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Quantum Cryptography: Key Agreement Protocols

E0 = {e0
0 = (1, 0), e0

1 = (0, 1)}: canonical basis of H1

H(E0) = E1 = {e1
0, e

1
1}: basis of H1 obtained by applying Hadamard’s

operator to E0.
E0 corresponds to a spin with vertical–horizontal polarization, E0 = {↑,→},
while
E1 corresponds to a spin with oblique or NW–NE polarization,
E1 = {↖,↗}.

Two entities, Alice and Bob, should agree in private a common key. They
may use two transmission channels

Quantum channel Transmits just one-way, say from Alice to Bob.

Classical channel Transmits bidirectionally.

We will present the BB84 Protocol, without and with noise.
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Channels without Noise

Protocol over the quantum channel

1 Alice generates randomly two bit sequences δ = [δi]
N
i=1 and

ε = [εi]
N
i=1.

She transmits through the quantum channel the state sequence

S =
[
si = eεiδi

]N

i=1
.

2 Bob generates a bit sequence η = [ηi]
N
i=1 and measures each qubit si

w.r.t. Eηi to obtain a bit sequence ζ = [ζi]
N
i=1.

Whenever εi = ηi , δi = ζi .
He may expect around N/2 entries at δ and ζ to coincide.
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Protocol over the classic channel

1 Bob transmits his sequence ζ to Alice.
2 Alice calculates J = {i ≤ N|ζi = εi} corresponding to correct

“guessings” of Bob, and she sends it back to Bob.
3 The restrictions δ|J and ζ |J shall coincide. That sequence, or just a

portion of it, can be taken as the common key. The only way for δ and
ζ to differ should be due to a third part, Eve, eavesdropping.

In order to check whether there has been an eavesdropping, Alice and
Bob may exchange segments of their respective δ|J and ζ |J . Whenever a
segment has been exchanged, it is suppressed from the remaining
sequences. If a difference appears in an exchange then Eve’s
eavesdropping is detected. Otherwise, it can be trusted with a higher
probability that the common key has been agreed.
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Channels with Noise

Protocol over the quantum channel

It is identical to the case before:
1 Alice generates randomly two sequences δ = [δi]

N
i=1 and ε = [εi]

N
i=1.

She transmits through the quantum channel the state sequence

S =
[
si = eεiδi

]N

i=1
, which may be altered by noise in quantum channel.

2 Bob generates a bit sequence η = [ηi]
N
i=1 and measures each qubit si

w.r.t. Eηi to obtain a bit sequence ζ = [ζi]
N
i=1.
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Protocol over the classic channel

1 Bob transmits his sequence ζ to Alice.
2 Alice calculates the set J = {i ≤ N|ζi = εi} corresponding to correct

basis “guessings” of Bob, and she sends it back to Bob.
3 Bob calculates the set K ⊂ J of indexes in which he could measure
ζk . Bob sends K to Alice. Up to Eve’s eavesdropping or channel
noise, the current sequences should coincide, δ|K = ζ |K .

4 Thus, Bob and Alice communicate among themselves portions of δ|K
and ζ |K and they calculate the rate R of discrepancies. If R is above a
fixed threshold, the protocol is finished, with a failure condition, and it
is reset to the very beginning.
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5 Otherwise, a phase of reconciled key extraction is initiated: while the
probability of a discrepancy occurrence is high, repeat the following:

1 Alice and Bob agree, using a public channel, a permutation π ∈ SK and
they apply it to their current sequences: δ|K := π (δ|K ) and
ζ |K := π (ζ |K ).

2 Alice and Bob cut their corresponding current sequences in blocks with
uniform length, δ|K = [δ`]`, ζ |K = [ζ`]`, such that with a high probability
each pair {δ`, ζ`} contains at most one discrepancy.

3 For each `, the discrepancy at each pair {δ`, ζ`} is found and the bit in
that position is suppressed. In order to find the discrepancy at {δ`, ζ`} a
form of binary partition is applied:

Initially, the parities of the current subsequences δc , ζc should differ.
While the discrepancy bit has not been found, each of the current
subsequence is divided at the middle entry and the corresponding
halves with different parities are kept which will serve as the current
subsequences in a new iteration.
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6 Alice and Bob have corresponding sequences, of equal lengths, say
k , which for practical purposes may coincide, even though this
common reconciled key may also be partially known by Eve. Alice
and Bob should start now a phase of privacy amplification:

1 From the discrepancy rate R obtained at point 4., Alice and Bob
calculate an upper bound of the number kI of bits known by Eve.

