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Abstract

We present a short introduction to Quantum Computing (QC) from a
procedural point of view. Rather, it is a course of “parallel computing based
on tensor products”. We introduce primitive functions and the
compositional schemes of QC. We use Tensor Product notation instead of
the more conventional Dirac’s ket notation. We introduce basic notions of
Tensor Products and Hilbert Spaces and the qubits as points in the unit
circle in the two-dimensional complex Hilbert space, then any word
consisting of qubits lies in the corresponding unit sphere of the tensor
product of these spaces. We illustrate the computing paradigm through the
classical Deutsch-Josza algorithm. Then we show the quantum algorithm
to compute the Discrete Fourier Transform in linear time and the famous
polynomial-time Shor algorithm for integer factorization. We finish our
exposition with a basic introduction to Quantum Cryptography and
Quantum Communication Complexity.
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Overview of the whole course

Contents

1 Introduction
2 Tensor Products

1 Vector and Space Products
2 Products of Linear Maps

3 Basic Notions on Quantum Computing
1 Measurement Principle
2 Qubits and Words of Quantum Information
3 Quantum Gates
4 Observables and the Heisenberg Principle of Uncertainty
5 Evaluation of Boolean Functions
6 Deutsch-Jozsa’s Algorithm

4 Quantum Computation of the Discrete Fourier Transform
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5 Shor Algorithm
1 A Short Refreshment of Number Theory
2 Quantum Algorithm to Calculate the Order of a Number

1 Elements whose Order is a Power of 2
2 Elements with Arbitrary Order

6 Quantum Cryptography: Key Agreement Protocols
1 Channels without Noise
2 Channels with Noise

7 Communication Complexity
1 Parities Addition
2 Congruent Functions with the Hamming Weight Map
3 Identity Checking
4 Inner Product

1 Using an Entangled Pair of Qubits
2 Algorithm without Entangled States

5 Deutsch-Josza Relation
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Hilbert Spaces

Basic notions

Complex field. C

Vector space. H: Non-empty set. 0 ∈ H

Addition. + : H × H→ H. (H,+) Abelian group

Scalar multiplication. · : C × H→ H. Distributive w.r.t. addition

Inner product. 〈·|·〉 : H × H→ C. Sesquilinear form. Positive definite.

Norm. ‖ · ‖2 : H→ R+, x 7→ ‖ · ‖2 =
√
〈x|x〉.

Completeness. Every Cauchy sequence is convergent.

Autoduality. For each T ∈ H∗ exists y ∈ H: T(x) = 〈y|x〉.
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Geometrical properties: m-dimensional Hilbert spaces

Canonical basis. ej = (δij)i<m

Unit sphere. Em = {v ∈ H|1 = vHv =: 〈v|v〉}

Unitary map. U : H→ H linear s.t. MHM = 1mm. U|Em : Em → Em

Tensor products

Spaces. dim(U) = n & dim(V) = m ⇒ dim(U ⊗ V) = nm.
U × V ⊂ U ⊗ V. The difference consists of entangled states.

Vectors. x ∈ U & y ∈ V ⇒ x ⊗ y ∈ U ⊗ V.

Maps. S : U1 → V1 & T : U2 → V2 ⇒ S ⊗ T : U1 ⊗U2 → V1 ⊗V2.
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Measurement Principle

In current state

v = (vi1)i<m =
m−1∑
i=0

∈ Em,

for each i < m, with probability |vi1|
2 the following is performed:

The index i is output and

the computing control is transferred to the state ei .
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Qubits and Quregisters

Spaces and basis

H1 = C2; Hn = Hn−1 ⊗ H1

dim(Hn) = 2n

e0 = [1 0]T and e1 = [0 1]T basis in H1.

(eεn−1···ε1ε0)εn−1,...,ε1,ε0∈{0,1} basis in Hn.

Qubits. z ∈ E2 unit sphere in H1.

