Quantum Computing based on Tensor Products DFT and Factorization of Integers

Guillermo Morales Luna

Computer Science Section
CINVESTAV-IPN
E-mail: gmorales@cs.cinvestav.mx
5-th International Workshop on Applied Category Theory Graph-Operad Logic

Agenda

(1) Quantum Computation of the Discrete Fourier Transform
(2) Shor Algorithm

- Quantum Algorithm to Calculate the Order of a Number

Agenda

(1) Quantum Computation of the Discrete Fourier Transform
2) Shor Algorithm

- Quantum Algorithm to Calculate the Order of a Number

Quantum Computation of the Discrete Fourier Transform

$\llbracket 0, n-1 \rrbracket=\{0,1, \ldots, n-1\}$.
Given $f: \llbracket 0, n-1 \rrbracket \rightarrow \mathbb{C}$ its discrete Fourier transform is $\hat{f}: \llbracket 0, n-1 \rrbracket \rightarrow \mathbb{C}$

$$
\forall j \in \llbracket 0, n-1 \rrbracket: \hat{f}(j)=\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \exp \left(\frac{2 \pi i j k}{n}\right) f(k) . \quad[i=\sqrt{-1}]
$$

For

$$
\mathbf{f}=\sum_{j=0}^{n-1} f(j) \mathbf{e}_{j} \in \mathbb{C}^{n}
$$

its discrete Fourier transform is

$$
\operatorname{DFT}(\mathbf{f})=\hat{\mathbf{f}}=\sum_{j=0}^{n-1} \hat{f}(j) \mathbf{e}_{j} \in \mathbb{C}^{n} .
$$

DFT is linear transform and, w.r.t. the canonical basis, it is represented by the unitary matrix DFT $=\frac{1}{\sqrt{n}}\left(\exp \left(\frac{2 \pi j k}{n}\right)\right)_{j k}$

DFT ${ }^{H}$ coincides with DFT except that the exponents in each entry have sign "-".

In particular,

$$
\begin{equation*}
\forall j \in \llbracket 0, n-1 \rrbracket: \operatorname{DFT}\left(\mathbf{e}_{j}\right)=\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \exp \left(\frac{2 \pi i j k}{n}\right) \mathbf{e}_{k} . \tag{1}
\end{equation*}
$$

and obviously,

$$
\begin{equation*}
\operatorname{DFT}(\mathbf{f})=\sum_{j=0}^{n-1} f(j) \operatorname{DFT}\left(\mathbf{e}_{j}\right) \tag{2}
\end{equation*}
$$

Now, let us assume that $n=2^{v}$ is a power of 2 .
DFT can be calculated by fast Fourier transform FFT. This is a typical procedure of time complexity $O\left(v 2^{\nu}\right)=O(n \log n)$.
Through the inherent parallelism of quantum computing the procedure can be reduced to time complexity $O(v)$.

Let us observe that, on one side, $\mathbb{H}_{v}=\mathbb{C}^{n}$, and by identifying each $j \in \llbracket 0,2^{v}-1 \rrbracket$ with $\varepsilon_{j}=\varepsilon_{j, v-1} \cdots \varepsilon_{j, 1} \varepsilon_{j, 0}$:

$$
\begin{align*}
\operatorname{DFT}\left(\mathbf{e}_{\varepsilon_{j}}\right) & =\bigotimes_{k=0}^{v-1} \frac{1}{\sqrt{2}}\left(\mathbf{e}_{0}+\exp \left(\frac{\pi i j}{2^{k}}\right) \mathbf{e}_{1}\right) \\
& =\frac{1}{\sqrt{2}}\left(\mathbf{e}_{0}+\exp \left(\frac{\pi j}{2^{0}}\right) \mathbf{e}_{1}\right) \otimes \frac{1}{\sqrt{2}}\left(\mathbf{e}_{0}+\exp \left(\frac{\pi j}{2^{\top}}\right) \mathbf{e}_{1}\right) \otimes \cdots \otimes \frac{1}{\sqrt{2}}\left(\mathbf{e}_{0}+\exp \left(\frac{\pi i j}{2^{v-1}}\right) \mathbf{e}_{1}\right) \tag{3}
\end{align*}
$$

