Quantum Computing based on Tensor Products Basics and Illustrative Procedures

Guillermo Morales Luna

Computer Science Section CINVESTAV-IPN

E-mail: gmorales@cs.cinvestav.mx

5-th International Workshop on Applied Category Theory Graph-Operad Logic

Morales-Luna (CINVESTAV)

- 2 Basic Notions on Quantum Computing
 - 3 Quantum Gates
 - Observables and the Heisenberg Principle of Uncertainty
- 5 Evaluation of Boolean Functions
- 6 Deutsch-Jozsa's Algorithm

→ Ξ ► < Ξ ►</p>

- 2 Basic Notions on Quantum Computing
- 3 Quantum Gates
- Observables and the Heisenberg Principle of Uncertainty
- 5 Evaluation of Boolean Functions
- Deutsch-Jozsa's Algorithm

イロト イポト イヨト イヨト

$$\begin{split} \mathbb{U}, \mathbb{V}: & \text{two vector spaces over } \mathbb{C}. \\ \mathcal{L}(\mathbb{U}, \mathbb{V}): & \text{space of linear maps } \mathbb{U} \to \mathbb{V}. \\ \mathbb{U}^* &= \mathcal{L}(\mathbb{U}, \mathbb{C}): & \text{Dual space of } \mathbb{U}. \ u^* \in \mathbb{U}^*, \ u \in \mathbb{U}, \ \langle u^* | u \rangle := u^*(u). \\ \langle \cdot | \cdot \rangle : & \mathbb{U}^* \times \mathbb{U} \to \mathbb{C} \text{ is a bilinear map.} \\ \mathbb{U} \otimes \mathbb{V} &= \mathcal{L}(\mathbb{V}^*, \mathbb{U}): & \text{Tensor product of } \mathbb{U} \text{ and } \mathbb{V}. \end{split}$$

Fact

 $\mathbb{U} \times \mathbb{V}$ is identified with a subset of $\mathbb{U} \otimes \mathbb{V}$.

 $\Phi: \mathbb{U} \times \mathbb{V} \to \mathbb{U} \otimes \mathbb{V}, \forall (u, v) \in \mathbb{U} \times \mathbb{V}, \Phi(u, v) : [w^* \mapsto \langle w^* | v \rangle u] \in \mathcal{L}(\mathbb{V}^*, \mathbb{U}).$ Given $u \in \mathbb{U}, v \in \mathbb{V}, u \otimes v := \Phi(u, v) \in \mathcal{L}(\mathbb{V}^*, \mathbb{U})$: tensor product of *u* and *v*.

$$\begin{aligned} (zu) \otimes v &= z(u \otimes v) \quad (u_1 + u_2) \otimes v = (u_1 \otimes v) + (u_2 \otimes v) \\ u \otimes (zv) &= z(u \otimes v) \quad u \otimes (v_1 + v_2) = (u \otimes v_1) + (u \otimes v_2) \end{aligned}$$

The tensor product is not commutative, nor even for $\mathbb{U} = \mathbb{V}$.

Morales-Luna (CINVESTAV)

イロト イワト イヨト イヨト

Fact

If dim $\mathbb{U} = m$ and dim $\mathbb{V} = n$ then dim $(\mathbb{U} \otimes \mathbb{V}) = mn$.

Namely, dim $(\mathbb{V}^*) = n$ and dim $(\mathcal{L}(\mathbb{V}^*, \mathbb{U})) = nm$. Thus, if $\mathbb{U} = \mathbb{C}^m$ and $\mathbb{V} = \mathbb{C}^n$ then, $\mathbb{U} \otimes \mathbb{V} = \mathbb{C}^{mn}$.

Fact

If $B_{\mathbb{U}} = \{u_0, u_1, \dots, u_{m-1}\}$ is a basis of \mathbb{U} and $B_{\mathbb{V}} = \{v_0, v_1, \dots, v_{n-1}\}$ is a basis of \mathbb{V} then $(u_i \otimes v_j)_{i < m, j < n}$ is a basis of $\mathbb{U} \otimes \mathbb{V}$, where for each $i, j, u_i \otimes v_j$ is the map $w^* = \sum_{k=0}^{n-1} w_k v_k^* \mapsto w_j u_i$. This is called the product basis.

