Quantum Computing based on Tensor Products Basics and Illustrative Procedures

Guillermo Morales Luna

Computer Science Section
CINVESTAV-IPN

E-mail: gmorales@cs.cinvestav.mx

5-th International Workshop on Applied Category Theory Graph-Operad Logic

Agenda

(1) Tensor Products
(2) Basic Notions on Quantum Computing
(3) Quantum Gates

4 Observables and the Heisenberg Principle of Uncertainty
(5) Evaluation of Boolean Functions

6 Deutsch-Jozsa's Algorithm

Agenda

(1) Tensor Products
(2) Basic Notions on Quantum Computing
(3) Quantum Gates
4) Observables and the Heisenberg Principle of Uncertainty
(5) Evaluation of Boolean Functions
(6) Deutsch-Jozsa's Algorithm

Vector and Space Products

\mathbb{U}, \mathbb{V} : two vector spaces over \mathbb{C}.
$\mathcal{L}(\mathbb{U}, \mathbb{V})$: space of linear maps $\mathbb{U} \rightarrow \mathbb{V}$.
$\mathbb{U}^{*}=\mathcal{L}(\mathbb{U}, \mathbb{C})$: Dual space of $\mathbb{U} . u^{*} \in \mathbb{U}^{*}, u \in \mathbb{U},\left\langle u^{*} \mid u\right\rangle:=u^{*}(u)$.
$\langle\cdot \mid\rangle: \mathbb{U}^{*} \times \mathbb{U} \rightarrow \mathbb{C}$ is a bilinear map.
$\mathbb{U} \otimes \mathbb{V}=\mathcal{L}\left(\mathbb{V}^{*}, \mathbb{U}\right)$: Tensor product of \mathbb{U} and \mathbb{V}.

Fact

$\mathbb{U} \times \mathbb{V}$ is identified with a subset of $\mathbb{U} \otimes \mathbb{V}$.
$\Phi: \mathbb{U} \times \mathbb{V} \rightarrow \mathbb{U} \otimes \mathbb{V}, \forall(u, v) \in \mathbb{U} \times \mathbb{V}, \Phi(u, v):\left[w^{*} \mapsto\left\langle w^{*} \mid v\right\rangle u\right] \in \mathcal{L}\left(\mathbb{V}^{*}, \mathbb{U}\right)$.
Given $u \in \mathbb{U}, v \in \mathbb{V}, u \otimes v:=\Phi(u, v) \in \mathcal{L}\left(\mathbb{V}^{*}, \mathbb{U}\right)$: tensor product of u and v.

$$
\begin{array}{lll}
(z u) \otimes v=z(u \otimes v) & \left(u_{1}+u_{2}\right) \otimes v=\left(u_{1} \otimes v\right)+\left(u_{2} \otimes v\right) \\
u \otimes(z v)=z(u \otimes v) & u \otimes\left(v_{1}+v_{2}\right)=\left(u \otimes v_{1}\right)+\left(u \otimes v_{2}\right)
\end{array}
$$

The tensor product is not commutative, nor even for $\mathbb{U}=\mathbb{V}$.

Fact

If $\operatorname{dim} \mathbb{U}=m$ and $\operatorname{dim} \mathbb{V}=n$ then $\operatorname{dim}(\mathbb{U} \otimes \mathbb{V})=m n$.
Namely, $\operatorname{dim}\left(\mathbb{V}^{*}\right)=n$ and $\operatorname{dim}\left(\mathcal{L}\left(\mathbb{V}^{*}, \mathbb{U}\right)\right)=n m$. Thus, if $\mathbb{U}=\mathbb{C}^{m}$ and $\mathbb{V}=\mathbb{C}^{n}$ then, $\mathbb{U} \otimes \mathbb{V}=\mathbb{C}^{m n}$.

Fact

If $B_{\mathbb{U}}=\left\{u_{0}, u_{1}, \ldots, u_{m-1}\right\}$ is a basis of \mathbb{U} and $B_{\mathbb{V}}=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ is a basis of \mathbb{V} then $\left(u_{i} \otimes v_{j}\right)_{i<m, j<n}$ is a basis of $\mathbb{U} \otimes \mathbb{V}$, where for each $i, j, u_{i} \otimes v_{j}$ is the map $w^{*}=\sum_{k=0}^{n-1} w_{k} v_{k}^{*} \mapsto w_{j} u_{j}$. This is called the product basis.