The products appearing in this tensor product suggest the operators $Q_{k}: \mathbb{H}_{1} \rightarrow \mathbb{H}_{1}$ and their "controlled" versions:

$$
Q_{k}=\left[\begin{array}{ll}
1 & 0 \\
0 & \exp \left(\frac{\pi i}{2^{k}}\right)
\end{array}\right], \quad Q_{k j}^{c}=\left[\begin{array}{ll}
1 & 0 \\
0 & \exp \left(\pi i \frac{j}{2^{k}}\right)
\end{array}\right]
$$

Thus, for instance, if $j=1$ then $Q_{k 1}^{c}=Q_{k}$ while if $j=0$ then $Q_{k 0}^{c}=I$. For $\mathbf{x}_{0}=\frac{1}{\sqrt{2}}\left(\mathbf{e}_{0}+\mathbf{e}_{1}\right)=H\left(\mathbf{e}_{0}\right), Q_{k j}^{c}\left(\mathbf{x}_{0}\right)=\frac{1}{\sqrt{2}}\left(\mathbf{e}_{0}+\exp \left(\pi i \frac{j}{2^{k}}\right) \mathbf{e}_{1}\right)$.
Each $j \in \llbracket 0,2^{v}-1 \rrbracket$ is represented by ε_{j}. Then, $\forall \ell \in \llbracket 0, v-1 \rrbracket$, $\frac{\varepsilon_{j, ~}, 2^{\ell}}{2^{k}}=\frac{\varepsilon_{j, \ell}}{2^{k-\ell}}$.

$$
\exp \left(\pi i \frac{j}{2^{k}}\right)=\exp \left(\pi i \frac{\sum_{\ell=0}^{v-1} \varepsilon_{j, \ell} 2^{\ell}}{2^{k}}\right)=\prod_{\ell=0}^{v-1} \exp \left(\pi i \frac{\varepsilon_{j, \ell}}{2^{k-\ell}}\right)
$$

and consequently,

$$
Q_{k j}^{c}=Q_{k-v+1, \varepsilon_{j, v-1}}^{c} \circ \cdots \circ Q_{k-1, \varepsilon_{j, 1}}^{c} \circ Q_{k, \varepsilon_{j, 0}}^{c} .
$$

Since k ranges from 0 to $v-1$ there will be required $2(2 v-1)$ gates $Q_{\kappa \varepsilon}^{c}$, $\kappa \in \llbracket-(v-1), v-1 \rrbracket, \varepsilon \in\{0,1\}$.
Whenever $j<2^{\nu_{1}}$, with $v_{1} \leq v$, all digits with indexes $v_{1}-1$ or $v-1$ have value 0 , hence the corresponding controlled gates are the identity map.

For each $(j, k) \in \llbracket 0,2^{v}-1 \rrbracket \times \llbracket 0, v-1 \rrbracket$,

$$
\begin{equation*}
P_{j k}=Q_{k-v_{1}+1, \varepsilon_{j, v_{1}-1}}^{c} \circ \cdots \circ Q_{k-1, \varepsilon_{j, 1}}^{c} \circ Q_{k, \varepsilon_{j, 0}}^{c} \tag{4}
\end{equation*}
$$

where $v_{1}=\left\lceil\log _{2} j\right\rceil+1$. Then: $P_{j k}\left(\mathbf{x}_{0}\right)=\frac{1}{\sqrt{2}}\left(\mathbf{e}_{0}+\exp \left(\pi i \frac{j}{2^{k}}\right) \mathbf{e}_{1}\right)$.
For a fixed $j \in \llbracket 0,2^{v}-1 \rrbracket$, for each $k=0, \ldots, v-1, P_{j k}\left(\mathbf{x}_{0}\right)$ at the right of eq. (3) will appear in an order left to right w.r.t. eq. (3). Then:

