Quantum Computing based on Tensor Products DFT and Factorization of Integers

Guillermo Morales Luna

Computer Science Section CINVESTAV-IPN

E-mail: gmorales@cs.cinvestav.mx

5-th International Workshop on Applied Category Theory Graph-Operad Logic

Quantum Computation of the Discrete Fourier Transform

Quantum Algorithm to Calculate the Order of a Number

→ Ξ → < Ξ →</p>

Quantum Computation of the Discrete Fourier Transform

Shor Algorithm

• Quantum Algorithm to Calculate the Order of a Number

→ Ξ → → Ξ →

$$\llbracket 0, n-1 \rrbracket = \{0, 1, \dots, n-1\}.$$

Given $f : [0, n-1] \to \mathbb{C}$ its discrete Fourier transform is $\hat{f} : [0, n-1] \to \mathbb{C}$

$$\forall j \in [[0, n-1]]: \hat{f}(j) = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \exp\left(\frac{2\pi i j k}{n}\right) f(k). \qquad [i = \sqrt{-1}]$$

Morales-Luna (CINVESTAV)

For

$$\mathbf{f}=\sum_{j=0}^{n-1}f(j)\mathbf{e}_{j}\in\mathbb{C}^{n},$$

its discrete Fourier transform is

$$\mathsf{DFT}(\mathbf{f}) = \hat{\mathbf{f}} = \sum_{j=0}^{n-1} \hat{f}(j) \mathbf{e}_j \in \mathbb{C}^n.$$

DFT is linear transform and, w.r.t. the canonical basis, it is represented by the unitary matrix DFT = $\frac{1}{\sqrt{n}} \left(\exp\left(\frac{2\pi i j k}{n}\right) \right)_{ik}$

DFT^{*H*} coincides with DFT except that the exponents in each entry have sign "–".

In particular,

$$\forall j \in \llbracket 0, n-1 \rrbracket : \mathsf{DFT}(\mathbf{e}_j) = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \exp\left(\frac{2\pi i j k}{n}\right) \mathbf{e}_k. \tag{1}$$

and obviously,

$$\mathsf{DFT}(\mathbf{f}) = \sum_{j=0}^{n-1} f(j) \, \mathsf{DFT}(\mathbf{e}_j). \tag{2}$$

Now, let us assume that $n = 2^{\nu}$ is a power of 2.

DFT can be calculated by fast Fourier transform FFT. This is a typical procedure of time complexity $O(v2^v) = O(n \log n)$.

Through the inherent parallelism of quantum computing the procedure can be reduced to time complexity O(v).

Let us observe that, on one side, $\mathbb{H}_{\nu} = \mathbb{C}^{n}$, and by identifying each $j \in [[0, 2^{\nu} - 1]]$ with $\varepsilon_{j} = \varepsilon_{j,\nu-1} \cdots \varepsilon_{j,1} \varepsilon_{j,0}$:

$$\mathsf{DFT}(\mathbf{e}_{\varepsilon_j}) = \bigotimes_{k=0}^{\nu-1} \frac{1}{\sqrt{2}} \left(\mathbf{e}_0 + \exp\left(\frac{\pi i j}{2^k}\right) \mathbf{e}_1 \right)$$
$$= \frac{1}{\sqrt{2}} \left(\mathbf{e}_0 + \exp\left(\frac{\pi i j}{2^0}\right) \mathbf{e}_1 \right) \otimes \frac{1}{\sqrt{2}} \left(\mathbf{e}_0 + \exp\left(\frac{\pi i j}{2^1}\right) \mathbf{e}_1 \right) \otimes \cdots \otimes \frac{1}{\sqrt{2}} \left(\mathbf{e}_0 + \exp\left(\frac{\pi i j}{2^{\nu-1}}\right) \mathbf{e}_1 \right) \quad (3)$$

The products appearing in this tensor product suggest the operators $Q_k : \mathbb{H}_1 \to \mathbb{H}_1$ and their "controlled" versions:

$$Q_{k} = \begin{bmatrix} 1 & 0 \\ 0 & \exp\left(\frac{\pi i}{2^{k}}\right) \end{bmatrix} , \quad Q_{kj}^{c} = \begin{bmatrix} 1 & 0 \\ 0 & \exp\left(\pi i \frac{j}{2^{k}}\right) \end{bmatrix}.$$