If $B_{\mathbb{V}^{*}}=\left\{v_{0}^{*}, v_{1}^{*}, \ldots, v_{n-1}^{*}\right\}$ is a basis of \mathbb{V}^{*}, where $\left\langle v_{j_{1}}^{*} \mid v_{j_{2}}\right\rangle=\delta_{j_{1} j_{2}}$.
The map $u_{i} \otimes v_{j}$ is represented by $D_{i j}=\left(\delta_{i_{1} j_{i j}}\right)_{i_{1}<m, j_{1}<n}$.
Given $u=\sum_{i=0}^{m-1} a_{i} u_{i} \in \mathbb{U}, v=\sum_{j=0}^{n-1} b_{j} v_{j} \in \mathbb{V}$, and $w^{*}=\sum_{j=0}^{n-1} c_{j} v_{j}^{*} \in \mathbb{V}^{*}$ then

$$
(u \otimes v)\left(w^{*}\right)=\sum_{i=0}^{m-1} a_{i}\left(\sum_{j=0}^{n-1} b_{j} c_{j}\right) u_{i}=\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} a_{i} b_{j}\left(u_{i} \otimes v_{j}\right)\left(w^{*}\right)
$$

thus $u \otimes v=\sum_{j=0}^{m-1} \sum_{j=0}^{n-1} a_{i} b_{j}\left(u_{i} \otimes v_{j}\right)$.

Products of Linear Maps

U_{1}, U_{2} : vector spaces of dimensions $m_{1}, m_{2} . K: U_{1} \rightarrow U_{2}$ linear. The dual $K^{*}: U_{2}^{*} \rightarrow U_{1}^{*}$ is defined by

$$
\forall u_{1} \in U_{1}, u_{2} \in U_{2}:\left\langle K^{*}\left(u_{2}^{*}\right) \mid u_{1}\right\rangle=\left\langle u_{2} \mid K\left(u_{1}\right)\right\rangle .
$$

Fact

If K is represented, with respect to basis $B_{U_{1}}$ and $B_{U_{2}}$, by $M_{K} \in \mathbb{C}^{m_{2} \times m_{1}}$ then K^{*} is represented by its Hermitian $M_{K}^{H} \in \mathbb{C}^{m_{1} \times m_{2}}$.
V_{1}, V_{2} : other two vector spaces of dimensions $n_{1}, n_{2} . L: V_{1} \rightarrow V_{2}$ linear. $K \otimes L: U_{1} \otimes V_{1} \rightarrow U_{2} \otimes V_{2}$ is such that

$$
\forall u_{1} \in U_{1}, v_{1} \in V_{1}:(K \otimes L)\left(u_{1} \otimes v_{1}\right)=K\left(u_{1}\right) \otimes L\left(v_{1}\right)
$$

Fact

If K is represented, with respect to the basis $B_{U_{1}}$ and $B_{U_{2}}$, by the matrix $M_{K} \in \mathbb{C}^{m_{2} \times m_{1}}$ and L is represented, with respect to the basis $B_{V_{1}}$ and $B_{V_{2}}$, by the matrix $M_{L} \in \mathbb{C}^{n_{2} \times n_{1}}$ then $(K \otimes L)$ is represented, with respect to the product basis, by the following tensor product matrix:
$M_{K} \otimes M_{L}=\left[\begin{array}{cccc}m_{00}^{(K)} M_{L} & m_{01}^{(K)} M_{L} & \cdots & m_{0, m_{1}-1}^{(K)} M_{L} \\ m_{10}^{(K)} M_{L} & m_{11}^{(K)} M_{L} & \cdots & m_{1, m_{1}-1}^{(K)} M_{L} \\ \vdots & \vdots & \ddots & \vdots \\ m_{m_{2}-1,0}^{(K)} M_{L} & m_{m_{2}-1,1}^{(K)} M_{L} & \cdots & m_{m_{2}-1, m_{1}-1}^{(K)} M_{L}\end{array}\right] \in \mathbb{C}^{m_{2} n_{2} \times m_{1} n_{1}}$.
$U: m$-dimensional vector space, $K: U \rightarrow U$ linear: $K^{\otimes 1}=K$, $K^{\otimes n}=K^{\otimes(n-1)} \otimes K: n$-th tensorial power.
If $M_{K}=\left(m_{i j}\right)_{i, j<m}$ represents K, then $M_{K^{\otimes n}}=\left(m_{i j}^{(n)}\right)_{i, j<m^{n}}$ represents $K^{\otimes n}$.
Let's write each $i<m^{n}$ in base $m: i=\sum_{j=0}^{n-1} \xi_{j} m^{j}=\left(\xi_{n-1} \cdots \xi_{1} \xi_{0}\right)_{m}=(\xi)_{m}$. If $\xi=\xi_{n-1} \cdots \xi_{1} \xi_{0}$, let $\operatorname{car}(\xi)=\xi_{0}$ and $\operatorname{cdr}(\xi)=\xi_{n-1} \cdots \xi_{1}$

$$
\begin{aligned}
(\xi)_{m} & =m(\operatorname{cdr}(\xi))_{m}+\operatorname{car}(\xi) \\
\operatorname{car}(\xi) & =(\xi)_{m} \bmod m \text { and } \\
(\operatorname{cdr}(\xi))_{m} & =\left((\xi)_{m}-\operatorname{car}(\xi)\right) / m
\end{aligned}
$$