If $B_{\mathbb{V}^*} = \{v_0^*, v_1^*, \dots, v_{n-1}^*\}$ is a basis of \mathbb{V}^* , where $\langle v_{j_1}^* | v_{j_2} \rangle = \delta_{j_1 j_2}$. The map $u_i \otimes v_j$ is represented by $D_{ij} = (\delta_{i_1 j_1 i j})_{i_1 < m, j_1 < n}$. Given $u = \sum_{i=0}^{m-1} a_i u_i \in \mathbb{U}$, $v = \sum_{j=0}^{n-1} b_j v_j \in \mathbb{V}$, and $w^* = \sum_{j=0}^{n-1} c_j v_j^* \in \mathbb{V}^*$ then

$$(u \otimes v)(w^*) = \sum_{i=0}^{m-1} a_i \left(\sum_{j=0}^{n-1} b_j c_j \right) u_i = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} a_i b_j (u_i \otimes v_j) (w^*),$$

hus
$$u \otimes v = \sum_{i=0}^{m-1} \sum_{i=0}^{n-1} a_i b_i (u_i \otimes v_i).$$

Morales-Luna (CINVESTAV)

A □ > A

 U_1, U_2 : vector spaces of dimensions m_1, m_2 . $K : U_1 \rightarrow U_2$ linear. The dual $K^* : U_2^* \rightarrow U_1^*$ is defined by

$$\forall u_1 \in U_1, u_2 \in U_2 : \langle K^*(u_2^*) | u_1 \rangle = \langle u_2 | K(u_1) \rangle.$$

Fact

If K is represented, with respect to basis B_{U_1} and B_{U_2} , by $M_K \in \mathbb{C}^{m_2 \times m_1}$ then K^* is represented by its Hermitian $M_K^H \in \mathbb{C}^{m_1 \times m_2}$.

 V_1 , V_2 : other two vector spaces of dimensions n_1 , n_2 . $L : V_1 \rightarrow V_2$ linear. $K \otimes L : U_1 \otimes V_1 \rightarrow U_2 \otimes V_2$ is such that

 $\forall u_1 \in U_1, v_1 \in V_1 : (K \otimes L)(u_1 \otimes v_1) = K(u_1) \otimes L(v_1).$

4 D b 4 B b 4 B b 4 B b

Fact

If *K* is represented, with respect to the basis B_{U_1} and B_{U_2} , by the matrix $M_K \in \mathbb{C}^{m_2 \times m_1}$ and *L* is represented, with respect to the basis B_{V_1} and B_{V_2} , by the matrix $M_L \in \mathbb{C}^{n_2 \times n_1}$ then $(K \otimes L)$ is represented, with respect to the product basis, by the following tensor product matrix:

$$M_{K} \otimes M_{L} = \begin{bmatrix} m_{00}^{(K)} M_{L} & m_{01}^{(K)} M_{L} & \cdots & m_{0,m_{1}-1}^{(K)} M_{L} \\ m_{10}^{(K)} M_{L} & m_{11}^{(K)} M_{L} & \cdots & m_{1,m_{1}-1}^{(K)} M_{L} \\ \vdots & \vdots & \ddots & \vdots \\ m_{m_{2}-1,0}^{(K)} M_{L} & m_{m_{2}-1,1}^{(K)} M_{L} & \cdots & m_{m_{2}-1,m_{1}-1}^{(K)} M_{L} \end{bmatrix} \in \mathbb{C}^{m_{2}n_{2} \times m_{1}n_{1}}.$$

