Quantum Computing based on Tensor Products

DFT and Factorization of Integers

Guillermo Morales Luna

Computer Science Section
CINVESTAV-IPN

E-mail: gmorales@cs.cinvestav.mx

5-th International Workshop on Applied Category Theory
Graph-Operad Logic

@

Morales-Luna (CINVESTAV) QC based on Tensor Products 5-th Int. WS App. Cat. Th. 1/28



o Quantum Computation of the Discrete Fourier Transform

e Shor Algorithm
@ Quantum Algorithm to Calculate the Order of a Number
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o Quantum Computation of the Discrete Fourier Transform

@
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Quantum Computation of the Discrete Fourier Transform

[0,n=1] ={0,1,....n—1}.

Given f : [0,n — 1] — C its discrete Fourier transform is  : [0,n— 1] — C

Vie[o,n-1]: ()= — Z (2’””‘) k). |i= V-]
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For

n—1

f= > f(jejeC",

T
o

its discrete Fourier transform is

n—1

DFT(f) =f= ) T(j)e;eC".

j=0

DFT is linear transform and w.r.t. the canonical basis, it is represented by
n n 2rijk
the unitary matrix DFT = «F (exp( ))jk

DFTH coincides with DFT except that the exponents in each entry have

sign “-”

Morales-Luna (CINVESTAV) QC based on Tensor Products 5-th Int. WS App. Cat. Th. 5/28



In particular,

= 2rijk
Vje[0,n—1]: DFT(e})) = — Z ( ) . (1)
and obviously,
n—1
DFT(f) = > f(j) DFT(e;). )

=0

—.

Now, let us assume that n = 2” is a power of 2.

DFT can be calculated by fast Fourier transform FFT. This is a typical
procedure of time complexity O(v2") = O(nlog n).

Through the inherent parallelism of quantum computing the procedure can
be reduced to time complexity O(v).
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Let us observe that, on one side, H, = C", and by identifying each
j€[0,2” = 1] with & = &y E1E0:

DFT(es;) = @ 1 (eo+exp(m.j)e1)

= ‘f(eo+exp(’”’) )®‘/>(eo+exp(”” )e1)® ®‘f(eo+exp(2,’,”’1 )91) (3)

The products appearing in this tensor product suggest the operators
Qx : Hy — H; and their “controlled” versions:

1 0 1 0
QK:[O exp(g—k’)] ’ QEI‘:[O exp(nizl—'k)}'

&
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Thus, for instance, if j = 1 then Q,f1 = Q while if j = 0 then Q
For xo = —5(e0 + 1) = H(eo), Q¢(Xo) = - (€0 + exp (i )e1)

8/[2

Eachj € [0,2” — 1] is represented by ¢;. Then, ¥V £ € [0,v — 1], = —[.

. v 1 14 v—1
0 Ej,62
eXp(ﬂ'lzj—k) = exp( lf ) l_lexp(mw)

and consequently,

c _ Nc c c
ij = Ok—v+1,e,-,‘,_1 -0 Qk—1,g,,1 © Qk,s,;o'

Since k ranges from 0 to v — 1 there will be required 2(2v — 1) gates QZ,,
ke[-(v-1),v-1],e€{0,1}.

Whenever j < 2”1, with v4 < v, all digits with indexes v1 — 1 or v — 1 have
value 0, hence the corresponding controlled gates are the identity map@
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For each (j, k) € [0,2" = 1] x [0,v - 1],

. _ NOC c c
P/k - QK—V1+1,8]',V1,1 = = Qk—1,8]',1 = Qk,a‘j,o’ (4)

where v = [log, j1+ 1. Then: P (Xo) = \1—@ (eo + exp (nizf—'K)e1).
For a fixed j € [0,2” — 1], foreach k = 0,...,v — 1, Pi(Xo) at the right of
eg. (3) will appear in an order left to right w.r.t. eq. (3). Then:
Q5.,,(X0) = Ppo(xo)
Q. © Qo (X0) = Pii(xo)
ch,&‘j,() ° Q‘IC,EI'J ° Qg,sl',g (Xo) = P/2(XO)

°Qj, ,(x0) = Pjy-1(xo)

C QC QC
O “ e O o
v=1.gj0 2,8jy-3 1.8j,-2
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For each k € [0,v — 1], the Qec,a,-,k_f’ with £ = 0,..., k, are applied
consecutively and they are selecting the digits in the base-2
representation of j going from the most significant till the least significant.
Henceforth, it is necessary to apply the reverse operator to switch the bits
order in each j € [0,2” — 1].