Then

$$
\begin{equation*}
m_{\xi(i), \xi(j)}^{(n)}=m_{\operatorname{cdr}(\xi(i)), \operatorname{cdr}(\xi(j))}^{(n-1)} \cdot m_{\operatorname{car}(\xi(i)), \operatorname{car}(\xi(j))} \tag{1}
\end{equation*}
$$

Agenda

(1) Tensor Products
(2) Basic Notions on Quantum Computing
(3) Quantum Gates
4) Observables and the Heisenberg Principle of Uncertainty
(5) Evaluation of Boolean Functions
(6) Deutsch-Jozsa's Algorithm

Measurement Principle

Complex matrices. $\mathbb{C}^{m \times n}$: space of $(m \times n)$-matrices with complex entries
Transpose conjugate. $M=\left(m_{i j}\right)_{i, j} \in \mathbb{C}^{m \times n} \Rightarrow M^{H}=\left(m_{j i}^{H}\right)_{j i}=\left(\bar{m}_{i j}\right)_{j i}$
Unitary matrix. $M^{H} M=\mathbf{1}_{n n} .\left.M\right|_{E_{m}}: E_{m} \rightarrow E_{m}$.
Hermitian matrix. $M^{H}=M$
Set of states. $\mathbb{C}^{m \times 1}$
Unit Euclidean sphere. $E_{m}=\left\{\mathbf{v} \in \mathbb{C}^{m} \mid 1=\mathbf{v}^{H} \mathbf{v}=:\langle\mathbf{v} \mid \mathbf{v}\rangle\right\}$.
Canonical basis. $\mathbf{e}_{j}=\left(\delta_{i j}\right)_{i<m}$

Connotation

A state $\mathbf{v}=\left(v_{i 1}\right)_{i<m}$ outputs index i with probability $\left|v_{i 1}\right|^{2}=\operatorname{Re}\left(v_{i 1}\right)^{2}+\operatorname{Im}\left(v_{i 1}\right)^{2}$.

Measurement Principle

Being at $\mathbf{v}=\left(v_{i 1}\right)_{i<m}$, with probability $\left|v_{i 1}\right|^{2}$:

- The index i is output and
- the computing control is transferred to the state \mathbf{e}_{i}.

This principle is applied just once at the end of any quantum algorithm, it ptoduces a halting state.

If m is a power of 2 :

Quantum gate. Any square $(m \times m)$-unitary matrix $U \in \mathbb{C}^{m \times m}$.
Quantum algorithm. Composition of a finite number of quantum gates, followed by a measurement.

Qubits and Words of Quantum Information

For the particular case of $m=2$,

- $\mathbf{e}_{0}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$ and $\mathbf{e}_{1}=\left[\begin{array}{ll}0 & 1\end{array}\right]^{T}$: Canonical basis of \mathbb{C}^{2}
- \mathbf{e}_{0} is identified with the truth value false, or zero, and \mathbf{e}_{1} with the truth value true, or one.
- qubit: $z_{0} \mathbf{e}_{0}+z_{1} \mathbf{e}_{1}$, with $z_{0}, z_{1} \in \mathbb{C},\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}=1$
- $\mathbb{H}_{1}=\mathbb{C}^{2}, \mathbb{H}_{n}=\mathbb{H}_{n-1} \otimes \mathbb{H}_{1}$.
- $\operatorname{dim}\left(\mathbb{H}_{n}\right)=2^{n}$, with basis $B_{\mathbb{H}_{n}}=\left(\mathbf{e}_{\varepsilon_{n-1} \cdots \varepsilon_{1} \varepsilon_{0}}\right)_{\varepsilon_{n-1}, \ldots, \varepsilon_{1}, \varepsilon_{0} \in\{0,1\}}$

Conventional Dirac's "ket" notation

$$
\begin{align*}
\left|\varepsilon_{n-1} \cdots \varepsilon_{1} \varepsilon_{0}\right\rangle & :=\mathbf{e}_{\varepsilon_{n-1} \cdots \varepsilon_{1} \varepsilon_{0}} \\
& =\mathbf{e}_{\varepsilon_{n-1}} \otimes \cdots \otimes \mathbf{e}_{\varepsilon_{1}} \otimes \mathbf{e}_{\varepsilon_{0}} \\
& =:\left|\varepsilon_{n-1}\right\rangle \cdots\left|\varepsilon_{1}\right\rangle\left|\varepsilon_{0}\right\rangle \tag{2}
\end{align*}
$$