$$
\begin{aligned}
Q_{0, \varepsilon_{j, 0}}^{c}\left(\mathbf{x}_{0}\right)= & P_{j 0}\left(\mathbf{x}_{0}\right) \\
Q_{1, \varepsilon_{j, 0}}^{c} \circ Q_{0, \varepsilon_{j, 1}}^{c}\left(\mathbf{x}_{0}\right)= & P_{j 1}\left(\mathbf{x}_{0}\right) \\
Q_{2, \varepsilon_{j, 0}}^{c} \circ Q_{1, \varepsilon_{j, 1}}^{c} \circ Q_{0, \varepsilon_{j, 2}}^{c}\left(\mathbf{x}_{0}\right)= & P_{j 2}\left(\mathbf{x}_{0}\right) \\
\vdots & \vdots \\
Q_{v-1, \varepsilon_{j, 0}}^{c} \circ \cdots \circ Q_{2, \varepsilon_{j, v-3}}^{c} \circ Q_{1, \varepsilon_{j, v-2}}^{c} \circ Q_{0, \varepsilon_{j, v-1}}^{c}\left(\mathbf{x}_{0}\right)= & P_{j, v-1}\left(\mathbf{x}_{0}\right)
\end{aligned}
$$

For each $k \in \llbracket 0, v-1 \rrbracket$, the $Q_{\ell, \varepsilon_{j, k-}}^{c}$, with $\ell=0, \ldots, k$, are applied consecutively and they are selecting the digits in the base-2 representation of j going from the most significant till the least significant. Henceforth, it is necessary to apply the reverse operator to switch the bits order in each $j \in \llbracket 0,2^{v}-1 \rrbracket$.
Each bit ε is represented by the basic vector \mathbf{e}_{ε}. Consequently, each controlled operator $Q_{k, \varepsilon}^{c}$, with domain in \mathbb{H}_{1} can be identified with the operator $\mathbf{x} \mapsto Q^{c 2}\left(\mathbf{x}, \mathbf{e}_{\varepsilon}\right)$ where

$$
\begin{equation*}
Q^{c 2}=\left(I \otimes Q_{k}\right) \circ C \circ\left(I \otimes Q_{k}^{H}\right) \circ C \circ\left(Q_{k} \otimes I\right) \tag{5}
\end{equation*}
$$

Algorithm for the Fourier transform

Input. $n=2^{v}, \mathbf{f} \in \mathbb{C}^{n}=\mathbb{H}_{v}$.
Output. $\hat{\mathbf{f}}=\operatorname{DFT}(\mathbf{f}) \in \mathbb{H}_{v}$.
Procedure $\operatorname{DFT}(n, \mathbf{f})$
(1) Let $\mathbf{x}_{0}:=H\left(\mathbf{e}_{0}\right)$.
(2) For each $j \in \llbracket 0,2^{v}-1 \rrbracket$, or equivalently, for each $\left(\varepsilon_{j, v-1} \cdots \varepsilon_{j, 1} \varepsilon_{j, 0}\right) \in\{0,1\}^{\nu}$, do (in parallel):
(1) For each $k \in \llbracket 0, v-1 \rrbracket$ do (in parallel):
(1) Let $\delta:=R_{k}\left(\left.\varepsilon_{j}\right|_{k}\right)$ be the reverse of the chain consisting of the $(k+1)$ less significant bits.
(2) Let $\mathbf{y}_{j k}:=\mathbf{x}_{0}$.
(3) For $\ell=0$ to k do $\left\{\mathbf{y}_{j k}:=Q^{c 2}\left(\mathbf{y}_{j k}, \mathbf{e}_{\delta_{j, \ell}}\right)\right.$ (see eq. (5)) $\}$
(2) Let $\mathbf{y}_{j}:=\mathbf{y}_{j 0} \otimes \cdots \otimes \mathbf{y}_{j, v-1}$ (see eq. (3)).
(3) Output as result $\hat{\mathbf{f}}=\sum_{j=0}^{2^{v}-1} f_{j} \mathbf{y}_{j}$.