Thus, for instance, if j = 1 then $Q_{k1}^c = Q_k$ while if j = 0 then $Q_{k0}^c = I$. For $\mathbf{x}_0 = \frac{1}{\sqrt{2}}(\mathbf{e}_0 + \mathbf{e}_1) = H(\mathbf{e}_0), \ Q_{kj}^c(\mathbf{x}_0) = \frac{1}{\sqrt{2}}(\mathbf{e}_0 + \exp(\pi i \frac{j}{2^k})\mathbf{e}_1)$. Each $j \in [[0, 2^{\nu} - 1]]$ is represented by ε_j . Then, $\forall \ell \in [[0, \nu - 1]], \ \frac{\varepsilon_{j,\ell}2^{\ell}}{2^k} = \frac{\varepsilon_{j,\ell}}{2^{k-\ell}}$.

$$\exp\left(\pi i \frac{j}{2^{k}}\right) = \exp\left(\pi i \frac{\sum_{\ell=0}^{\nu-1} \varepsilon_{j,\ell} 2^{\ell}}{2^{k}}\right) = \prod_{\ell=0}^{\nu-1} \exp\left(\pi i \frac{\varepsilon_{j,\ell}}{2^{k-\ell}}\right)$$

and consequently,

$$Q_{kj}^c = Q_{k-\nu+1,\varepsilon_{j,\nu-1}}^c \circ \cdots \circ Q_{k-1,\varepsilon_{j,1}}^c \circ Q_{k,\varepsilon_{j,0}}^c.$$

Since *k* ranges from 0 to $\nu - 1$ there will be required $2(2\nu - 1)$ gates $Q_{\kappa\varepsilon}^c$, $\kappa \in [-(\nu - 1), \nu - 1], \varepsilon \in \{0, 1\}$. Whenever $j < 2^{\nu_1}$, with $\nu_1 \le \nu$, all digits with indexes $\nu_1 - 1$ or $\nu - 1$ have value 0, hence the corresponding controlled gates are the identity map.

For each $(j, k) \in [[0, 2^{\nu} - 1]] \times [[0, \nu - 1]]$,

$$P_{jk} = Q_{k-\nu_1+1,\varepsilon_{j,\nu_1-1}}^c \circ \cdots \circ Q_{k-1,\varepsilon_{j,1}}^c \circ Q_{k,\varepsilon_{j,0}}^c,$$
(4)

where $v_1 = \lceil \log_2 j \rceil + 1$. Then: $P_{jk}(\mathbf{x}_0) = \frac{1}{\sqrt{2}} \left(\mathbf{e}_0 + \exp\left(\pi i \frac{J}{2^k}\right) \mathbf{e}_1 \right)$. For a fixed $j \in [\![0, 2^{\nu} - 1]\!]$, for each $k = 0, \dots, \nu - 1$, $P_{jk}(\mathbf{x}_0)$ at the right of eq. (3) will appear in an order left to right w.r.t. eq. (3). Then:

$$Q_{0,\varepsilon_{j,0}}^{c}(\mathbf{x}_{0}) = P_{j0}(\mathbf{x}_{0})$$

$$Q_{1,\varepsilon_{j,0}}^{c} \circ Q_{0,\varepsilon_{j,1}}^{c}(\mathbf{x}_{0}) = P_{j1}(\mathbf{x}_{0})$$

$$Q_{2,\varepsilon_{j,0}}^{c} \circ Q_{1,\varepsilon_{j,1}}^{c} \circ Q_{0,\varepsilon_{j,2}}^{c}(\mathbf{x}_{0}) = P_{j2}(\mathbf{x}_{0})$$

$$\vdots \qquad \vdots$$

$$Q_{\nu-1,\varepsilon_{j,0}}^{c} \circ \cdots \circ Q_{2,\varepsilon_{j,\nu-3}}^{c} \circ Q_{1,\varepsilon_{j,\nu-2}}^{c} \circ Q_{0,\varepsilon_{j,\nu-1}}^{c}(\mathbf{x}_{0}) = P_{j,\nu-1}(\mathbf{x}_{0})$$