U: *m*-dimensional vector space, $K : U \to U$ linear: $K^{\otimes 1} = K$, $K^{\otimes n} = K^{\otimes (n-1)} \otimes K$: *n*-th tensorial power. If $M_K = (m_{ij})_{i,j < m}$ represents *K*, then $M_{K^{\otimes n}} = (m_{ij}^{(n)})_{i,j < m^n}$ represents $K^{\otimes n}$. Let's write each $i < m^n$ in base m: $i = \sum_{j=0}^{n-1} \xi_j m^j = (\xi_{n-1} \cdots \xi_1 \xi_0)_m = (\xi)_m$. If $\xi = \xi_{n-1} \cdots \xi_1 \xi_0$, let car $(\xi) = \xi_0$ and cdr $(\xi) = \xi_{n-1} \cdots \xi_1$

$$(\xi)_m = m(\operatorname{cdr}(\xi))_m + \operatorname{car}(\xi),$$

 $\operatorname{car}(\xi) = (\xi)_m \mod m \text{ and}$
 $(\operatorname{cdr}(\xi))_m = ((\xi)_m - \operatorname{car}(\xi))/m.$

Then

$$m_{\xi(i),\xi(j)}^{(n)} = m_{\operatorname{cdr}(\xi(i)),\operatorname{cdr}(\xi(j))}^{(n-1)} \cdot m_{\operatorname{car}(\xi(i)),\operatorname{car}(\xi(j))}$$

(1)

2 Basic Notions on Quantum Computing

3 Quantum Gates

- Observables and the Heisenberg Principle of Uncertainty
- 5 Evaluation of Boolean Functions
- Deutsch-Jozsa's Algorithm

イロト イポト イヨト イヨト

Complex matrices. $\mathbb{C}^{m \times n}$: space of $(m \times n)$ -matrices with complex entries Transpose conjugate. $M = (m_{ij})_{i,j} \in \mathbb{C}^{m \times n} \Rightarrow M^H = (m_{ji}^H)_{ji} = (\overline{m_{ij}})_{ji}$ Unitary matrix. $M^H M = \mathbf{1}_{nn}$. $M|_{E_m} : E_m \to E_m$. Hermitian matrix. $M^H = M$ Set of states. $\mathbb{C}^{m \times 1}$ Unit Euclidean sphere. $E_m = \{\mathbf{v} \in \mathbb{C}^m | 1 = \mathbf{v}^H \mathbf{v} =: \langle \mathbf{v} | \mathbf{v} \rangle\}$. Canonical basis. $\mathbf{e}_j = (\delta_{ij})_{i < m}$

Connotation

A state $\mathbf{v} = (v_{i1})_{i < m}$ outputs index *i* with probability $|v_{i1}|^2 = \operatorname{Re}(v_{i1})^2 + \operatorname{Im}(v_{i1})^2$.

Morales-Luna (CINVESTAV)

Measurement Principle

Being at $\mathbf{v} = (v_{i1})_{i < m}$, with probability $|v_{i1}|^2$:

- The index *i* is output and
- the computing control is transferred to the state **e**_i.

This principle is applied just once at the end of any quantum algorithm, it ptoduces a halting state.

If *m* is a power of 2:

Quantum gate. Any square $(m \times m)$ -unitary matrix $U \in \mathbb{C}^{m \times m}$.

Quantum algorithm. Composition of a finite number of quantum gates, followed by a measurement.

イロト イポト イヨト イヨト

For the particular case of m = 2,

•
$$\mathbf{e}_0 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$$
 and $\mathbf{e}_1 = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$: Canonical basis of \mathbb{C}^2

- e₀ is identified with the truth value false, or zero, and
 e₁ with the truth value true, or one.
- qubit: $z_0 \mathbf{e}_0 + z_1 \mathbf{e}_1$, with $z_0, z_1 \in \mathbb{C}$, $|z_0|^2 + |z_1|^2 = 1$

•
$$\mathbb{H}_1 = \mathbb{C}^2$$
, $\mathbb{H}_n = \mathbb{H}_{n-1} \otimes \mathbb{H}_1$.

