Principal Components Analysis

Debrup Chakraborty

CINVESTAV

email: debrup@cs.cinvestav.mx

PCA (Motivation)

- This data is in two dimensions but the two attributes x_1 and x_2 are strongly correlated
- We can view that the data originally lies along a diagonal axis, with some noise

PCA (Motivation)

- We shall try to device a method to try to find the best direction in which the data can be projected so as to maximize the variance in the data.
- By PCA we can find a lower dimensional representation of a given data. Thus, this is a dimensionality reduction technique.

- Assume the data set to be $X = \{x_1, x_2, \dots, x_m\}$
- 1. Let $\mu = \frac{1}{m} \sum_{i=1}^{m} \boldsymbol{x}^{(i)}$
- 2. Replace each $\boldsymbol{x}^{(i)}$ with $\boldsymbol{x}^{(i)} \mu$.
- 3. Let $\sigma_j^2 = \frac{1}{m} \sum_{i=1}^m (\boldsymbol{x}_j^{(i)})^2$
- 4. Replace each $\boldsymbol{x}_{j}^{(i)}$ with $\boldsymbol{x}_{j}^{(i)}/\sigma_{j}$

- Steps 1-2 zero out the mean
- Steps 3-4 rescale each co-ordinate to have unit variance
- These steps can be omitted for data which are known to have zero mean and unit variance in all attributes.
- This rescaling keeps the data in same scale for each attribute, and makes the individual attributes comparable.
- This does not hamper the structure of the data.

Original

Original

- Now after this normalization, our task would be to compute the major axis of variation of the data.
- We can pose this problem in the following manner:

Find the unit vector u so that when the data is projected in the direction corresponding to u, the variance of the projected data is maximized

- Given an unit vector \boldsymbol{u} and a point \boldsymbol{x} , the length of the projection \boldsymbol{x} onto \boldsymbol{u} is given by $\boldsymbol{x}^T\boldsymbol{u}$.
- Hence to maximize the variance of the projections, we can propose the following optimization problem:

$$\max_{\boldsymbol{u}} \quad \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{x}^{(i)^T} \boldsymbol{u})^2$$
 such that
$$||\boldsymbol{u}|| = 1$$

• Now,

$$\frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{x}^{(i)T} \boldsymbol{u})^2 = \frac{1}{m} \sum_{i=1}^{m} \boldsymbol{u}^T \boldsymbol{x}^{(i)} \boldsymbol{x}^{(i)T} \boldsymbol{u}$$
$$= \boldsymbol{u}^T \left(\frac{1}{m} \sum_{i=1}^{m} \boldsymbol{x}^{(i)} \boldsymbol{x}^{(i)T} \right) \boldsymbol{u}$$

• Let

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} \boldsymbol{x}^{(i)} \boldsymbol{x}^{(i)^{T}}$$

• This is the empirical covariance matrix of the data (assuming, the data is zero mean)

PCA - p. 10/1

• The optimization problem now can be posed as

$$\max_{\boldsymbol{u}} \quad \boldsymbol{u}^T \left(\boldsymbol{\Sigma} \right) \boldsymbol{u}$$
 such that
$$||\boldsymbol{u}|| = 1$$

Result : The u which is a solution to this problem is the principal eigenvector of Σ .

Eigenvalues and eigenvectors

• Given a $d \times d$ matrix M, a very important class of linear equations is of the form

$$Mx = \lambda x$$

where λ is a scalar

• The above eq. can be rewritten as

$$(M - \lambda I)\boldsymbol{x} = \boldsymbol{0},$$

where I is the identity matrix and $\mathbf{0}$ is the zero vector.

• The solution vector $\mathbf{x} = \mathbf{e}_i$ and the corresponding scalar λ_i is called the eigenvector and associated eigenvalue respectively.

Eigenvalues and eigenvectors

- If M is real symmetric, there are d (possibly nondistinct) solution vectors $\{e_1, e_2, \dots, e_d\}$ each with an associated eigenvalue $\{\lambda_1, \lambda_2, \dots, \lambda_d\}$.
- Under multiplication by M the eigenvectors are changed only in magnitude, not in direction:

$$M oldsymbol{e}_j = \lambda_j oldsymbol{e}_j$$

• If M is diagonal, then he eigenvectors are parallel to the coordinate axes.

Eigenvalues and eigenvectors

• One method of finding the eigenvectors and eigenvalues is to solve the *characteristic equation*

$$det(M - \lambda I) = 0$$

- The above equation in λ has d roots (possibly nondistinct).
- For each such root, we then solve a set of linear equations to find its associated eigenvector.

- In the general case if we wish to project our data into a k dimensional subspace where k < n, we should choose $u_1, u_2, ..., u_k$ to be the eigenvectors corresponding to the top k eigenvalues of the matrix Σ .
- To represent $x^{(i)}$ in the new basis, we need only to compute the corresponding vector

$$\boldsymbol{\xi}^{(i)} = egin{bmatrix} u_1^T oldsymbol{x}^{(i)} \ u_2^T oldsymbol{x}^{(i)} \ dots \ u_k^T oldsymbol{x}^{(i)} \end{bmatrix} \in \Re^k$$

More references

- Andrew Ng's notes, (has a link in the website)
- Duda, Hart, Stork (Chap. 3, Page 115) (It has a bit different treatment)