Quregister. z1 ⊗ · · · ⊗ zn−1 ⇐= zi , i ∈ N, qubits
z1 ⊗ · · · ⊗ zn−1 ∈ E2n ⊂ Hn
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Quantum speed-up

Conventional Dirac’s “ket” notation

|εn−1 · · · ε1ε0〉 := eεn−1···ε1ε0

= eεn−1 ⊗ · · · ⊗ eε1 ⊗ eε0
=: |εn−1〉 · · · |ε1〉 |ε0〉 (1)

Any state in Hn, σ(z) =
∑
ε∈{0,1}n zεeε is determined by 2n coordinates. If

U : Hn → Hn is a quantum operator, the target state σ(Uz) consists also
of 2n coordinates.
A calculus involving an exponential number of terms is performed in just
“one step” of the quantum computation.
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Function Evaluation

V = {0, 1}: binary digits

Each index in the set {0, . . . , 2n − 1} corresponds to a string
ε = (εn−1, . . . , ε1, ε0) ∈ Vn which in turn corresponds to eε ∈ Hn.

Let f : Vn → Vm be a function.

A quantum algorithm Uf : Hn+m → Hn+m computes f if

Uf : eε ⊗ 0 7→ eε ⊗ εef(ε)

where |ε| = 1. A final measurement on last qubits provides the value f(ε),
with probability 1.

Morales-Luna (CINVESTAV) QC based on Tensor Products 5-th Int. WS App. Cat. Th. 20 / 38



Agenda

1 Abstract

2 Overview of the whole course

3 References

4 Hilbert Spaces

5 Function Evaluation

6 Deutsch-Jozsa’s Algorithm

7 Quantum Computation of the Discrete Fourier Transform

8 Shor Algorithm

9 Quantum Cryptography

10 Communication Complexity

Morales-Luna (CINVESTAV) QC based on Tensor Products 5-th Int. WS App. Cat. Th. 21 / 38



Deutsch-Jozsa’s Algorithm

Let V = {0, 1} be the set of classical truth values.

Deutsch-Jozsa’s problem

Decide, for a given f : V → V , whether it is constant or balanced “in just
one computing step”.

Given f , let Uf be the 22 × 22-matrix s.t. Uf (ex ⊗ ez) = (ex ⊗ e(z+f(x)) mod 2).
We have H2Uf H2 : e0 ⊗ e1 7→ εeS ⊗ e1

where H2 is Hadamard’s operator, ε ∈ {−1, 1} is a sign and S is a signal
indicating whether f is balanced or not.
S coincides with f(0) ⊕ f(1).
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Quantum Computation of the Discrete Fourier Transform

Given f =
∑n−1

j=0 f(j)ej ∈ C
n, its discrete Fourier transform is

DFT(f) = f̂ =
n−1∑
j=0

 1
√

n

n−1∑
k=0

exp
(
2πijk

n

)
f(k)

 ej ∈ C
n.

DFT is linear transform and, w.r.t. the canonical basis, it is represented by
the unitary matrix DFT = 1√

n

(
exp

(
2πijk

n

))
jk
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If n = 2ν, Hν = Cn, and by identifying each j ∈ [[0, 2ν − 1]] with
εj = εj,ν−1 · · · εj,1εj,0:

DFT(eεj ) =
ν−1⊗
k=0

1
√

2

(
e0 + exp

(
πij
2k

)
e1

)
= 1√

2

(
e0+exp

(
πij
20

)
e1

)
⊗ 1√

2

(
e0+exp

(
πij
21

)
e1

)
⊗···⊗ 1√

2

(
e0+exp

(
πij

2ν−1

)
e1

)
(2)

The products appearing in this tensor product suggest the operators
Qk : H1 → H1 and their “controlled” versions:

Qk =

 1 0
0 exp

(
πi
2k

)  , Qc
kj =

 1 0
0 exp

(
πi j

2k

)  .
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Algorithm for the Fourier transform

Input. n = 2ν, f ∈ Cn = Hν.

Output. f̂ = DFT(f) ∈ Hν.

Procedure DFT(n, f)
1 Let x0 := H(e0).
2 For each j ∈ [[0, 2ν − 1]], or equivalently, for each

(εj,ν−1 · · · εj,1εj,0) ∈ {0, 1}ν, do (in parallel):
1 For each k ∈ [[0, ν − 1]] do (in parallel):

1 Let δ := Rk

(
εj

∣∣∣
k

)
be the reverse of the chain consisting of

the (k + 1) less significant bits.
2 Let yjk := x0.
3 For ` = 0 to k do { yjk := Qc2(yjk , eδj,`) }

2 Let yj := yj0 ⊗ · · · ⊗ yj,ν−1 .

3 Output as result f̂ =
∑2ν−1

j=0 fjyj .
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Let n be an integer to be factored

1 Select an integer m such that 1 < m < n.
2 If gcd(n,m) = d > 1, then d is a non-trivial factor of n.
3 Otherwise, m is in the multiplicative group of remainders of n.