• dim $(\mathbb{H}_n) = 2^n$, with basis $B_{\mathbb{H}_n} = (\mathbf{e}_{\varepsilon_{n-1}\cdots\varepsilon_1\varepsilon_0})_{\varepsilon_{n-1},\dots,\varepsilon_1,\varepsilon_0\in\{0,1\}}$

Conventional Dirac's "ket" notation

$$\begin{aligned} |\varepsilon_{n-1}\cdots\varepsilon_{1}\varepsilon_{0}\rangle &:= \mathbf{e}_{\varepsilon_{n-1}\cdots\varepsilon_{1}\varepsilon_{0}} \\ &= \mathbf{e}_{\varepsilon_{n-1}}\otimes\cdots\otimes\mathbf{e}_{\varepsilon_{1}}\otimes\mathbf{e}_{\varepsilon_{0}} \\ &=: |\varepsilon_{n-1}\rangle\cdots|\varepsilon_{1}\rangle|\varepsilon_{0}\rangle \end{aligned}$$
(2)

•
$$\llbracket 0, 2^n - 1 \rrbracket \approx \{0, 1\}^n, i \leftrightarrow \varepsilon = \varepsilon_{n-1} \cdots \varepsilon_1 \varepsilon_0$$

• Information word of length $n: \mathbf{z} \in E_{2^n} \Rightarrow \mathbf{z} = \sum_{\varepsilon \in \{0,1\}^n} Z_{\varepsilon} \mathbf{e}_{\varepsilon}$

Morales-Luna (CINVESTAV)

QC based on Tensor Products

2 Basic Notions on Quantum Computing

3 Quantum Gates

- Observables and the Heisenberg Principle of Uncertainty
- 5 Evaluation of Boolean Functions
- Deutsch-Jozsa's Algorithm

A B K A B K

Quantum Gates

Identity

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
. $I : \mathbb{H}_1 \to \mathbb{H}_1$ is the identity operator.

Rotation

For
$$t \in [-\pi, \pi]$$
, $Rot_t = \begin{bmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{bmatrix}$: $\mathbb{H}_1 \to \mathbb{H}_1$

If $\mathbf{x}_p = \sqrt{p} \, \mathbf{e}_0 + \sqrt{1-p} \, \mathbf{e}_1$ then

$$\operatorname{Rot}_t(\mathbf{x}_p) = \left(\cos(t)\sqrt{p} - \sin(t)\sqrt{1-p}\right)\mathbf{e}_0 + \left(\cos(t)\sqrt{1-p} + \sin(t)\sqrt{p}\right)\mathbf{e}_1.$$

For $t_{0p} = \cos^{-1}(-\sqrt{p})$, $Rot_{t_{0p}}(\mathbf{x}_p) = -\mathbf{e}_0$: gives 0 with probability $(-1)^2 = 1$. For $t_{1p} = \cos^{-1}(\sqrt{1-p})$, $Rot_{t_{1p}}(\mathbf{x}_p) = \mathbf{e}_1$: gives 1 with probability 1. A rotation acts as an interference, either constructive or destructive.

Negation

$$N = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
. Clearly, $N : \begin{bmatrix} z_0 \\ z_1 \end{bmatrix} \mapsto \begin{bmatrix} z_1 \\ z_0 \end{bmatrix}$. *N* is unitary and it switches signals. Geometrically it is "a reflection along the main diagonal".

Hadamard

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
. Clearly, $H : \begin{bmatrix} z_0 \\ z_1 \end{bmatrix} \mapsto \frac{1}{\sqrt{2}} \begin{bmatrix} z_0 + z_1 \\ z_0 - z_1 \end{bmatrix}$. *H* is unitary and it "reflects the complex plane with respect to the axis *x* and then it rotates counterclockwise an angle of $\frac{\pi}{4}$ radians".

<ロト < 回 > < 回 > < 三 > < 三 >

 $N^{\otimes n}$: $\mathbb{H}_n \to \mathbb{H}_n$ acts as the " $(2^n - 1)$ -complement", i.e. when it is evaluated at the basic vectors

$$N^{\otimes n}\left(\mathbf{e}_{\varepsilon_{n-1}\cdots\varepsilon_{1}\varepsilon_{0}}\right) = \mathbf{e}_{\delta_{n-1}\cdots\delta_{1}\delta_{0}} \tag{3}$$

where $(\varepsilon_{n-1}\cdots\varepsilon_1\varepsilon_0)_2 + (\delta_{n-1}\cdots\delta_1\delta_0)_2 = 2^n - 1$.