- $\llbracket 0,2^{n}-1 \rrbracket \approx\{0,1\}^{n}, i \leftrightarrow \varepsilon=\varepsilon_{n-1} \cdots \varepsilon_{1} \varepsilon_{0}$
- Information word of length $n: \mathbf{z} \in E_{2^{n}} \Rightarrow \mathbf{z}=\sum_{\varepsilon \in\{0,1\}^{n}} Z_{\varepsilon} \mathbf{e}_{\varepsilon}$

Agenda

(1) Tensor Products

(2) Basic Notions on Quantum Computing
(3) Quantum Gates
4) Observables and the Heisenberg Principle of Uncertainty
(5) Evaluation of Boolean Functions

6 Deutsch-Jozsa's Algorithm

Quantum Gates

Identity

$I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] . I: \mathbb{H}_{1} \rightarrow \mathbb{H}_{1}$ is the identity operator.

Rotation

For $t \in[-\pi, \pi], \operatorname{Rot}_{t}=\left[\begin{array}{rr}\cos (t) & -\sin (t) \\ \sin (t) & \cos (t)\end{array}\right]: \mathbb{H}_{1} \rightarrow \mathbb{H}_{1}$
If $\mathbf{x}_{p}=\sqrt{p} \mathbf{e}_{0}+\sqrt{1-p} \mathbf{e}_{1}$ then
$\operatorname{Rot}_{t}\left(\mathbf{x}_{p}\right)=(\cos (t) \sqrt{p}-\sin (t) \sqrt{1-p}) \mathbf{e}_{0}+(\cos (t) \sqrt{1-p}+\sin (t) \sqrt{p}) \mathbf{e}_{1}$.
For $t_{0 p}=\cos ^{-1}(-\sqrt{p}), \operatorname{Rot}_{t_{0 p}}\left(\mathbf{x}_{p}\right)=-\mathbf{e}_{0}$: gives 0 with probability $(-1)^{2}=1$.
For $t_{1 p}=\cos ^{-1}(\sqrt{1-p}), \operatorname{Rot}_{t_{1 p}}\left(\mathbf{x}_{p}\right)=\mathbf{e}_{1}$: gives 1 with probability 1 .
A rotation acts as an interference, either constructive or destructive.

Negation

$N=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Clearly, $N:\left[\begin{array}{c}z_{0} \\ z_{1}\end{array}\right] \mapsto\left[\begin{array}{l}z_{1} \\ z_{0}\end{array}\right] . N$ is unitary and it switches signals. Geometrically it is "a reflection along the main diagonal".

Hadamard

$H=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$. Clearly, $H:\left[\begin{array}{c}z_{0} \\ z_{1}\end{array}\right] \mapsto \frac{1}{\sqrt{2}}\left[\begin{array}{c}z_{0}+z_{1} \\ z_{0}-z_{1}\end{array}\right] \cdot H$ is unitary and it "reflects the complex plane with respect to the axis x and then it rotates counterclockwise an angle of $\frac{\pi}{4}$ radians".
$N^{\otimes n}: \mathbb{H}_{n} \rightarrow \mathbb{H}_{n}$ acts as the "($2^{n}-1$)-complement", i.e. when it is evaluated at the basic vectors

$$
\begin{equation*}
N^{\otimes n}\left(\mathbf{e}_{\varepsilon_{n-1} \cdots \varepsilon_{1} \varepsilon_{0}}\right)=\mathbf{e}_{\delta_{n-1} \cdots \delta_{1} \delta_{0}} \tag{3}
\end{equation*}
$$

where $\left(\varepsilon_{n-1} \cdots \varepsilon_{1} \varepsilon_{0}\right)_{2}+\left(\delta_{n-1} \cdots \delta_{1} \delta_{0}\right)_{2}=2^{n}-1$.
$H^{\otimes n}: \mathbb{H}_{n} \rightarrow \mathbb{H}_{n}$ is such that

$$
\begin{equation*}
H^{\otimes n}\left(\mathbf{e}_{0 \ldots 0}\right)=\frac{1}{(\sqrt{2})^{n}}\left(\sum_{\varepsilon \in\{0,1\}^{n}} \mathbf{e}_{\varepsilon}\right) \tag{4}
\end{equation*}
$$

e.g. acting in the first basic vector $\mathbf{e}_{0 \ldots 0}$ it produces the state that "averages" all the basic vectors with uniform weights.