1 If m has an even order r , then k = m
r
2 will be such that k 2 = 1 mod n,

and (k − 1)(k + 1) = 0 mod n.
2 By calculating gcd(n, k − 1) and gcd(n, k + 1), one gets non-trivial

factors of n.
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Biggest problem

Calculate the order of a current element m in Φ(n)

Let ν = dlog2 ne, ν is the size of n.
O(n) = O(2ν), thus an exhaustive procedure has exponential complexity
with respect to the input size. Shor’s algorithm is based over a
polynomial-time procedure in ν to calculate the order of an element.
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Quantum Cryptography: Key Agreement Protocols

Two entities, Alice and Bob, should agree in private a common key.
They may use two transmission channels

Quantum channel Transmits just one-way, say from Alice to Bob.

Classical channel Transmits bidirectionally.

We will present the BB84 Protocol, without and with noise.
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Quantum computing elements

E0 = {e0
0 = (1, 0), e0

1 = (0, 1)}: canonical basis of H1

H(E0) = E1 = {e1
0, e

1
1}: basis of H1 obtained by applying Hadamard’s

operator to E0.
E0 corresponds to a spin with vertical–horizontal polarization, E0 = {↑,→},
while
E1 corresponds to a spin with oblique or NW–NE polarization,
E1 = {↖,↗}.
The same sequence of qubits can be measured either w.r.t. to E0 or E1.

An eavesdropper can be detected quite directly!
This is characteristic of Quantum Cryptography.
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Communication Complexity

The complexity of a communication process is determined by the minimum
information quantity that should be transmitted, in order that the total
information can be recovered by the receiving part, within a given context.

Optimal Transmission

Let us assume that three sets X , Y , Z are given and a function
f : X × Y → Z . At some moment, Alice, who is a communicating part,
possesses a point x ∈ X , Bob, who is a second part, possesses a point
y ∈ Y and both parts should calculate z = f(x, y), by interchanging the
minimum information quantity.
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Identity Checking

Exact and obvious method

If f : (x, y) 7→ χ=(x, y) is the characteristic function of the identity relation:

f(x, y) = 1 if and only if x = y,

then Alice and Bob should interchange n bits to calculate f(x, y).

n is exponential with respect to its size!
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An interesting question is whether an exact algorithm can be obtained with
logarithmic complexity.
The following theorem excludes the possibility to communicate more than
k (classical) bits of information by transmitting k qubits.

Holevo’s Theorem

The information quantity recovered from a register of qubits is upperly
bounded by the value of von Neumann’s entropy, which is bounded by
Shannon’s entropy. Both entropies coincide whenever the qubits are
pairwise orthogonal.

However, in Quantum Computing the use of the notion of entangled states
improves the communication complexities of several procedures.
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Deutsch-Josza Relation

Pseudotelepathy Game

Given four sets X , Y , A and B, a relation R ⊂ X × and × A × B, and the
fact that Alice and Bob are separated, far from each other, at a given
moment Alice receives a point x ∈ X , Bob a y ∈ Y and they, trying to
interchange the minimum information, should produce, respectively, a ∈ A
and b ∈ B such that (x, y, a, b) ∈ R.
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In particular, for n = 2k a power of 2, X = {0, 1}n = Y , A = {0, 1}k = B

R is Deutsch-Josza relation

(x, y, a, b) ∈ R ⇔[
(Hn(x, y) = 0 ∧ a = b) ∨

(
Hn(x, y) =

n
2
∧ a , b

)
∨

Hn(x, y) <
{
0,

n
2

}]
(3)

If the points x and y of Alice and Bob coincide, then the sequences
that they produce should coincide

If x and y differ exactly in half of the bits, then the produced
sequences should differ

In any other case no restrictions on produced sequences
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