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To be covered : Lecture 2
• OCB
• AEAD
• CMC and EME
• PEP, HCTR
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Finite Fields
• Let GF (2n) denote the field with 2n elements.
• Let F ∗ denotes the multiplicative subgroup in

GF (2n)

• We can view a point in GF (2n) in any of the
following ways:
• An abstract point in the field
• A n bit string an−1an−2 . . . a0, where

ai ∈ {0, 1}
• As a formal polynomial

a(x) = an−1x
n−1 + an−2x

n−2 + . . . a1x + a0

with binary coefficients
• As a number between 0 and 2n − 1
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Finite Fields (Contd.)
For example the string 0125101, can be considered as

• As a 128 bit string
• A point in the field GF (2128)

• As the polynomial x2 + 1

• As the number 5
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Finite Fields (Contd.)
• To add two elements in GF (2n), we just take the

bitwise XOR of the two elements
• To multiply, we fix a suitable (sparse) irreducible

polynomial and multiply modulo that polynomial
• If we consider a primitive polynomial in place of

an irreducible one then x generates all points in
F ∗.
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Tweakable Block Ciphers
• Tweakable blockciphers takes in an additional

input other than the message and the key.
• This additional input is called tweak
• The tweak is a non-secret quantity
• This notion was first formalized by Liskov, Rivest

and Wagner [LRW]
• The purpose behind tweaks was to increase

variability of the cipher texts.
• Tweakable block ciphers were also used for

designing modes of operations by [LRW], but
they were inefficient
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Powering up constructions
• Rogaway suggested some efficient construction

of tweakable blockciphers
• He calls them as powering up constructions
• These block-ciphers were efficiently used to

instantiate modes of operations and MAC
algorithms.

• These constructions are simple, efficient and
above all they are easy to analyze.
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The XEX construction
• Assume the field to be represented as a primitive

polynomial
• Then the elements 1, x, x2, x3, . . . , x2

n−2 are all
distinct

• Given a block cipher EK , define the tweakable
blockcipher as

Ẽ
N,i
K (M) = EK(M ⊕ ∆) ⊕ ∆,

where ∆ = xiN and N = EK(N)

• Here the tweak space is

T = [0, 1, . . . , 2n − 2] × {0, 1}n
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The General XEX construction
• Given a block cipher EK , define the tweakable

blockcipher as

Ẽ
N,i1,i2,...,ik
K (M) = EK(M ⊕ ∆) ⊕ ∆,

where ∆ = αi1
1
αi2

2
. . . αik

k N and N = EK(N)

• Here the tweak space is

T = Ii × I2 × . . . Ik × {0, 1}n

• Each αi is an element in the group F ∗
2n

• The αis should provide unique representation
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The XEX construction
Unique representation

• Fix a group G. The choice of parameters for
XEX construction is a list of bases
αi1

1
, αi2

2
, . . . αik

k ∈ G and a set Ii × I2 × . . . Ik of
allowed indices, where each Ii is a set of integers.
We say that the choice of parameters allows
unique representation if for any
(i1, i2, . . . ik), (j1, j2, . . . jk) ∈ Ii × I2 × . . . Ik we
have that

αi1
1
αi2

2
. . . αik

k = α
j1
1
α

j2
2

. . . α
jk

k

implies

(i1, i2, . . . ik) = (j1, j2, . . . jk)

• That is every group point which can be
represented using the allowed indices can be done
so in only one way
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The XEX Construction
Allowed bases

• It can be shown that, for the group F ∗
2128 the

following bases provides unique representations
• Base x with allowed indices [0, . . . , 2126]
• Bases x and 1 + x with allowed indices

[0, . . . , 2115] × [0, . . . , 210]

• Base x, 1 + x and 1 + x + x2 with allowed
indices [0, . . . , 244] × [0, . . . , 27 × [0, . . . , 27

• In fact a more strong result can be proved, but
this would be enough for our purpose.
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The XEX Construction
The security of XEX construction

• Define
Ẽ : K×({0, 1}n×I1×I2× . . .×IK)×{0, 1}n →

{0, 1}n by Ẽ
N,i1,i2,...,ik
K (M) = EK(M ⊕ ∆) ⊕ ∆

where ∆ = αi1
1
αi2

2
. . . αik

k N and N = EK(N).
Then

Adv± ˜prp

ẼK

(t, q) ≤ Adv±prp
EK

(t′, 2q) +
4.5q2

2n

• In other words ẼK is a SPRP if EK is an SPRP
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The OCB1
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