Agenda

(1) Quantum Computation of the Discrete Fourier Transform

(2) Shor Algorithm

- Quantum Algorithm to Calculate the Order of a Number

A Short Refreshment of Number Theory

Modular multiplicative groups

- For $n, m \in \mathbb{Z}$, its greatest common divisor is $d=\operatorname{gcd}(n, m)$ where d divides n and m and any other common divisor divides also d.
- Euclid's Algorithm calculates, for two given n and $m, d=\operatorname{gcd}(n, m)$ and express as $d=a n+b m$, with $a, b \in \mathbb{Z}$.
- n and m are relative prime if $\operatorname{gcd}(n, m)=1$.
- $\Phi(n)=\{m \in \llbracket 1, n \rrbracket \mid \operatorname{gcd}(n, m)=1\}$.
- $\phi(n)=\operatorname{card}(\Phi(n))$: Euler's function at n.
- ($\Phi(n)$, multiplication modulo n) is a group of order $\phi(n)$.
- If $m \in \Phi(n)$ then $m^{\phi(n)}=1 \bmod n$.
- For each integer $m \in \Phi(n)$ there exists a minimal element r, divisor of $\phi(n)$, such that $m^{r}=1 \bmod n$. Such an r is the order of m in $\Phi(n)$.

Let n be an integer to be factored

(1) Select an integer m such that $1<m<n$.
(2) If $\operatorname{gcd}(n, m)=d>1$, then d is a non-trivial factor of n.
(3) Otherwise, $m \in \Phi(n)$.
(1) If m has an even order r, then $k=m^{\frac{r}{2}}$ will be such that $k^{2}=1 \bmod n$, and $(k-1)(k+1)=0 \bmod n$.
(2) By calculating $\operatorname{gcd}(n, k-1)$ and $\operatorname{gcd}(n, k+1)$, one gets non-trivial factors of n.

First problem

Find an element of even order in $\Phi(n)$
If m is chosen randomly, the probability that m has even order is $1-\frac{1}{2^{\ell}}$ where ℓ is the number of prime factors in n. Hence, the probability that after k attempts the sought witnessing number has not been found is $2^{-k \ell}$ and this tends to zero quickly as k increases.

Biggest problem

Calculate the order of a current element m in $\Phi(n)$
Let $v=\left\lceil\log _{2} n\right\rceil, v$ is the size of n.
$O(n)=O\left(2^{v}\right)$, thus an exhaustive procedure has exponential complexity with respect to the input size. Shor's algorithm is based over a polynomial-time procedure in v to calculate the order of an element.

Calculating the Order of a Number

Let $n \in \mathbb{N}$ and $v=\left\lceil\log _{2} n\right\rceil$ be its size.
Let κ s.t. $n^{2} \leq 2^{\kappa}<2 n^{2}$, i.e. $\kappa=\left\lceil 2 \log _{2} n\right\rceil$.
There will be necessary to use $\kappa+v$ qubits and all calculations will lie in

$$
\mathbb{H}_{\kappa+v}=\mathbb{H}_{\kappa} \otimes \mathbb{H}_{v} \text {, of dimension } 2^{\kappa+v}=2^{\kappa} \cdot 2^{v}
$$

$\forall m \in \Phi(n)$, let $V_{m}: \mathbb{H}_{\kappa+v} \rightarrow \mathbb{H}_{\kappa+v}$,

$$
\begin{equation*}
V_{m}: \mathbf{e}_{\varepsilon_{j}} \otimes \mathbf{e}_{\varepsilon_{i}} \mapsto \mathbf{e}_{\varepsilon_{j}} \otimes \mathbf{e}_{\varepsilon_{f(i, j, m)}} \tag{6}
\end{equation*}
$$

where $f(i, j, m)=\left(j+m^{i}\right)$ mod $n . f$ is r-periodic w.r.t. its first argument i.