Each bit ¢ is represented by the basic vector e.. Consequently, each
controlled operator Qc,g, with domain in Hy can be identified with the

operator x — Q°?(x, e,) where

Q2 =(1®Q)oCo(I®Q)oCo (k). (5)

&
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Algorithm for the Fourier transform

Input. n=2",fe C" =H,.
Output. = DFT(f) € H,.
Procedure DFT(n,f)
Q Let xp := H(ep).
@ For each j € [0,2” — 1], or equivalently, for each
(&jv-1--€j1€j0) € {0,1}", do (in parallel):
@ Foreach k € [0,v — 1] do (in parallel):

Q Leto:= Ry (sj|k) be the reverse of the chain consisting of
the (k + 1) less significant bits.

Q Letyy :=Xo.

© For ¢ =0to k do {yj := Q%®(yx.ey,) (see eq. (5)) }

Q Lety,:=y,® --®Y;, ; (see eq. (3)).
© Output as result f = 225y,

&
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e Shor Algorithm

@
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A Short Refreshment of Number Theory

Modular multiplicative groups

@ For n,m € Z, its greatest common divisor is d = gcd(n, m) where d
divides n and m and any other common divisor divides also d.

@ Euclid’s Algorithm calculates, for two given n and m, d = gcd(n, m)
and express as d = an + bm, with a, b € Z.

@ nand m are relative prime if gcd(n, m) = 1.

@ ®(n) ={me[1,n]lgcd(n,m) = 1}.

@ ¢(n) = card(®(n)): Euler’s function at n.

@ (®(n), multiplication modulo n) is a group of order ¢(n).
e If me &(n) then m*(") = 1 mod n.

@ For each integer m € ®(n) there exists a minimal element r, divisor of
#(n), such that m" = 1 mod n. Such an r is the order of min ®(n).
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Let n be an integer to be factored

@ Select an integer m such that 1 < m < n.
© If gcd(n, m) = d > 1, then d is a non-trivial factor of n.
© Otherwise, m € ®(n).
@ If mhas an even order r, then k = mz will be such that k2 = 1 mod n,

and (k —1)(k +1) = 0 mod n.
@ By calculating gcd(n, k — 1) and ged(n, k + 1), one gets non-trivial
factors of n.

&
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First problem

Find an element of even order in ®(n)

If m is chosen randomly, the probability that m has even order is 1 — %
where ¢ is the number of prime factors in n.

Hence, the probability that after k attempts the sought witnessing number
has not been found is 27%¢ and this tends to zero quickly as k increases.

&
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Biggest problem

Calculate the order of a current element m in ®(n)

Let v = [log, n], v is the size of n.

O(n) = O(2), thus an exhaustive procedure has exponential complexity
with respect to the input size. Shor’s algorithm is based over a
polynomial-time procedure in v to calculate the order of an element.

&
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Calculating the Order of a Number

Let n € N and v = [log, n] be its size.

Let k s.t. n? < 2¢ < 2n?,i.e. k = [2log, n].

There will be necessary to use « + v qubits and all calculations will lie in
H,., = H, ® H,, of dimension 2" = 2~ . 2",

Ym e &(n), let Vp : Heyy — Hyyy,

Vim €5 ®€s > €5 ® €s/iim) (6)

where f(i,j,m) = (j -+ m') mod n. f is r-periodic w.r.t. its first argument i.

v

&
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Elements whose Order is a Power of 2

Suppose m € ®(n) whose order r is a power of 2.
Let Py = H* ® I®, H, | : H; — H; Hadamard’s operator and identity.

Pi(eo®e€p) = Z e; ®eg.
X o0 1)K

Let's write s1 = P1(ep ® eg). By applying Vi,

Vin(s1) = \/_ Z €5 ® €0,

Let s = Vip(s1). LetJj ={il0<i<2—1:j=jmodr}.
[0,2¢-1] = U};B J;, and each set J; has cardinality s = £ € Z. Thus

[ZJ es,]®esm, ,
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By a Measurement, it is chosen a vector e;; ® €: i i € Jj,, for a fixed
jo < r, with probability 5z. The corresponding state is

241
S3 = Z g(ies, ®e; - (8)
i=0
5 ified

where g : i — { 2 is also r-periodic. g is periodic, with

0 ifi ¢ J
period proportional to 17 On other side:

s—1 2K g

. r 1 2rit .

% = DFT"(s3) = 37 ), ( eI R (kr+’°))°f]®°sﬂo’
k=0 =0

and, by interchanging the summation order we get:

21 (. s-1 : i
. 1 1 2ritk 2ritjo
S4 =83 = — - exp(— ) exp(— " )E[ ®eg . .
W[;J [S kzz‘s s } 2 o
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2nit

Since exp (—22£) is a s-th root of unit, 1 35~ exp (2% ) is either 1 or 0

depending on whether ¢ has the form f =ts,witht=0,...,r—1.

1 (& 2ritjo
s4:W[Zexp(— p )ezft]@)esm,o. (10)

By a measurement it is obtained 27"’ with fp € [0, r — 1], each with
probability r=.

If tp = 0, then it is not possible to obtain any information about r and the
procedure should be repeated.