Controlled negation

$C: \mathbb{H}_{2} \rightarrow \mathbb{H}_{2}, \mathbf{e}_{x} \otimes \mathbf{e}_{y} \mapsto \mathbf{e}_{x} \otimes \mathbf{e}_{x \oplus y}(\oplus:$ xor $)$. The second qubit is the negation of the first input qubit if the second qubit was "on". Second input qubit serves as "control" to negate the first input qubit: "argument". C is not the tensor product of two unitary maps over \mathbb{H}_{1}.
Commuted controlled negation. $D: \mathbb{H}_{2} \rightarrow \mathbb{H}_{2},(\mathbf{x}, \mathbf{y}) \mapsto D(\mathbf{x}, \mathbf{y})=C(\mathbf{y}, \mathbf{x})$. W.r.t. canonical basis of \mathbb{H}_{2},

$$
C=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right], \quad D=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

C and D generate a subgroup under the "composition" operation:

\circ	1	C	D	$C D$	$D C$	$C D C$
1	1	C	D	$C D$	$D C$	$C D C$
C	C	1	$C D$	D	$C D C$	$D C$
D	D	$D C$	1	$C D C$	C	$C D$
$C D$	$C D$	$C D C$	C	$D C$	1	D
$D C$	$D C$	D	$C D C$	1	$C D$	C
$C D C$	$C D C$	$C D$	$D C$	C	D	1

This group is presented by its unit I (the identity map), two generators C, D and the relation $C D C=D C D$. The group is isomorphic to S_{3}. Namely, if $\rho=(1,2)$ is the reflection and $\phi=(1,2,3)$ is the order 3 cycle, then $C \leftrightarrow \rho, D \leftrightarrow \rho \circ \phi$.

Reverse

$R_{2}=C D C: \mathbb{H}_{2} \rightarrow \mathbb{H}_{2} . R_{2}\left(\mathbf{e}_{i} \otimes \mathbf{e}_{j}\right)=\mathbf{e}_{j} \otimes \mathbf{e}_{i}$.

$$
R_{2}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

For each $n \geq 2$:

$$
\begin{equation*}
R_{n}=R_{2}^{\otimes n}\left(\mathbf{e}_{\varepsilon_{n-1} \cdots \varepsilon_{1} \varepsilon_{0}}\right)=\mathbf{e}_{\varepsilon_{0} \varepsilon_{1} \cdots \varepsilon_{n-1}} \tag{5}
\end{equation*}
$$

The operator reverses the "input word".

Pauli matrices

The matrices

$\sigma_{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \quad \sigma_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{rr}0 & -i \\ i & 0\end{array}\right) \quad, \quad \sigma_{3}=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$

- Hermitian and unitary: for $j=0,1,2,3, \sigma_{j} \sigma_{j}=\mathbf{1}_{2}$
- They conform a basis of $\mathbb{C}^{2 \times 2}$:

$$
\forall A=\left(\begin{array}{ll}
a_{00} & a_{01} \tag{7}\\
a_{10} & a_{11}
\end{array}\right) \in \mathbb{C}^{2 \times 2} \exists c_{0}, c_{1}, c_{2}, c_{3}: A=c_{0} \sigma_{0}+c_{1} \sigma_{1}+c_{2} \sigma_{2}+c_{3} \sigma_{3}
$$

namely

$$
\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=\frac{1}{2}\left(\left(a_{00}+a_{11}\right),\left(a_{01}+a_{10}\right), i\left(a_{01}-a_{10}\right),\left(a_{00}-a_{11}\right)\right.
$$

- The following relations hold: for $1 \leq j, k \leq 3$

$$
\begin{align*}
\sigma_{j} \sigma_{k}+\sigma_{k} \sigma_{j} & =2 \delta_{j k} \mathbf{1}_{2} \tag{8}\\
\sigma_{j} \sigma_{k} & =\delta_{j k} \mathbf{1}_{2}+i \sum_{\ell=1}^{3} \varepsilon_{j k \ell} \sigma_{\ell} \tag{9}
\end{align*}
$$

where $\varepsilon_{j k \ell} \in\{-1,0,1\}$,
$\left|\varepsilon_{j k \ell}\right|=1 \Leftrightarrow\{j, k, \ell\}=\{1,2,3\}$ and
$\varepsilon_{j k \ell}=1 \Leftrightarrow(j, k, \ell)$ is a clockwise rotation.

