This is the empirical covariance matrix of the
data (assuming, the data is zero mean) PCA – p. 10/16



PCA
• The optimization problem now can be posed as

max
uuu

uuuT (Σ)uuu

such that ||uuu|| = 1

Result : Theuuu which is a solution to this problem is
the principal eigenvector ofΣ.
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Eigenvalues and eigenvectors
• Given ad × d matrixM , a very important class

of linear equations is of the form

Mxxx = λxxx

whereλ is a scalar
• The above eq. can be rewritten as

(M − λI)xxx = 000,

whereI is the identity matrix and000 is the zero
vector.

• The solution vectorxxx = eeei and the corresponding
scalarλi is called the eigenvector and associated
eigenvalue respectively.
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Eigenvalues and eigenvectors
• If M is real symmetric, there ared (possibly

nondistinct) solution vectors{eee1, eee2, . . . , eeed} each
with an associated eigenvalue{λ1, λ2, . . . , λd}.

• Under multiplication byM the eigenvectors are
changed only in magnitude, not in direction:

Meeej = λjeeej

• If M is diagonal, then he eigenvectors are parallel
to the coordinate axes.
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Eigenvalues and eigenvectors
• One method of finding the eigenvectors and

eigenvalues is to solve thecharacteristic equation

det(M − λI) = 0

• The above equation inλ hasd roots (possibly
nondistinct).

• For each such root, we then solve a set of linear
equations to find its associated eigenvector.
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PCA
• In the general case if we wish to project our data

into ak dimensional subspace wherek < n, we
should chooseu1, u2, ..., uk to be the eigenvectors
corresponding to the topk eigenvalues of the
matrixΣ.

• To representxxx(i) in the new basis, we need only
to compute the corresponding vector

ξ(i) =











uT
1 xxx(i)

uT
2 xxx(i)

...
uT

kxxx(i)











∈ <k
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More references
• Andrew Ng’s notes, (has a link in the website)
• Duda, Hart, Stork (Chap. 3, Page 115) (It has a

bit different treatment)
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