 $H^{\otimes n}$: $\mathbb{H}_n \to \mathbb{H}_n$ is such that

$$\mathcal{H}^{\otimes n}(\mathbf{e}_{0\cdots 0}) = rac{1}{(\sqrt{2})^n} iggl(\sum_{arepsilon \in \{0,1\}^n} \mathbf{e}_arepsilon iggr) \quad .$$

e.g. acting in the first basic vector $\mathbf{e}_{0\dots0}$ it produces the state that "averages" all the basic vectors with uniform weights.

< □ ▶ < □ ▶ < □ ▶ < □ ▶</pre>

(4)

Controlled negation

 $C : \mathbb{H}_2 \to \mathbb{H}_2$, $\mathbf{e}_x \otimes \mathbf{e}_y \mapsto \mathbf{e}_x \otimes \mathbf{e}_{x \oplus y}$ (\oplus : xor). The second qubit is the negation of the first input qubit if the second qubit was "on". Second input qubit serves as "control" to negate the first input qubit: "argument". *C* is not the tensor product of two unitary maps over \mathbb{H}_1 . Commuted controlled negation. $D : \mathbb{H}_2 \to \mathbb{H}_2$, $(\mathbf{x}, \mathbf{y}) \mapsto D(\mathbf{x}, \mathbf{y}) = C(\mathbf{y}, \mathbf{x})$. W.r.t. canonical basis of \mathbb{H}_2 ,

$$C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} , \quad D = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

C and *D* generate a subgroup under the "composition" operation:

0	1	С	D	CD	DC	CDC
1	1	С	D	CD	DC	CDC
С	C	1	CD	D	CDC	DC
D	D	DC	1	CDC	С	CD
CD	CD	CDC	С	DC	1	D
DC	DC		CDC	1	CD	С
CDC	CDC	CD	DC	С	D	1

This group is presented by its unit *I* (the identity map), two generators *C*, *D* and the relation CDC = DCD. The group is isomorphic to S_3 . Namely, if $\rho = (1, 2)$ is the reflection and $\phi = (1, 2, 3)$ is the order 3 cycle, then $C \leftrightarrow \rho$, $D \leftrightarrow \rho \circ \phi$.

Reverse

 $R_2 = CDC : \mathbb{H}_2 \to \mathbb{H}_2. R_2(\mathbf{e}_i \otimes \mathbf{e}_j) = \mathbf{e}_j \otimes \mathbf{e}_i.$

$$R_2 = \left[\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

For each $n \ge 2$:

$$R_n = R_2^{\otimes n} \left(\mathbf{e}_{\varepsilon_{n-1} \cdots \varepsilon_1 \varepsilon_0} \right) = \mathbf{e}_{\varepsilon_0 \varepsilon_1 \cdots \varepsilon_{n-1}}$$

The operator reverses the "input word".

(5)

The matrices

$$\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} , \quad \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} , \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} , \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(6)

- Hermitian and unitary: for $j = 0, 1, 2, 3, \sigma_j \sigma_j = \mathbf{1}_2$
- They conform a basis of $\mathbb{C}^{2\times 2}$:

$$\forall A = \begin{pmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{pmatrix} \in \mathbb{C}^{2 \times 2} \exists c_0, c_1, c_2, c_3 : A = c_0 \sigma_0 + c_1 \sigma_1 + c_2 \sigma_2 + c_3 \sigma_3$$
(7)
namely
$$(c_0, c_1, c_2, c_3) = \frac{1}{2} ((a_{00} + a_{11}), (a_{01} + a_{10}), i(a_{01} - a_{10}), (a_{00} - a_{11}))$$

• The following relations hold: for $1 \le j, k \le 3$

$$\sigma_{j}\sigma_{k} + \sigma_{k}\sigma_{j} = 2\delta_{jk}\mathbf{1}_{2}$$

$$\sigma_{j}\sigma_{k} = \delta_{jk}\mathbf{1}_{2} + i\sum_{\ell=1}^{3}\varepsilon_{jk\ell}\sigma_{\ell}$$
(8)
(9)

where
$$\varepsilon_{jk\ell} \in \{-1, 0, 1\},\$$

 $|\varepsilon_{jk\ell}| = 1 \Leftrightarrow \{j, k, \ell\} = \{1, 2, 3\}$ and $\varepsilon_{jk\ell} = 1 \Leftrightarrow (j, k, \ell)$ is a clockwise rotation.

