Debrup Chakraborty

CINVESTAV
email: debrup@cs.cinvestav.mx

PCA-p. 1/



This data Is in two dimensions but the two
attributesr; andz, are strongly correlated

We can view that the data originally lies along
diagonal axis, with some noise
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We shall try to device a method to try to find th
best direction in which the data can be project
SO as to maximize the variance in the data.

By PCA we can find a lower dimensional

representation of a given data. Thus, thisis a
dimensionality reduction technique.
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Assume the data setto bé= {x1,25,...,2,,}

. Lety =157 20
. Replace each!”) with 2 — 4.
. Leto? = LS (2172

. Replace eac&n§i) with xy) /0

PCA—p. 4/



Steps 1-2 zero out the mean

Steps 3-4 rescale each co-ordinate to have un
variance

These steps can be omitted for data which are
known to have zero mean and unit variance in
attributes.

This rescaling keeps the data in same scale fo
each attribute, and makes the individual attribt
comparable.

This does not hamper the structure of the data
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Original Step 2
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Original Step 3

PCA—p. 7/




Now after this normalization, our task would be
to compute the major axis of variation of the de

We can pose this problem in the following
manner:
Find the unit vector « so that when the

data Is projected in the direction
corresponding to u, the variance of the

projected data Is maximized
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Given an unit vectot and a point, the length of
the projectionr ontow is given byz’ u.

Hence to maximize the variance of the
projections, we can propose the following
optimization problem:

1 .
max = — Z(Z(Z)Tu)2

1=1
such that |lul| =1
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Let

This Is the empirical covariance matrix of the
data (assuming, the data is zero mean) ...,




The optimization problem now can be posed a

max u’ (X)u

such that |lul| =1

Result : Theu which is a solution to this problem is
the principal eigenvector af.
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Given ad x d matrix M, a very important class
of linear equations is of the form

Mx = \x

where\ IS a scalar
The above eq. can be rewritten as

(M — M)z =0,

wherel! is the identity matrix an@ is the zero
vector.

The solution vectog = e; and the correspondin
scalar)\; Is called the eigenvector and associatt
eigenvalue respectively.
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If M i1s real symmetric, there ark(possibly
nondistinct) solution vectorge;, eo, ... ,e;} each
with an associated eigenvalfig,, Ao, ..., \;}.

Under multiplication byM the eigenvectors are
changed only in magnitude, not in direction:

M@j — )\jej

If M is diagonal, then he eigenvectors are par:
to the coordinate axes.
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One method of finding the eigenvectors and
eigenvalues is to solve tloharacteristic equation

det(M — AI) =0

The above equation iR hasd roots (possibly
nondistinct).

For each such root, we then solve a set of line:
equations to find its associated eigenvector.
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In the general case if we wish to project our da
Into ak dimensional subspace whete< n, we
should choose, us, ..., u; to be the eigenvectot
corresponding to the topeigenvalues of the
matrix >..

To represent:?) in the new basis, we need only
to compute the corresponding vector

(i)
WLz

u

PCA —p. 15/



Andrew Ng’s notes, (has a link in the website)

Duda, Hart, Stork (Chap. 3, Page 115) (It has
bit different treatment)
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