For each $k \in [[0, \nu - 1]]$, the $Q_{\ell,\varepsilon_{j,k-\ell}}^c$, with $\ell = 0, ..., k$, are applied consecutively and they are selecting the digits in the base-2 representation of *j* going from the most significant till the least significant. Henceforth, it is necessary to apply the reverse operator to switch the bits order in each $j \in [[0, 2^{\nu} - 1]]$. Each bit ε is represented by the basic vector \mathbf{e}_{ε} . Consequently, each

controlled operator $Q_{k,\varepsilon}^c$, with domain in \mathbb{H}_1 can be identified with the operator $\mathbf{x} \mapsto Q^{c2}(\mathbf{x}, \mathbf{e}_{\varepsilon})$ where

$$Q^{c2} = (I \otimes Q_k) \circ C \circ (I \otimes Q_k^H) \circ C \circ (Q_k \otimes I).$$
(5)


```
Input. n = 2^{\nu}, \mathbf{f} \in \mathbb{C}^n = \mathbb{H}_{\nu}.
     Output. \hat{\mathbf{f}} = \mathsf{DFT}(\mathbf{f}) \in \mathbb{H}_{\nu}.
Procedure DFT(n, f)
                         • Let \mathbf{x}_0 := H(\mathbf{e}_0).
                         2 For each i \in [0, 2^{\nu} - 1], or equivalently, for each
                               (\varepsilon_{i,\nu-1}\cdots\varepsilon_{i,1}\varepsilon_{i,0}) \in \{0,1\}^{\nu}, do (in parallel):
                                   • For each k \in [0, v - 1] do (in parallel):
                                     • Let \delta := R_k(\varepsilon_i|_{\nu}) be the reverse of the chain consisting of
                                         the (k + 1) less significant bits.
                                     2 Let \mathbf{y}_{ik} := \mathbf{x}_0.
                                     3 For \ell = 0 to k do { \mathbf{y}_{ik} := Q^{c2}(\mathbf{y}_{ik}, \mathbf{e}_{\delta_{i\ell}}) (see eq. (5)) }
                                  2 Let \mathbf{y}_i := \mathbf{y}_{i0} \otimes \cdots \otimes \mathbf{y}_{i,\nu-1} (see eq. (3)).
                         Output as result \hat{\mathbf{f}} = \sum_{i=0}^{2^{\nu}-1} f_i \mathbf{y}_i.
```


4 D K 4 🗇 K 4 E K 4 E K

Quantum Computation of the Discrete Fourier Transform

Quantum Algorithm to Calculate the Order of a Number

Morales-Luna (CINVESTAV)

QC based on Tensor Products

5-th Int. WS App. Cat. Th. 12 / 28

A 3 6 A 3 6

Modular multiplicative groups

- For n, m ∈ Z, its greatest common divisor is d = gcd(n, m) where d divides n and m and any other common divisor divides also d.
- Euclid's Algorithm calculates, for two given n and m, d = gcd(n, m) and express as d = an + bm, with $a, b \in \mathbb{Z}$.
- *n* and *m* are relative prime if gcd(n, m) = 1.
- $\Phi(n) = \{m \in [[1, n]] | \gcd(n, m) = 1\}.$
- $\phi(n) = \operatorname{card}(\Phi(n))$: Euler's function at *n*.
- $(\Phi(n),$ multiplication modulo n) is a group of order $\phi(n)$.
- If $m \in \Phi(n)$ then $m^{\phi(n)} = 1 \mod n$.
- For each integer $m \in \Phi(n)$ there exists a minimal element *r*, divisor of $\phi(n)$, such that $m^r = 1 \mod n$. Such an *r* is the order of *m* in $\Phi(n)$.

