Modes of Operations for Block Ciphers

Debrup Chakraborty

CINVESTAV

email: debrup@cs.cinvestav.mx

To be covered : Lecture 2

- OCB
- AEAD
- CMC and EME
- PEP, HCTR

Finite Fields

- Let $G F\left(2^{n}\right)$ denote the field with 2^{n} elements.
- Let F^{*} denotes the multiplicative subgroup in $G F\left(2^{n}\right)$
- We can view a point in $G F\left(2^{n}\right)$ in any of the following ways:
- An abstract point in the field
- A n bit string $a_{n-1} a_{n-2} \ldots a_{0}$, where $a_{i} \in\{0,1\}$
- As a formal polynomial $a(x)=a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots a_{1} x+a_{0}$ with binary coefficients
- As a number between 0 and $2^{n}-1$

Finite Fields (Contd.)

For example the string $0^{125} 101$, can be considered as

- As a 128 bit string
- A point in the field $G F\left(2^{128}\right)$
- As the polynomial $x^{2}+1$
- As the number 5

Finite Fields (Contd.)

- To add two elements in $G F\left(2^{n}\right)$, we just take the bitwise XOR of the two elements
- To multiply, we fix a suitable (sparse) irreducible polynomial and multiply modulo that polynomial
- If we consider a primitive polynomial in place of an irreducible one then x generates all points in F^{*}.

Tweakable Block Ciphers

- Tweakable blockciphers takes in an additional input other than the message and the key.
- This additional input is called tweak
- The tweak is a non-secret quantity
- This notion was first formalized by Liskov, Rivest and Wagner [LRW]
- The purpose behind tweaks was to increase variability of the cipher texts.
- Tweakable block ciphers were also used for designing modes of operations by [LRW], but they were inefficient

Powering up constructions

- Rogaway suggested some efficient construction of tweakable blockciphers
- He calls them as powering up constructions
- These block-ciphers were efficiently used to instantiate modes of operations and MAC algorithms.
- These constructions are simple, efficient and above all they are easy to analyze.

The XEX construction

- Assume the field to be represented as a primitive polynomial
- Then the elements $1, x, x^{2}, x^{3}, \ldots, x^{2^{n}-2}$ are all distinct
- Given a block cipher E_{K}, define the tweakable blockcipher as

$$
\begin{gathered}
\tilde{E}_{K}^{N, i}(M)=E_{K}(M \oplus \Delta) \oplus \Delta, \\
\text { where } \Delta=x^{i} \mathcal{N} \text { and } \mathcal{N}=E_{K}(N)
\end{gathered}
$$

- Here the tweak space is

$$
\mathcal{T}=\left[0,1, \ldots, 2^{n}-2\right] \times\{0,1\}^{n}
$$

The General XEX construction

- Given a block cipher E_{K}, define the tweakable blockcipher as

$$
\tilde{E}_{K}^{N, i_{1}, i_{2}, \ldots, i_{k}}(M)=E_{K}(M \oplus \Delta) \oplus \Delta,
$$

where $\Delta=\alpha_{1}^{i_{1}} \alpha_{2}^{i_{2}} \ldots \alpha_{k}^{i_{k}} \mathcal{N}$ and $\mathcal{N}=E_{K}(N)$

- Here the tweak space is

$$
\mathcal{T}=I_{i} \times I_{2} \times \ldots I_{k} \times\{0,1\}^{n}
$$

- Each α_{i} is an element in the group $F_{2^{n}}^{*}$
- The $\alpha_{i} \mathrm{~s}$ should provide unique representation

The XEX construction

Unique representation

- Fix a group G. The choice of parameters for XEX construction is a list of bases $\alpha_{1}^{i_{1}}, \alpha_{2}^{i_{2}}, \ldots \alpha_{k}^{i_{k}} \in G$ and a set $I_{i} \times I_{2} \times \ldots I_{k}$ of allowed indices, where each I_{i} is a set of integers. We say that the choice of parameters allows unique representation if for any
$\left(i_{1}, i_{2}, \ldots i_{k}\right),\left(j_{1}, j_{2}, \ldots j_{k}\right) \in I_{i} \times I_{2} \times \ldots I_{k}$ we have that

$$
\alpha_{1}^{i_{1}} \alpha_{2}^{i_{2}} \ldots \alpha_{k}^{i_{k}}=\alpha_{1}^{j_{1}} \alpha_{2}^{j_{2}} \ldots \alpha_{k}^{j_{k}}
$$

implies

$$
\left(i_{1}, i_{2}, \ldots i_{k}\right)=\left(j_{1}, j_{2}, \ldots j_{k}\right),
$$

The XEX Construction

Allowed bases

- It can be shown that, for the group $F_{2^{128}}^{*}$ the following bases provides unique representations
- Base x with allowed indices $\left[0, \ldots, 2^{126}\right]$
- Bases x and $1+x$ with allowed indices $\left[0, \ldots, 2^{115}\right] \times\left[0, \ldots, 2^{10}\right]$
- Base $x, 1+x$ and $1+x+x^{2}$ with allowed indices $\left[0, \ldots, 2^{44}\right] \times\left[0, \ldots, 2^{7} \times\left[0, \ldots, 2^{7}\right.\right.$
- In fact a more strong result can be proved, but this would be enough for our purpose.

The XEX Construction

The security of XEX construction

- Define
$\tilde{E}: \mathcal{K} \times\left(\{0,1\}^{n} \times I_{1} \times I_{2} \times \ldots \times I_{K}\right) \times\{0,1\}^{n} \rightarrow$
$\{0,1\}^{n}$ by $\tilde{E}_{K}^{N, i_{1}, i_{2}, \ldots, i_{k}}(M)=E_{K}(M \oplus \Delta) \oplus \Delta$ where $\Delta=\alpha_{1}^{i_{1}} \alpha_{2}^{i_{2}} \ldots \alpha_{k}^{i_{k}} \mathcal{N}$ and $\mathcal{N}=E_{K}(N)$. Then

$$
\operatorname{Adv}_{\tilde{E}_{K}}^{ \pm \tilde{r} \tilde{p}}(t, q) \leq \operatorname{Adv}_{E_{K}}^{ \pm p r p}\left(t^{\prime}, 2 q\right)+\frac{4.5 q^{2}}{2^{n}}
$$

- In other words \tilde{E}_{K} is a SPRP if E_{K} is an SPRP

The 0CB1