Elements whose Order is a Power of 2

Suppose $m \in \Phi(n)$ whose order r is a power of 2.
Let $P_{1}=\left.H^{\otimes \kappa} \otimes\right|^{\otimes \nu}, H, I: \mathbb{H}_{1} \rightarrow \mathbb{H}_{1}$ Hadamard's operator and identity.

$$
P_{1}\left(\mathbf{e}_{0} \otimes \mathbf{e}_{0}\right)=\frac{1}{\sqrt{2^{\kappa}}} \sum_{\varepsilon \in\{0,1\}^{\kappa}} \mathbf{e}_{\varepsilon} \otimes \mathbf{e}_{0}
$$

Let's write $\mathbf{s}_{1}=P_{1}\left(\mathbf{e}_{0} \otimes \mathbf{e}_{0}\right)$. By applying V_{m},

$$
V_{m}\left(\mathbf{s}_{1}\right)=\frac{1}{\sqrt{2^{\kappa}}} \sum_{i=0}^{2^{\kappa}-1} \mathbf{e}_{\varepsilon_{i}} \otimes \mathbf{e}_{\varepsilon_{f(i, 0, m)}}
$$

Let $\mathbf{s}_{2}=V_{m}\left(\mathbf{s}_{1}\right)$. Let $J_{j}=\left\{i \mid 0 \leq i \leq 2^{\kappa}-1: i=j \bmod r\right\}$.
$\llbracket 0,2^{\kappa}-1 \rrbracket=\bigcup_{j=0}^{r-1} J_{j}$, and each set J_{j} has cardinality $s=\frac{2^{\kappa}}{r} \in \mathbb{Z}$. Thus

$$
\mathbf{s}_{2}=\frac{1}{\sqrt{2^{\kappa}}} \sum_{j=0}^{r-1}\left(\sum_{i \in J_{j}} \mathbf{e}_{\varepsilon_{i}}\right) \otimes \mathbf{e}_{\varepsilon_{m j}} .
$$

By a Measurement, it is chosen a vector $\mathbf{e}_{\varepsilon_{i}} \otimes \mathbf{e}_{\varepsilon_{m 0} 0}, i \in J_{j_{0}}$, for a fixed $j_{0} \leq r$, with probability $\frac{r}{2^{\kappa}}$. The corresponding state is

$$
\begin{equation*}
\mathbf{s}_{3}=\sum_{i=0}^{2^{\kappa}-1} g(i) \mathbf{e}_{\varepsilon_{i}} \otimes \mathbf{e}_{\varepsilon_{m} 0} . \tag{8}
\end{equation*}
$$

where $g: i \mapsto\left\{\begin{array}{cc}\sqrt{\frac{r}{2^{k}}} & \text { if } i \in J_{j_{0}} \\ 0 & \text { if } i \notin J_{j_{0}}\end{array}\right.$ is also r-periodic. \hat{g} is periodic, with period proportional to $\frac{1}{r}$. On other side:

$$
\mathbf{s}_{3}=\operatorname{DFT}^{H}\left(\mathbf{s}_{3}\right)=\sqrt{\frac{r}{2^{\kappa}}} \sum_{k=0}^{s-1}\left(\frac{1}{\sqrt{2^{\kappa}}} \sum_{\ell=0}^{2^{\kappa}-1} \exp \left(-\frac{2 \pi i \ell}{2^{\kappa}}\left(k r+j_{0}\right)\right) \mathbf{e}_{\ell}\right) \otimes \mathbf{e}_{\varepsilon_{m} 0},
$$

and, by interchanging the summation order we get:

$$
\mathbf{s}_{4}=\stackrel{\mathbf{s}_{3}}{ }=\frac{1}{\sqrt{r}}\left(\sum_{\ell=0}^{2^{\kappa}-1}\left(\frac{1}{s} \sum_{k=0}^{s-1} \exp \left(-\frac{2 \pi i \ell k}{s}\right)\right) \exp \left(-\frac{2 \pi i \ell j_{0}}{2^{\kappa}}\right) \mathbf{e}_{\ell}\right) \otimes \mathbf{e}_{\varepsilon_{m} 0}
$$