イロト イポト イヨト 一日

Let *n* be an integer to be factored

- Select an integer m such that 1 < m < n.
- If gcd(n, m) = d > 1, then *d* is a non-trivial factor of *n*.
- 3 Otherwise, $m \in \Phi(n)$.
 - If *m* has an even order *r*, then $k = m^{\frac{r}{2}}$ will be such that $k^2 = 1 \mod n$, and $(k-1)(k+1) = 0 \mod n$.
 - By calculating gcd(n, k 1) and gcd(n, k + 1), one gets non-trivial factors of n.

First problem

Find an element of even order in $\Phi(n)$

If *m* is chosen randomly, the probability that *m* has even order is $1 - \frac{1}{2^{\ell}}$ where ℓ is the number of prime factors in *n*.

Hence, the probability that after *k* attempts the sought witnessing number has not been found is $2^{-k\ell}$ and this tends to zero quickly as *k* increases.

Biggest problem

Calculate the order of a current element *m* in $\Phi(n)$

Let $v = \lceil \log_2 n \rceil$, v is the size of *n*. $O(n) = O(2^v)$, thus an exhaustive procedure has exponential complexity with respect to the input size. Shor's algorithm is based over a polynomial-time procedure in v to calculate the order of an element.

Let $n \in \mathbb{N}$ and $\nu = \lceil \log_2 n \rceil$ be its size. Let κ s.t. $n^2 \le 2^{\kappa} < 2n^2$, i.e. $\kappa = \lceil 2 \log_2 n \rceil$. There will be necessary to use $\kappa + \nu$ qubits and all calculations will lie in $\mathbb{H}_{\kappa+\nu} = \mathbb{H}_{\kappa} \otimes \mathbb{H}_{\nu}$, of dimension $2^{\kappa+\nu} = 2^{\kappa} \cdot 2^{\nu}$. $\forall m \in \Phi(n), \text{ let } V_m : \mathbb{H}_{\kappa+\nu} \to \mathbb{H}_{\kappa+\nu},$ $V_m : \mathbf{e}_{\varepsilon_i} \otimes \mathbf{e}_{\varepsilon_i} \mapsto \mathbf{e}_{\varepsilon_i} \otimes \mathbf{e}_{\varepsilon_{f(i,i,m)}}$ (6)where $f(i, j, m) = (j + m^i) \mod n$. f is r-periodic w.r.t. its first argument i.

4 D K 4 🗇 K 4 E K 4 E K

Elements whose Order is a Power of 2

Suppose $m \in \Phi(n)$ whose order *r* is a power of 2. Let $P_1 = H^{\otimes \kappa} \otimes I^{\otimes \nu}$, $H, I : \mathbb{H}_1 \to \mathbb{H}_1$ Hadamard's operator and identity.

$$P_1(\mathbf{e_0}\otimes\mathbf{e_0})=rac{1}{\sqrt{2^\kappa}}\sum_{arepsilon\in\{0,1\}^\kappa}\mathbf{e}_arepsilon\otimes\mathbf{e_0}.$$

Let's write $\mathbf{s}_1 = P_1(\mathbf{e_0} \otimes \mathbf{e_0})$. By applying V_m ,

$$V_m(\mathbf{s}_1) = rac{1}{\sqrt{2^{\kappa}}} \sum_{i=0}^{2^{\kappa}-1} \mathbf{e}_{\varepsilon_i} \otimes \mathbf{e}_{\varepsilon_{f(i,0,m)}}.$$

Let $\mathbf{s}_2 = V_m(\mathbf{s}_1)$. Let $J_j = \{i | 0 \le i \le 2^{\kappa} - 1 : i = j \mod r\}$. $\llbracket 0, 2^{\kappa} - 1 \rrbracket = \bigcup_{j=0}^{r-1} J_j$, and each set J_j has cardinality $s = \frac{2^{\kappa}}{r} \in \mathbb{Z}$. Thus

$$\mathbf{s}_2 = \frac{1}{\sqrt{2^{\kappa}}} \sum_{j=0}^{r-1} \left(\sum_{i \in J_j} \mathbf{e}_{\varepsilon_i} \right) \otimes \mathbf{e}_{\varepsilon_{m^j}}$$