• For a qubit $\mathbf{z} = z_0 \mathbf{e}_0 + z_1 \mathbf{e}_1$, with $|z_0|^2 + |z_1|^2 = 1$, we have that $\sigma_1 \mathbf{z} = z_1 \mathbf{e}_0 + z_0 \mathbf{e}_1$ and $\sigma_2 \mathbf{z} = -iz_1 \mathbf{e}_0 + iz_0 \mathbf{e}_1$ are bit-flip errors in \mathbf{z} , while $\sigma_3 \mathbf{z} = z_0 \mathbf{e}_0 - z_1 \mathbf{e}_1$ is a phase-flip error in \mathbf{z} .

Any state in \mathbb{H}_n , $\sigma(\mathbf{z}) = \sum_{\varepsilon \in \{0,1\}^n} z_\varepsilon \mathbf{e}_\varepsilon$ is determined by 2^n coordinates. If $U : \mathbb{H}_n \to \mathbb{H}_n$ is a quantum operator, the target state $\sigma(U\mathbf{z})$ consists also of 2^n coordinates.

A calculus involving an exponential number of terms is performed in just "one step" of the quantum computation.

- 2 Basic Notions on Quantum Computing
- 3 Quantum Gates
- Observables and the Heisenberg Principle of Uncertainty
- 5 Evaluation of Boolean Functions
- Deutsch-Jozsa's Algorithm

.

Observables

H: finite dimensional Hilbert space over C $E_{\mathbb{H}}$: unit sphere. $H : \mathbb{H} \to \mathbb{H}$ is selfadjoint if ∀**x**, **y** ∈ $\mathbb{H} \langle \mathbf{x} | H \mathbf{y} \rangle = \langle H \mathbf{x} | \mathbf{y} \rangle$, or $\overline{H}^T = H$. A selfadjoint map is also called an observable. For any observable *H*, there exists an orthonormal basis of \mathbb{H} consisting of eigenvectors of *H*. Let (**f**_{*i*})_{*i*} be such a basis. Then for any $\mathbf{z} = \sum_i a_i \mathbf{f}_i \in E_{\mathbb{H}}$, with $\sum_i |a_i|^2 = 1$,

$$\langle \mathbf{z} | H \mathbf{z} \rangle = \left\langle \sum_{i} a_{i} \mathbf{f}_{i} | H \left(\sum_{j} a_{j} \mathbf{f}_{j} \right) \right\rangle = \left\langle \sum_{i} a_{i} f_{i} | \sum_{j} a_{j} \lambda_{j} \mathbf{f}_{j} \right\rangle = \sum_{i} \lambda_{i} |a_{i}|^{2} = E(\lambda_{i})$$

 $\langle z|Hz \rangle$ is the expected observed value of z under H.

Standard deviation

$$\Delta H: \mathbb{H} \to \mathbb{R} , \mathbf{x} \mapsto \Delta H(\mathbf{x}) = \sqrt{\langle H^2 \mathbf{x} | \mathbf{x} \rangle - \langle H \mathbf{x} | \mathbf{x} \rangle^2}.$$

Morales-Luna (CINVESTAV)

QC based on Tensor Products

5-th Int. WS App. Cat. Th. 25 / 33

Let $H_1, H_2 : \mathbb{H} \to \mathbb{H}$ be two observables. Then $\forall x \in \mathbb{H}$:

 $\langle H_2 \circ H_1 \mathbf{x} | \mathbf{x} \rangle \langle \mathbf{x} | H_2 \circ H_1 \mathbf{x} \rangle = \langle H_1 \circ H_2 \mathbf{x} | \mathbf{x} \rangle \langle \mathbf{x} | H_1 \circ H_2 \mathbf{x} \rangle = |\langle H_1 \mathbf{x} | H_2 \mathbf{x} \rangle|^2,$

and, from the Schwartz inequality, it follows $|\langle H_1 \mathbf{x} | H_2 \mathbf{x} \rangle|^2 \le ||H_1 \mathbf{x}||^2 ||H_2 \mathbf{x}||^2$.