Since $\exp \left(-\frac{2 \pi i \ell}{s}\right)$ is a s-th root of unit, $\frac{1}{s} \sum_{k=0}^{s-1} \exp \left(-\frac{2 \pi i l k}{s}\right)$ is either 1 or 0 depending on whether ℓ has the form $\ell=t$, with $t=0, \ldots, r-1$.

$$
\begin{equation*}
\mathbf{s}_{4}=\frac{1}{\sqrt{r}}\left(\sum_{t=0}^{r-1} \exp \left(-\frac{2 \pi i t j_{0}}{r}\right) \mathbf{e}_{\frac{2^{k_{t}}}{r}}\right) \otimes \mathbf{e}_{\boldsymbol{\varepsilon}_{m}{ }^{\prime}} . \tag{10}
\end{equation*}
$$

By a measurement it is obtained $\frac{2^{\kappa} t_{0}}{r}$, with $t_{0} \in \llbracket 0, r-1 \rrbracket$, each with probability r^{-1}.
If $t_{0}=0$, then it is not possible to obtain any information about r and the procedure should be repeated.
Otherwise, it is obtained the rational value $\frac{r_{0}}{r_{1}}=\frac{t_{0}}{r}$. The values r_{0} and r_{1} are known, but till this point neither t_{0} nor r are known. Nevertheless, a fortiori r_{1} should divide r. Thus, the quantum algorithm should be applied once more with $m_{1}=m^{r_{1}}$ as input. In a recursive way, the factorization $r=r_{1} r_{2} \cdots r_{p}$ is got, containing at most $\log _{2} r$ factors.

Algorithm to find a divisor of the order of an element

Input. $n \in \mathbb{N}, m \in \Phi(n)$ of order a power of 2.
Output. r such that $r \mid o(m)$.
Procedure DivisorOrderPower2(n, m)
(1) Let $v:=\left\lceil\log _{2} n\right\rceil, \kappa:=2 v$.
(2) Let $V_{m}: \mathbb{H}_{\kappa+v} \rightarrow \mathbb{H}_{\kappa+v}$ be defined as in eq. (6).
(3) Let $\mathbf{s}_{1}:=\left(H^{\otimes \kappa} \otimes \|^{\otimes v}\right)\left(\mathbf{e}_{0} \otimes \mathbf{e}_{\mathbf{0}}\right)$.
(4) Let $\mathbf{s}_{2}:=V_{m}\left(\mathbf{s}_{1}\right)$.
(5) Let $\mathbf{s}_{3}:=\sum_{i=0}^{2^{\kappa}-1} g(i) \mathbf{e}_{\varepsilon_{i}} \otimes \mathbf{e}_{\varepsilon_{m^{\prime} 0}}$ be the equivalent state to "take a measurement" in $\mathbf{s}_{2} . g$ is determined by eq. (8).
(6) Let $\mathbf{s}_{4}:=\operatorname{IDFT}\left(2^{\kappa}, \mathbf{s}_{3}\right)$.
(7) Let $\mathbf{e}_{\varepsilon_{k}} \otimes \mathbf{e}_{\varepsilon_{m 0}}$ be a measurement of \mathbf{s}_{4}.
(8) If $k==0$ then repeat from step 3. Else, let $\frac{r_{0}}{r_{1}}=\frac{k}{2^{\kappa}}$ and output as result r_{1}.

Algorithm to calculate the order of an element

Input. $n \in \mathbb{N}, m \in \Phi(n)$ of order a power of 2 .
Output. r such that $r=o(m)$.
Procedure OrderPower2(n, m)
(1) Initially $r:=1$ and $m_{1}:=m$.
(2) Repeat
(1) let $r_{1}:=$ DivisorOrderPower2(n, m_{1});
(2) update $r:=r \cdot r_{1}$;
(3) update $m_{1}:=m_{1}^{r_{1}} \bmod n$.
until $r_{1}==1$.
(3) Output r.

