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Linear Regression
Probabilistic Interpretation of Linear Regression

Logistic Regression

Material covered 1s mostly from course notes of Prof.
Andrew Ng on regression.

Can be found at:
http://www.stanford.edu/class/cs229/notes/cs229-notes 1 .pdf
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We are given a training set
L = {(L’L‘Z,yz) Ll = 1TL,2’L'Z ~ Rp,yz- ~ R}

Our goal 1s to find a good hypothesis h such that
h(x) is a good predictor for the corresponding

val
W]

ue of y.
nen the target variable y takes continuous

va

ues as in the above case, we call the learning

problem a function approximation problem.

If y takes discrete values then we call the problem
a classification problem.
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To begin with, we need to decide a structure of h

To start with we assume that h 1s a linear function
of 2, 1.e.,

h@(ﬂ?z) — (90 -+ (91512‘2'71 + Hp:z:@-,Q + ... Qpilfi,p
p
— Z 9]'5137;7]'
7=0

T

Assuming thatz; o = 1, Vs
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This structure of A
ho(z;) = 0z, (1)

depends on the parameter vector 6.

Such a representation of / 1s called a parametric
representation.

Now the problem boils down to finding the
parameter vector @ such that the function A fits
the data the best.
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Given the training set L, how do we learn the
parameters 0.

One of the reasonable methods would be to make
h(x) close to y for at least the training set.

An 1ntuitive cost function for this purpose would
be:

1 n
70) = 5 D (hola) - 4:)°
i=1
This function 1s called the least squares function.

Our task is to find that @ which minimizes J.
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To begin with, we start with an iterative
algorithm.

We start with an initial guess of # and in each step
change theta to make .J(#) smaller.

This can be done by the gradient descent
algorithm which gives the update rule as

ej)new N Hj)old Oéaej J(e)

Here « 1s called the learning rate.
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For our specific cost function J, and for a single
training example (x;, y;) the update rule becomes

Qj)new — ej)old T o (yi _ h(ﬁE)) Li,j
How?

This update rule 1s called
Least Mean Squares (LMS) update rule
Widrow-Hoff learning rule
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This rule can be extended for the case of multiple
training data in two obvious ways:

The batch gradient descent
Stochastic gradient descent
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Algorithm:
repeat until convergence

{

0, )new old + « Z x’i,ja V]
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Algorithm:
repeat until convergence
foris =1ton
for)=0top
0 )new < 0j)old + a (yi — h()) zi 5
end for
end for
end repeat
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The gradient descent 1s not a specific method to
solve the linear regression problem but can be
applied to other problems also.

The linear regression problem has a closed form
solution, which we shall state without proof.

Let X be the design matrix and Y the responses.
Then the value of 6 that minimizes J is given by

6= (X' X)Xy
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Here we take another view of the linear
regression problem.

We find an answer to the question:
Why the least-squares cost function is a
reasonable one

We will show that under certain reasonable
probabilistic assumptions the least squares
method has a natural interpretation.
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We assume that the target variables and the inputs
are related via the equation

y =0z + ¢

¢; 1S an error term which takes care of:
Unmodeled effects
Random Noise

We assume that the ¢; are distributed IID
(independent and 1dentically distributed)
according to the Gaussian distribution with zero

mean and a variance o°.
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Thus we can write,
e; ~ N(0,07%)

Hence, the probability density of €; will be

1 2
67)
p(E@) — \/27 EXP (-2 2> .

This implies that

1 Y; —HTCEZ' 2
p(yiwi;e)maeajp( ( A )),
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Given X (all «;) and @ the probability of the data
is given by p(Y | X;0)

This quantity when viewed as a function of  is
called the likelihood function.

By the independence assumption of €; we can
write the likelihood function as

n

LO) = |[pilz:;06)

1=1

— 1 (y; — 0" x;)?
)
T V2mo 202
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Given this probabilistic model what 1s the best
way to choose 6 ?

According to the principle of maximum
likelihood, we should choose @ so as to make the
data most likely. Thus, we should choose that 8

which maximizes L(0).

Maximizing L(0) is same as minimizing J ().
Why??
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