Robertson-Schrödinger Inequality

$$\frac{1}{4} |\langle (H_1 \circ H_2 - H_2 \circ H_1) \mathbf{x} | \mathbf{x} \rangle|^2 \le ||H_1 \mathbf{x}||^2 ||H_2 \mathbf{x}||^2.$$
(10)

Morales-Luna (CINVESTAV)

 $[H_1, H_2] = H_1 \circ H_2 - H_2 \circ H_1$: Commutator . H_1, H_2 are compatible observables if $[H_1, H_2] = 0$.

Heisenberg Principle of Uncertainty

For any two observables H_1 , H_2 and any $\mathbf{z} \in E_{\mathbb{H}}$,

$$|\triangle H_1(\mathbf{z})|^2 |\triangle H_2(\mathbf{z})|^2 \ge \frac{1}{4} \left| \langle \mathbf{z} | [H_1, H_2] \, \mathbf{z} \rangle \right|^2. \tag{11}$$

If the observables are incompatible, whenever H_1 is measured with greater precision, H_2 will be with lesser precision, and conversely. A state **z** is decomposable if is of the form $\mathbf{z}_1 \otimes \cdots \otimes \mathbf{z}_n = \sigma(\mathbf{z})$, with $\mathbf{z}_i \in \mathbb{H}_1$. A non-decomposable state is an entangled state.

27 / 33

- 2 Basic Notions on Quantum Computing
- 3 Quantum Gates
- Observables and the Heisenberg Principle of Uncertainty
- 5 Evaluation of Boolean Functions
 - Deutsch-Jozsa's Algorithm

(I) < ((i) <

Evaluation of Boolean Functions

- $V = \{0, 1\}$: set of classical truth values
- There are 2^{2^n} Boolean functions $V^n \to V$
- There are 2^{n2^n} functions $V^n \to V^n$
- Each of the 2ⁿ assignments ε = (ε_{n-1},...,ε₁, ε₀) ∈ Vⁿ corresponds with an e_ε ∈ H_n of the canonical basis of H_n.
- Let $f: V^n \to V$ be a Boolean function.
 - U_f : a permutation $2^{n+1} \times 2^{n+1}$ -matrix s.t. $U_f(\mathbf{e}_{\varepsilon} \otimes \mathbf{e}_{\mathbf{0}}) = (\mathbf{e}_{\varepsilon} \otimes \mathbf{e}_{f(\varepsilon)})$.
 - Uf is an unitary matrix

Let
$$A \subset V^n$$
 and $a = \operatorname{card}(A)$. If $\mathbf{u}_A = \frac{1}{\sqrt{a}} \sum_{\varepsilon \in A} \mathbf{e}_{\varepsilon} \otimes \mathbf{e}_0$ then
 $U_f(\mathbf{u}_A) = \frac{1}{\sqrt{a}} \sum_{\varepsilon \in A} \mathbf{e}_{\varepsilon} \otimes \mathbf{e}_{f(\varepsilon)}$.

In just one step, the weighted average of the images of all the assignments in A is obtained. A final measurement selects a pair $\mathbf{e}_{\varepsilon} \otimes \mathbf{e}_{f(\varepsilon)}$, with $\varepsilon \in \mathbf{A}$ each with probability $\frac{1}{a}$.

Morales-Luna (CINVESTAV)

- 2 Basic Notions on Quantum Computing
- 3 Quantum Gates
- Observables and the Heisenberg Principle of Uncertainty
- 5 Evaluation of Boolean Functions
- 6 Deutsch-Jozsa's Algorithm

(I) < ((i) <

Let $V = \{0, 1\}$ be the set of classical truth values. Among the $2^2 = 4$ Boolean functions $f : V \rightarrow V$, two are constant and two are balanced.