Elements with Arbitrary Order

Let us drop the assumption that order r is a power of 2.
As before, let V_{m} be defined as in eq. (6): $\mathbf{s}_{1}=\left(\left.H^{\otimes \kappa} \otimes\right|^{\otimes v}\right)\left(\mathbf{e}_{\mathbf{0}} \otimes \mathbf{e}_{\mathbf{0}}\right)$ and

$$
\begin{equation*}
\mathbf{s}_{2}=V_{m}\left(\mathbf{s}_{1}\right)=\frac{1}{\sqrt{2}} \sum_{j=0}^{r-1}\left(\sum_{i \in J_{j}} \mathbf{e}_{\boldsymbol{\varepsilon}_{i}}\right) \otimes \mathbf{e}_{\boldsymbol{\varepsilon}_{m j}} \tag{11}
\end{equation*}
$$

where the sets J_{j} are equivalence classes, but in the current case their cardinalities may differ. If $u=2^{\kappa} \bmod r$ and $s=\left(2^{\kappa}-u\right) / r$ then u classes will have $s+1$ elements and the remaining classes will have s elements. Let $_{j}=s+1$ for $j=1, \ldots, u$ and $s_{j}=s$ for $j=u+1, \ldots, r-1,0$. Then the state after taking a measurement, as in eq. (8), is, for some $j_{0} \in \llbracket 0, r-1 \rrbracket$:

$$
\begin{equation*}
\mathbf{s}_{3}=\sum_{i=0}^{2^{\kappa}-1} g(i) \mathbf{e}_{\varepsilon_{i}} \otimes \mathbf{e}_{\varepsilon_{m}{ }^{\prime} 0} \tag{12}
\end{equation*}
$$

where $g: i \mapsto\left\{\begin{array}{cc}\frac{1}{\sqrt{s_{j_{0}}}} & \text { if } i \in J_{j_{0}} \\ 0 & \text { if } i \notin J_{j_{0}}\end{array}\right.$

$$
\begin{equation*}
\mathbf{s}_{4}=\mathbf{s}_{3}=\frac{1}{\sqrt{2^{\kappa}}}\left(\sum_{\ell=0}^{2^{\kappa}-1}\left(\frac{1}{\sqrt{s_{j_{0}}}} \sum_{k=0}^{s_{j_{0}}-1} e^{\left(-\frac{2 \pi i k^{k}}{2^{k}}\right)}\right) e^{\left(-\frac{2 \pi i i_{j}}{2^{\kappa}}\right)} \mathbf{e}_{\ell}\right) \otimes \mathbf{e}_{\boldsymbol{\varepsilon}_{m^{\prime} 0}} . \tag{13}
\end{equation*}
$$

The coefficients involving the inner summation never will be zero (since r does not divide 2^{κ}, there is no "complete sample" of $s_{j_{0}}$-th roots of unit). In a measurement for the first qubit, the probability to choose $\mathbf{e}_{\ell} \otimes \mathbf{e}_{\varepsilon_{m 0} 0}$ is

$$
P(\ell)=\frac{1}{\sqrt{2^{k} s_{j_{0}}}}\left|\sum_{k=0}^{s_{j_{0}}-1} \exp \left(-\frac{2 \pi i \ell k r}{2^{k}}\right)\right|^{2}
$$

and the maxima of those values correspond to $\ell=$ ClosestInteger $\left(\frac{k 2^{k}}{r}\right)$. Suppose that after a measurement, it is chosen $\mathbf{e}_{\ell_{k}} \otimes \mathbf{e}_{\varepsilon_{m 0} 0}$, with $\ell_{k}=$ ClosestInteger $\left(\frac{k 2^{k}}{r}\right)$. Then, when divided by 2^{κ} we get $\frac{\ell_{k}}{2^{\kappa}} \sim \frac{k}{r}$, and from here we should know r.