Otherwise, it is obtained the rational value % = t7° The values rp and ry are
known, but till this point neither t; nor r are known. Nevertheless, a fortiori
ri should divide r. Thus, the quantum algorithm should be applied once
more with my = m" as input. In a recursive way, the factorization

r=rira---rp is got, containing at most log, r factors.
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Algorithm to find a divisor of the order of an element

Input. n € N, m e ®(n) of order a power of 2.

Output. r such that rlo(m).
Procedure DivisorOrderPower2(n, m)
Let v :=[log, n1, k := 2v.
Let V, : Hyy, — Hiy, be defined as in eq. (6).
Letsq := (H®K ® I®V)(90 ®ep).
Let sp := Vin(s1).
Let s3 := 3.2, g(i)es, ®e, . be the equivalent state to
“take a measurement” in sp. g is determined by eq. (8).
Let s4 := IDFT(2", s3).
Lete;, ® e i be a measurement of s4.

000 00000

If Kk == 0 then repeat from step 3. Else, let ;—‘1’ = % and

output as result ry. @
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Algorithm to calculate the order of an element

Input. n €N, me ®(n) of order a power of 2.
Output. r such that r = o(m).
Procedure OrderPower2(n, m)

@ Initially r := 1 and my := m.

©Q Repeat
Q let ry :=DivisorOrderPower2(n, m);
@ updater :=r-r;
© update my := m' mod n.

until i ==
© Output r.

&
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Elements with Arbitrary Order

Let us drop the assumption that order r is a power of 2.
As before, let Vi, be defined as in eq. (6): s1 = (H® ® I*¥)(ep ® €9) and

SzZVm(S1):%Z[Zeg,]®esmj. (11)

where the sets J; are equivalence classes, but in the current case their
cardinalities may differ. If u = 2 mod r and s = (2 — u)/r then u classes
will have s + 1 elements and the remaining classes will have s elements.
Letsj=s+1forj=1,...,uandsj=sforj=u+1,...,r—1,0. Then the
state after taking a measurement, as in eq. (8), is, for some jp € [0, r — 1]:

2¢—1
S3 = Z giles; ®e; . (12)
i=0
— ified,
where g : i — Sio
0 ifigd,
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oK_A S]‘O—1 oriti

o= LN o) [l

S4 = S3 = e\ 2 J/|e e |®e; . . (13)
@ [;0 [ Sio Z ] Crlo

The coefficients involving the inner summation never will be zero (since r
does not divide 2*, there is no “complete sample” of s;;-th roots of unit).

In a measurement for the first qubit, the probability to choose e, ® e o is

Sj,—1 2

o (_ 27Ti€kr)

1

and the maxima of those values correspond to £ = ClosestInteger (<),
Suppose that after a measurement, it is chosen e, ® € o W|th

P(l) =

b = ClosestInteger( ) Then, when divided by 2“ we get ~ % and
from here we should know r. @
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Continued fractions

If % € QT, its continued fraction is

B e+ ——— =laan....a] (14)
q a1+...+L

v

where agp, a1,...,ay € N —{0}.
For each w < v, [ag, a1, . .., aw] is the w-th convergent of g, andis a
rational approximation of g.

&
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Continued Fractions Algorithm

Input. g €Q.
Output. [ag, a1, .. .,ay]: continued fraction representing % € Q.
Procedure ContinuedFraction(?)
Q Initially Ist := [] (the empty list) and xcurr := 2.

q

©@ While the denominator of xcurr is greater than 1 do

Q Leti:= IntegerPart(xcurr);

@ let express Z—: = Xxcurr;

© update xcurr := pﬁ—‘kﬁ;

O update Ist := st [i].
© Update Ist := Ist = [xcurr].
Q Output Ist.

V.

@
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Algorithm to find divisors of the order of an element

Input. n €N, me &(n).
Output. r such that rlo(m).
Procedure DivisorOrder(n, m)
@ Letv:=Tlog, nl, k = [2log, nI.
Q Let V,: H,\, — H,y, asineq. (6).
Q Letsy = (H®K ® I®V)(90 ®ep).
Q Letsy := Vi(sq).
Q Letsz = Y2 " g(i)e, ®e, _, be the state equivalent to
“take a measurement” in sp. g is as in eq. (12).
O Let s, := IDFT(2% s3).
Q Lete,, ®e; , ameasurement of s4.

&
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Q If ¢ == 0 then repeat from step 3. Else
Q Let[ag,ai,...,a/] = ContinuedFraction(g—i);
@ Let|[co,cy,...,cy] be the convergents list; and
© output the list of denominators less than n of those convergents.

From the obtained divisors of orders, it is possible to find the orders
themselves in a similar manner as was sketched in the procedure
OrderPower?2, but in this case it is necessary to track all divisors provided
by the above procedure DivisorOrder.

&
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