- For a qubit $\mathbf{z}=z_{0} \mathbf{e}_{0}+z_{1} \mathbf{e}_{1}$, with $\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}=1$, we have that $\sigma_{1} \mathbf{z}=z_{1} \mathbf{e}_{0}+z_{0} \mathbf{e}_{1}$ and $\sigma_{2} \mathbf{z}=-i z_{1} \mathbf{e}_{0}+i z_{0} \mathbf{e}_{1}$ are bit-flip errors in \mathbf{z}, while $\sigma_{3} \mathbf{z}=z_{0} \mathbf{e}_{0}-z_{1} \mathbf{e}_{1}$ is a phase-flip error in \mathbf{z}.

Quantum speed-up

Any state in $\mathbb{H}_{n}, \sigma(\mathbf{z})=\sum_{\varepsilon \in\{0,1\}^{n}} Z_{\varepsilon} \mathbf{e}_{\varepsilon}$ is determined by 2^{n} coordinates. If $U: \mathbb{H}_{n} \rightarrow \mathbb{H}_{n}$ is a quantum operator, the target state $\sigma(\mathrm{Uz})$ consists also of 2^{n} coordinates.
A calculus involving an exponential number of terms is performed in just "one step" of the quantum computation.

Agenda

(1) Tensor Products
2) Basic Notions on Quantum Computing
(3) Quantum Gates

4 Observables and the Heisenberg Principle of Uncertainty
(5) Evaluation of Boolean Functions
(6) Deutsch-Jozsa's Algorithm

Observables

$\mathbb{H}:$ finite dimensional Hilbert space over $\mathbb{C} \quad E_{\mathbb{H}}$: unit sphere. $H: \mathbb{H} \rightarrow \mathbb{H}$ is selfadjoint if $\forall \mathbf{x}, \mathbf{y} \in \mathbb{H}\langle\mathbf{x} \mid H \mathbf{y}\rangle=\langle H \mathbf{x} \mid \mathbf{y}\rangle$, or $\bar{H}^{T}=H$.
A selfadjoint map is also called an observable.
For any observable H, there exists an orthonormal basis of \mathbb{H} consisting of eigenvectors of H. Let $\left(\mathbf{f}_{i}\right)_{i}$ be such a basis.
Then for any $\mathbf{z}=\sum_{i} a_{i} f_{i} \in E_{\mathbb{H}}$, with $\sum_{i}\left|a_{i}\right|^{2}=1$,

$$
\langle\mathbf{z} \mid H \mathbf{z}\rangle=\left\langle\sum_{i} \mathrm{a}_{i} \mathbf{f}_{j} \mid H\left(\sum_{j} \mathrm{a}_{j} \mathbf{f}_{j}\right)\right\rangle=\left\langle\sum_{i} \mathrm{a}_{i} \mathbf{f}_{j} \mid \sum_{j} \mathrm{a}_{j} \lambda_{j} \mathbf{f}_{j}\right\rangle=\sum_{i} \lambda_{i}\left|\mathrm{a}_{i}\right|^{2}=E\left(\lambda_{i}\right)
$$

$\langle\mathbf{z} \mid \mathrm{Hz}\rangle$ is the expected observed value of \mathbf{z} under H.

Standard deviation

$$
\Delta H: \mathbb{H} \rightarrow \mathbb{R}, \mathbf{x} \mapsto \Delta H(\mathbf{x})=\sqrt{\left\langle H^{2} \mathbf{x} \mid \mathbf{x}\right\rangle-\langle H \mathbf{x} \mid \mathbf{x}\rangle^{2}} .
$$

Let $H_{1}, H_{2}: \mathbb{H} \rightarrow \mathbb{H}$ be two observables. Then $\forall \mathbf{x} \in \mathbb{H}$:

$$
\left\langle H_{2} \circ H_{1} \mathbf{x} \mid \mathbf{x}\right\rangle\left\langle\mathbf{x} \mid H_{2} \circ H_{1} \mathbf{x}\right\rangle=\left\langle H_{1} \circ H_{2} \mathbf{x} \mid \mathbf{x}\right\rangle\left\langle\mathbf{x} \mid H_{1} \circ H_{2} \mathbf{x}\right\rangle=\left|\left\langle H_{1} \mathbf{x} \mid H_{2} \mathbf{x}\right\rangle\right|^{2},
$$ and, from the Schwartz inequality, it follows $\left|\left\langle H_{1} \mathbf{x} \mid H_{2} \mathbf{x}\right\rangle\right|^{2} \leq\left\|H_{1} \mathbf{x}\right\|^{2}\left\|H_{2} \mathbf{x}\right\|^{2}$.