By a Measurement, it is chosen a vector $\mathbf{e}_{\varepsilon_i} \otimes \mathbf{e}_{\varepsilon_{m_{j_0}}}$, $i \in J_{j_0}$, for a fixed $j_0 \leq r$, with probability $\frac{r}{2^{\kappa}}$. The corresponding state is

$$\mathbf{s}_{3} = \sum_{i=0}^{2^{\kappa}-1} g(i) \mathbf{e}_{\varepsilon_{i}} \otimes \mathbf{e}_{\varepsilon_{m^{j_{0}}}}.$$
(8)

where $g: i \mapsto \begin{cases} \sqrt{\frac{r}{2^{\kappa}}} & \text{if } i \in J_{j_0} \\ 0 & \text{if } i \notin J_{j_0} \end{cases}$ is also *r*-periodic. \hat{g} is periodic, with period proportional to $\frac{1}{r}$. On other side:

$$\check{\mathbf{s}_{3}} = \mathsf{DFT}^{H}(\mathbf{s}_{3}) = \sqrt{\frac{r}{2^{\kappa}}} \sum_{k=0}^{s-1} \left(\frac{1}{\sqrt{2^{\kappa}}} \sum_{\ell=0}^{2^{\kappa}-1} \exp\left(-\frac{2\pi i\ell}{2^{\kappa}} (kr+j_{0})\right) \mathbf{e}_{\ell} \right) \otimes \mathbf{e}_{\varepsilon_{m^{j_{0}}}},$$

and, by interchanging the summation order we get:

$$\mathbf{s}_{4} = \check{\mathbf{s}_{3}} = \frac{1}{\sqrt{r}} \left(\sum_{\ell=0}^{2^{\kappa}-1} \left(\frac{1}{s} \sum_{k=0}^{s-1} \exp\left(-\frac{2\pi i \ell k}{s}\right) \right) \exp\left(-\frac{2\pi i \ell j_{0}}{2^{\kappa}}\right) \mathbf{e}_{\ell} \right) \otimes \mathbf{e}_{\varepsilon_{m}j_{0}}.$$

Morales-Luna (CINVESTAV)

Since $\exp\left(-\frac{2\pi i \ell}{s}\right)$ is a *s*-th root of unit, $\frac{1}{s} \sum_{k=0}^{s-1} \exp\left(-\frac{2\pi i \ell k}{s}\right)$ is either 1 or 0 depending on whether ℓ has the form $\ell = ts$, with t = 0, ..., r - 1.

$$\mathbf{s}_{4} = \frac{1}{\sqrt{r}} \left(\sum_{t=0}^{r-1} \exp\left(-\frac{2\pi i t j_{0}}{r}\right) \mathbf{e}_{\frac{2^{\kappa}t}{r}} \right) \otimes \mathbf{e}_{\varepsilon_{m} j_{0}}.$$
(10)

By a measurement it is obtained $\frac{2^{k}t_{0}}{r}$, with $t_{0} \in [[0, r-1]]$, each with probability r^{-1} .

If $t_0 = 0$, then it is not possible to obtain any information about *r* and the procedure should be repeated.

Otherwise, it is obtained the rational value $\frac{r_0}{r_1} = \frac{t_0}{r}$. The values r_0 and r_1 are known, but till this point neither t_0 nor r are known. Nevertheless, a fortiori r_1 should divide r. Thus, the quantum algorithm should be applied once more with $m_1 = m^{r_1}$ as input. In a recursive way, the factorization $r = r_1 r_2 \cdots r_p$ is got, containing at most $\log_2 r$ factors.

20 / 28

Input. $n \in \mathbb{N}$, $m \in \Phi(n)$ of order a power of 2.

Output. *r* such that r|o(m).

Procedure DivisorOrderPower2(n, m)

• Let
$$v := \lceil \log_2 n \rceil$$
, $\kappa := 2v$.