Deutsch-Jozsa's problem

Decide, for a given *f*, whether it is constant or balanced "in just one computing step".

Let U_f be the permutation $2^2 \times 2^2$ -matrix s.t.

$$U_f(\mathbf{e}_x \otimes \mathbf{e}_z) = (\mathbf{e}_x \otimes \mathbf{e}_{(z+f(x)) \mod 2}).$$

 U_f is an unitary matrix and is similar to the "controlled negation" gate. Using Hadamard's operator H, let $H_2 = H \otimes H$.

 $H(\mathbf{e}_0) = \mathbf{x}_0 = \frac{1}{\sqrt{2}}(\mathbf{e}_0 + \mathbf{e}_1)$ and $H(\mathbf{e}_1) = \mathbf{x}_1 = \frac{1}{\sqrt{2}}(\mathbf{e}_0 - \mathbf{e}_1) \in \mathbb{H}_1$ hence $H_2(\mathbf{e}_0 \otimes \mathbf{e}_1) = H(\mathbf{e}_0) \otimes H(\mathbf{e}_1) = \mathbf{x}_0 \otimes \mathbf{x}_1 = \frac{1}{2}(\mathbf{e}_{00} - \mathbf{e}_{01} + \mathbf{e}_{10} - \mathbf{e}_{11}) \in \mathbb{H}_2.$ $U_{f}(\mathbf{x}_{0} \otimes \mathbf{x}_{1}) = \frac{1}{2}(\mathbf{e}_{0,f(0)} - \mathbf{e}_{0,\overline{f(0)}} + \mathbf{e}_{1,f(1)} - \mathbf{e}_{1,\overline{f(1)}})$ $= \begin{cases} \mathbf{x}_0 \otimes \mathbf{x}_1 & \text{if } f = f_0 \\ \mathbf{x}_1 \otimes \mathbf{x}_1 & \text{if } f = f_1 \\ -\mathbf{x}_1 \otimes \mathbf{x}_1 & \text{if } f = f_2 \\ -\mathbf{x}_0 \otimes \mathbf{x}_1 & \text{if } f = f_3 \end{cases}$

Morales-Luna (CINVESTAV)

A > 4 > > 4 > > -

$$H_2 U_f H_2(\mathbf{e}_0 \otimes \mathbf{e}_1) = H_2 U_f(\mathbf{x}_0 \otimes \mathbf{x}_1) = \begin{cases} H\mathbf{x}_0 \otimes H\mathbf{x}_1 & \text{if } f = f_1 \\ -H\mathbf{x}_1 \otimes H\mathbf{x}_1 & \text{if } f = f_2 \\ -H\mathbf{x}_0 \otimes H\mathbf{x}_1 & \text{if } f = f_3 \end{cases}$$
$$= \begin{cases} \mathbf{e}_0 \otimes \mathbf{e}_1 & \text{if } f = f_1 \\ \mathbf{e}_1 \otimes \mathbf{e}_1 & \text{if } f = f_1 \\ -\mathbf{e}_1 \otimes \mathbf{e}_1 & \text{if } f = f_1 \\ -\mathbf{e}_0 \otimes \mathbf{e}_1 & \text{if } f = f_2 \\ -\mathbf{e}_0 \otimes \mathbf{e}_1 & \text{if } f = f_3 \end{cases}$$

The quantum procedure $H_2U_fH_2$, from the basic vector $\mathbf{e}_0 \otimes \mathbf{e}_1$ is producing a vector of the form $\varepsilon \mathbf{e}_S \otimes \mathbf{e}_1$ where $\varepsilon \in \{-1, 1\}$ is a sign and *S* is a signal indicating whether *f* is balanced or not. *S* coincides with $f(0) \oplus f(1)$. The measurement principle outputs $\mathbf{e}_S \otimes \mathbf{e}_1$ with probability $\varepsilon^2 = 1$. It gives the value *S* from the first qubit.

Live of Live if f f