Robertson-Schrödinger Inequality

$$
\begin{equation*}
\frac{1}{4}\left|\left\langle\left(H_{1} \circ H_{2}-H_{2} \circ H_{1}\right) \mathbf{x} \mid \mathbf{x}\right\rangle\right|^{2} \leq\left\|H_{1} \mathbf{x}\right\|^{2}\left\|H_{2} \mathbf{x}\right\|^{2} . \tag{10}
\end{equation*}
$$

$\left[H_{1}, H_{2}\right]=H_{1} \circ H_{2}-H_{2} \circ H_{1}$: Commutator . H_{1}, H_{2} are compatible observables if $\left[H_{1}, H_{2}\right]=0$.

Heisenberg Principle of Uncertainty

For any two observables H_{1}, H_{2} and any $\mathbf{z} \in E_{H}$,

$$
\begin{equation*}
\left|\Delta H_{1}(\mathbf{z})\right|^{2}\left|\Delta H_{2}(\mathbf{z})\right|^{2} \geq \frac{1}{4}\left|\left\langle\mathbf{z} \mid\left[H_{1}, H_{2}\right] \mathbf{z}\right\rangle\right|^{2} \tag{11}
\end{equation*}
$$

If the observables are incompatible, whenever H_{1} is measured with greater precision, H_{2} will be with lesser precision, and conversely.
A state \mathbf{z} is decomposable if is of the form $\mathbf{z}_{1} \otimes \cdots \otimes \mathbf{z}_{n}=\sigma(\mathbf{z})$, with $\mathbf{z}_{i} \in \mathbb{H}_{1}$. A non-decomposable state is an entangled state.

Agenda

(1) Tensor Products
(2) Basic Notions on Quantum Computing
(3) Quantum Gates
4) Observables and the Heisenberg Principle of Uncertainty
(5) Evaluation of Boolean Functions

6 Deutsch-Jozsa's Algorithm

Evaluation of Boolean Functions

- $V=\{0,1\}$: set of classical truth values
- There are $2^{2^{n}}$ Boolean functions $V^{n} \rightarrow V$
- There are $2^{n 2^{n}}$ functions $V^{n} \rightarrow V^{n}$
- Each of the 2^{n} assignments $\varepsilon=\left(\varepsilon_{n-1}, \ldots, \varepsilon_{1}, \varepsilon_{0}\right) \in V^{n}$ corresponds with an $\mathbf{e}_{\varepsilon} \in \mathbb{H}_{n}$ of the canonical basis of \mathbb{H}_{n}.
Let $f: V^{n} \rightarrow V$ be a Boolean function.
- U_{f} : a permutation $2^{n+1} \times 2^{n+1}$-matrix s.t. $U_{f}\left(\mathbf{e}_{\varepsilon} \otimes \mathbf{e}_{0}\right)=\left(\mathbf{e}_{\varepsilon} \otimes \mathbf{e}_{f(\varepsilon)}\right)$.
- U_{f} is an unitary matrix

$$
\begin{aligned}
& \text { Let } A \subset V^{n} \text { and } a=\operatorname{card}(A) \text {. If } \mathbf{u}_{A}=\frac{1}{\sqrt{a}} \sum_{\varepsilon \in A} \mathbf{e}_{\boldsymbol{\varepsilon}} \otimes \mathbf{e}_{0} \text { then } \\
& U_{f}\left(\mathbf{u}_{A}\right)=\frac{1}{\sqrt{a}} \sum_{\varepsilon \in A} \mathbf{e}_{\boldsymbol{\varepsilon}} \otimes \mathbf{e}_{f(\varepsilon)} \text {. }
\end{aligned}
$$

In just one step, the weighted average of the images of all the assignments in A is obtained. A final measurement selects a pair $\mathbf{e}_{\varepsilon} \otimes \mathbf{e}_{f(\varepsilon)}$, with $\varepsilon \in \mathcal{H}$ each with probability $\frac{1}{a}$.

Agenda

(1) Tensor Products

(2) Basic Notions on Quantum Computing
(3) Quantum Gates
4) Observables and the Heisenberg Principle of Uncertainty
(5) Evaluation of Boolean Functions

6 Deutsch-Jozsa's Algorithm

Deutsch-Jozsa's Algorithm

Let $V=\{0,1\}$ be the set of classical truth values. Among the $2^{2}=4$ Boolean functions $f: V \rightarrow V$, two are constant and two are balanced.

$$
f_{0}: \begin{array}{lll}
0 & \mapsto & 0 \\
1 & \mapsto & 0
\end{array}, ~, ~ f_{1}: \begin{array}{lll}
0 & \mapsto & 0 \\
1 & \mapsto & 1
\end{array}, ~, ~ f_{2}: \begin{array}{lll}
0 & \mapsto & 1 \\
1 & \mapsto & 0
\end{array}, f_{3}: \begin{array}{lll}
0 & \mapsto & 1 \\
1 & \mapsto & 1
\end{array}
$$

Deutsch-Jozsa's problem

Decide, for a given f, whether it is constant or balanced "in just one computing step".