- 2 Let $V_m : \mathbb{H}_{\kappa+\nu} \to \mathbb{H}_{\kappa+\nu}$ be defined as in eq. (6).
- 3 Let $\mathbf{s}_1 := (H^{\otimes \kappa} \otimes I^{\otimes \nu})(\mathbf{e}_0 \otimes \mathbf{e}_0).$
- Let $s_2 := V_m(s_1)$.
- Subscript{Solution} Let $\mathbf{s}_3 := \sum_{i=0}^{2^{\kappa}-1} g(i) \mathbf{e}_{\varepsilon_i} \otimes \mathbf{e}_{\varepsilon_{m^{j_0}}}$ be the equivalent state to "take a measurement" in \mathbf{s}_2 . *g* is determined by eq. (8).
- Let $\mathbf{s}_4 := \text{IDFT}(2^{\kappa}, \mathbf{s}_3)$.
- Let $\mathbf{e}_{\varepsilon_k} \otimes \mathbf{e}_{\varepsilon_{m_0}}$ be a measurement of \mathbf{s}_4 .
- If k == 0 then repeat from step 3. Else, let $\frac{r_0}{r_1} = \frac{k}{2^{\kappa}}$ and output as result r_1 .


```
Input. n \in \mathbb{N}, m \in \Phi(n) of order a power of 2.
   Output. r such that r = o(m).
Procedure OrderPower2(n, m)
               • Initially r := 1 and m_1 := m.
               2 Repeat
                     let r<sub>1</sub> := DivisorOrderPower2(n, m<sub>1</sub>);
                     2 update r := r \cdot r_1;
                     3 update m_1 := m_1^{r_1} \mod n.
                   until r_1 == 1.
                   Output r.
```


Elements with Arbitrary Order

Let us drop the assumption that order *r* is a power of 2. As before, let V_m be defined as in eq. (6): $\mathbf{s}_1 = (H^{\otimes \kappa} \otimes I^{\otimes \nu})(\mathbf{e}_0 \otimes \mathbf{e}_0)$ and

$$\mathbf{s}_{2} = V_{m}(\mathbf{s}_{1}) = \frac{1}{\sqrt{2^{\kappa}}} \sum_{j=0}^{r-1} \left(\sum_{i \in J_{j}} \mathbf{e}_{\varepsilon_{i}} \right) \otimes \mathbf{e}_{\varepsilon_{m^{j}}}.$$
 (11)

where the sets J_j are equivalence classes, but in the current case their cardinalities may differ. If $u = 2^{\kappa} \mod r$ and $s = (2^{\kappa} - u)/r$ then u classes will have s + 1 elements and the remaining classes will have s elements. Let $s_j = s + 1$ for j = 1, ..., u and $s_j = s$ for j = u + 1, ..., r - 1, 0. Then the state after taking a measurement, as in eq. (8), is, for some $j_0 \in [[0, r - 1]]$:

$$\mathbf{s}_{3} = \sum_{i=0}^{2^{\kappa}-1} g(i) \mathbf{e}_{\varepsilon_{i}} \otimes \mathbf{e}_{\varepsilon_{m^{j_{0}}}}.$$
 (12)

where $g: i \mapsto \begin{cases} \frac{1}{\sqrt{s_{j_0}}} & \text{if } i \in J_{j_0} \\ 0 & \text{if } i \notin J_{j_0} \end{cases}$

23 / 28

$$\mathbf{s}_{4} = \check{\mathbf{s}_{3}} = \frac{1}{\sqrt{2^{\kappa}}} \left(\sum_{\ell=0}^{2^{\kappa}-1} \left(\frac{1}{\sqrt{s_{j_{0}}}} \sum_{k=0}^{s_{j_{0}}-1} e^{\left(-\frac{2\pi i\ell kr}{2^{\kappa}}\right)} \right) e^{\left(-\frac{2\pi i\ell j_{0}}{2^{\kappa}}\right)} \mathbf{e}_{\ell} \right) \otimes \mathbf{e}_{\varepsilon_{m^{j_{0}}}}.$$
 (13)