Continued fractions

If $\frac{p}{q} \in \mathbb{Q}^{+}$, its continued fraction is

$$
\begin{equation*}
\frac{p}{q}=a_{0}+\frac{1}{a_{1}+\frac{1}{\cdots+\frac{1}{a_{v}}}}=\left[a_{0}, a_{1}, \ldots, a_{v}\right] \tag{14}
\end{equation*}
$$

where $a_{0}, a_{1}, \ldots, a_{v} \in \mathbb{N}-\{0\}$.
For each $w \leq v,\left[a_{0}, a_{1}, \ldots, a_{w}\right]$ is the w-th convergent of $\frac{p}{q}$, and is a rational approximation of $\frac{p}{q}$.

Continued Fractions Algorithm

Input. $\frac{p}{q} \in \mathbb{Q}$.
Output. $\left[a_{0}, a_{1}, \ldots, a_{v}\right]$: continued fraction representing $\frac{p}{q} \in \mathbb{Q}$.
Procedure ContinuedFraction $\left(\frac{p}{q}\right)$
(1) Initially $I s t:=[]$ (the empty list) and xcurr $:=\frac{p}{q}$.
(2) While the denominator of x curr is greater than 1 do
(1) Let $i:=$ IntegerPart(xcurr);
(2) let express $\frac{p_{1}}{q_{1}}=x c u r r$;
(3) update xcurr $:=\frac{q_{1}}{p_{1}-i q_{1}}$;
(1) update $|s t:=| s t *[i]$.
(3) Update $I s t:=I s t *[x c u r r]$.
(4) Output Ist.

Algorithm to find divisors of the order of an element

Input. $n \in \mathbb{N}, m \in \Phi(n)$.
Output. r such that $r \mid o(m)$.
Procedure Divisor0rder (n, m)
(1) Let $v:=\left\lceil\log _{2} n\right\rceil, \kappa=\left\lceil 2 \log _{2} n\right\rceil$.
(2) Let $V_{m}: \mathbb{H}_{\kappa+\nu} \rightarrow \mathbb{H}_{\kappa+\nu}$ as in eq. (6).
(3) Let $\mathbf{s}_{1}:=\left(H^{\otimes \kappa} \otimes l^{\otimes v}\right)\left(\mathbf{e}_{\mathbf{0}} \otimes \mathbf{e}_{\mathbf{0}}\right)$.
(4) Let $\mathbf{s}_{2}:=V_{m}\left(\mathbf{s}_{1}\right)$.
(5) Let $\mathbf{s}_{3}:=\sum_{i=0}^{2^{\kappa}-1} g(i) \mathbf{e}_{\varepsilon_{i}} \otimes \mathbf{e}_{\varepsilon_{m^{\prime} 0}}$ be the state equivalent to "take a measurement" in \mathbf{s}_{2}. g is as in eq. (12).
(6) Let $\mathbf{s}_{4}:=\operatorname{IDFT}\left(2^{\kappa}, \mathbf{s}_{3}\right)$.
(7) Let $\mathbf{e}_{\varepsilon_{\ell_{k}}} \otimes \mathbf{e}_{\varepsilon_{m 0} 0}$ a measurement of \mathbf{s}_{4}.
(8) If $\ell_{k}==0$ then repeat from step 3. Else
(1) Let $\left[a_{0}, a_{1}, \ldots, a_{v}\right]:=$ ContinuedFraction $\left(\frac{\ell_{k}}{2^{k}}\right)$;
(2) Let $\left[c_{0}, c_{1}, \ldots, c_{v}\right]$ be the convergents list; and
(3) output the list of denominators less than n of those convergents.

From the obtained divisors of orders, it is possible to find the orders themselves in a similar manner as was sketched in the procedure OrderPower2, but in this case it is necessary to track all divisors provided by the above procedure DivisorOrder.