Let U_{f} be the permutation $2^{2} \times 2^{2}$-matrix s.t.

$$
U_{f}\left(\mathbf{e}_{x} \otimes \mathbf{e}_{z}\right)=\left(\mathbf{e}_{x} \otimes \mathbf{e}_{(z+f(x)) \bmod 2}\right)
$$

U_{f} is an unitary matrix and is similar to the "controlled negation" gate. Using Hadamard's operator H, let $H_{2}=H \otimes H$.
$H\left(\mathbf{e}_{0}\right)=\mathbf{x}_{0}=\frac{1}{\sqrt{2}}\left(\mathbf{e}_{0}+\mathbf{e}_{1}\right)$ and
$H\left(\mathbf{e}_{1}\right)=\mathbf{x}_{1}=\frac{1}{\sqrt{2}}\left(\mathbf{e}_{0}-\mathbf{e}_{1}\right) \in \mathbb{H}_{1}$ hence
$H_{2}\left(\mathbf{e}_{0} \otimes \mathbf{e}_{1}\right)=H\left(\mathbf{e}_{0}\right) \otimes H\left(\mathbf{e}_{1}\right)=\mathbf{x}_{0} \otimes \mathbf{x}_{1}=\frac{1}{2}\left(\mathbf{e}_{00}-\mathbf{e}_{01}+\mathbf{e}_{10}-\mathbf{e}_{11}\right) \in \mathbb{H}_{2}$.

$$
\begin{aligned}
U_{f}\left(\mathbf{x}_{0} \otimes \mathbf{x}_{1}\right) & =\frac{1}{2}\left(\mathbf{e}_{0, f(0)}-\mathbf{e}_{0, \overline{f(0)}}+\mathbf{e}_{1, f(1)}-\mathbf{e}_{1, \overline{f(1)}}\right) \\
& =\left\{\begin{aligned}
\mathbf{x}_{0} \otimes \mathbf{x}_{1} & \text { if } f=f_{0} \\
\mathbf{x}_{1} \otimes \mathbf{x}_{1} & \text { if } f=f_{1} \\
-\mathbf{x}_{1} \otimes \mathbf{x}_{1} & \text { if } f=f_{2} \\
-\mathbf{x}_{0} \otimes \mathbf{x}_{1} & \text { if } f=f_{3}
\end{aligned}\right.
\end{aligned}
$$

$$
\begin{aligned}
H_{2} U_{f} H_{2}\left(\mathbf{e}_{0} \otimes \mathbf{e}_{1}\right)=H_{2} U_{f}\left(\mathbf{x}_{0} \otimes \mathbf{x}_{1}\right) & =\left\{\begin{aligned}
H \mathbf{x}_{0} \otimes H \mathbf{x}_{1} & \text { if } f=f_{0} \\
H \mathbf{x}_{1} \otimes H \mathbf{x}_{1} & \text { if } f=f_{1} \\
-H \mathbf{x}_{1} \otimes H \mathbf{x}_{1} & \text { if } f=f_{2} \\
-H \mathbf{x}_{0} \otimes H \mathbf{x}_{1} & \text { if } f=f_{3}
\end{aligned}\right. \\
& =\left\{\begin{aligned}
\mathbf{e}_{0} \otimes \mathbf{e}_{1} & \text { if } f=f_{0} \\
\mathbf{e}_{1} \otimes \mathbf{e}_{1} & \text { if } f=f_{1} \\
-\mathbf{e}_{1} \otimes \mathbf{e}_{1} & \text { if } f=f_{2} \\
-\mathbf{e}_{0} \otimes \mathbf{e}_{1} & \text { if } f=f_{3}
\end{aligned}\right.
\end{aligned}
$$

The quantum procedure $\mathrm{H}_{2} \mathrm{U}_{f} H_{2}$, from the basic vector $\mathbf{e}_{0} \otimes \mathbf{e}_{1}$ is producing a vector of the form $\varepsilon \mathbf{e}_{S} \otimes \mathbf{e}_{1}$ where $\varepsilon \in\{-1,1\}$ is a sign and S is a signal indicating whether f is balanced or not. S coincides with $f(0) \oplus f(1)$. The measurement principle outputs $\mathbf{e}_{S} \otimes \mathbf{e}_{1}$ with probability $\varepsilon^{2}=1$. It gives the value S from the first qubit.