The coefficients involving the inner summation never will be zero (since *r* does not divide 2^{κ} , there is no "complete sample" of s_{j_0} -th roots of unit). In a measurement for the first qubit, the probability to choose $\mathbf{e}_{\ell} \otimes \mathbf{e}_{\varepsilon_{-i_0}}$ is

$$m{P}(\ell) = rac{1}{\sqrt{2^\kappa s_{j_0}}} \left| \sum_{k=0}^{s_{j_0}-1} \exp\left(-rac{2\pi i \ell k r}{2^\kappa}
ight)
ight|^2$$

and the maxima of those values correspond to $\ell = \text{ClosestInteger}\left(\frac{k2^{\kappa}}{r}\right)$. Suppose that after a measurement, it is chosen $\mathbf{e}_{\ell_k} \otimes \mathbf{e}_{\varepsilon_{m^{j_0}}}$, with $\ell_k = \text{ClosestInteger}\left(\frac{k2^{\kappa}}{r}\right)$. Then, when divided by 2^{κ} we get $\frac{\ell_k}{2^{\kappa}} \sim \frac{k}{r}$, and from here we should know r.

If $\frac{p}{a} \in \mathbb{Q}^+$, its continued fraction is

$$\frac{p}{q} = a_0 + \frac{1}{a_1 + \frac{1}{\dots + \frac{1}{a_v}}} = [a_0, a_1, \dots, a_v]$$
(14)

where $a_0, a_1, \ldots, a_v \in \mathbb{N} - \{0\}$. For each $w \le v$, $[a_0, a_1, \ldots, a_w]$ is the *w*-th convergent of $\frac{p}{q}$, and is a rational approximation of $\frac{p}{q}$.

Morales-Luna (CINVESTAV)

Continued Fractions Algorithm

Input. $\frac{p}{q} \in \mathbb{Q}$.

Output. $[a_0, a_1, \ldots, a_v]$: continued fraction representing $\frac{p}{a} \in \mathbb{Q}$.

Procedure ContinuedFraction $\left(\frac{p}{q}\right)$

• Initially lst := [] (the empty list) and $xcurr := \frac{p}{a}$.

- While the denominator of xcurr is greater than 1 do
 - Let i := IntegerPart(xcurr);

2 let express
$$\frac{p_1}{q_1} = xcurr;$$

• update xcurr :=
$$\frac{q_1}{p_1 - iq_1}$$
;

• update
$$lst := lst * [i]$$
.

• Update lst := lst * [xcurr].

Output Ist.

Input. $n \in \mathbb{N}, m \in \Phi(n)$. Output. r such that r|o(m). Procedure DivisorOrder(n, m) • Let $v := \lceil \log_2 n \rceil$, $\kappa = \lceil 2 \log_2 n \rceil$. 2 Let $V_m : \mathbb{H}_{\kappa+\nu} \to \mathbb{H}_{\kappa+\nu}$ as in eq. (6). 3 Let $\mathbf{s}_1 := (H^{\otimes \kappa} \otimes I^{\otimes \nu})(\mathbf{e}_0 \otimes \mathbf{e}_0).$ • Let $s_2 := V_m(s_1)$. **5** Let $\mathbf{s}_3 := \sum_{i=0}^{2^{\kappa}-1} g(i) \mathbf{e}_{\varepsilon_i} \otimes \mathbf{e}_{\varepsilon_{-i}}$ be the state equivalent to "take a measurement" in \mathbf{s}_2 , g is as in eq. (12). • Let $\mathbf{s}_4 := \text{IDFT}(2^{\kappa}, \mathbf{s}_3)$. • Let $\mathbf{e}_{\varepsilon_{\ell_k}} \otimes \mathbf{e}_{\varepsilon_{\min}}$ a measurement of \mathbf{s}_4 .

If $\ell_k == 0$ then repeat from step 3. Else

- Let $[a_0, a_1, \ldots, a_v] := \text{ContinuedFraction}\left(\frac{\ell_k}{2^\kappa}\right);$
- 2 Let $[c_0, c_1, \ldots, c_v]$ be the convergents list; and
- output the list of denominators less than *n* of those convergents.

From the obtained divisors of orders, it is possible to find the orders themselves in a similar manner as was sketched in the procedure OrderPower2, but in this case it is necessary to track all divisors provided by the above procedure DivisorOrder.