2 They fix a security parameter s and they agree to select k − kI − s
segments of their reconciled key. The contents of these segments are
kept in secret, and their parities will give a string of length k − kI − s to
be assumed as the common key.

The Privacy Amplification Theorem states that after this protocol the
number of bits in the common key, effectively known by Eve, will be upper
bounded by 2−s/ ln 2.
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Communication Complexity

The complexity of a communication process is determined by the minimum
information quantity that should be transmitted, in order that the total
information can be recovered by the receiving part, within a given context.

Optimal Transmission

Let us assume that three sets X , Y , Z are given and a function
f : X × Y → Z . At some moment, Alice, who is a communicating part,
possesses a point x ∈ X , Bob, who is a second part, possesses a point
y ∈ Y and both parts should calculate z = f(x, y), by interchanging the
minimum information quantity.

In what follows X = {0, 1}n = Y .

Morales-Luna (CINVESTAV) QC based on Tensor Products 5-th Int. WS App. Cat. Th. 12 / 33



Parities Addition

Suppose

f : (x, y) 7→

∑
i

xi +
∑

i

yi

 mod 2

then it will be enough that Alice and Bob interchange two bits: the parities
of x and y, in order that both be able to calculate f(x, y).
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Congruent Functions with the Hamming Weight Map

Suppose that for a map g : N2 → Z , known by both Alice and Bob,
f = g ◦ (Hn,Hn), where Hn : {0, 1}n → N is the Hamming weight map.
Then it will be enough that

Alice sends the weight of x to Bob,

Bob calculates f(x, y) and

Bob sends the result back to Alice.

In this case the transmission of the order of log2 n bits of information is
enough to complete the common task.
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Identity Checking

Exact and obvious method

If f : (x, y) 7→ χ=(x, y) is the characteristic function of the identity relation:

f(x, y) = 1 if and only if x = y,

then Alice and Bob should interchange n bits to calculate f(x, y).

n is exponential with respect to its size!
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Approximating solution requiring O(log2 n) bits

Given ε > 0,

let p be a prime number such that n/ε > p,

let Fp be the prime field of characteristic p.

Given her point x, Alice considers A(X) =
∑n−1

i=0 xiXi ∈ Fp[X ], and

Bob considers B(X) =
∑n−1

i=0 yiXi ∈ Fp[X ].

Alice chooses a random element a ∈ Fp ,

she calculates b = A(a) and sends the pair (a, b) to Bob,

Bob proceeds to calculate c = B(a).

If c , b then Bob will know for sure that x , y and f(x, y) = 0.
Otherwise he assumes f(x, y) = 1.

Bob communicates his value of f(x, y) to Alice.
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If c = b, then either x = y or Alice has chosen a root of the difference
(A − B)(x).
The probability of this last event is n/p, which is lower than ε.
Consequently Bob claims f(x, y) = 1 with an error probability lower than ε.
Besides, it is possible to choose the prime integer p such that

n
ε
< p ≤

2n
ε
.

In this case, a and b are written with 2 + log2 n − log2 ε bits and this is the
number of bits to be transmitted.
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An alternative procedure

Alice and Bob select a common set of m vectors a1, . . . , am ∈ {0, 1}n,
with 2−m < ε.

Alice calculates x = (ai · x)m
i=1 ∈ {0, 1}

m and transmits it to Bob

Bob calculates y = (ai · y)m
i=1.

If for some entry i ≤ m there is a discrepancy (x)i , (y)i then Bob
knows that for sure x , y.
Otherwise Bob may decide that x = y and the error probability is at
most 2−m < ε.
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An interesting question is whether an exact algorithm can be obtained with
logarithmic complexity.
The following theorem excludes the possibility to communicate more than
k (classical) bits of information by transmitting k qubits.

Holevo’s Theorem

The information quantity recovered from a register of qubits is upperly
bounded by the value of von Neumann’s entropy, which is bounded by
Shannon’s entropy. Both entropies coincide whenever the qubits are
pairwise orthogonal.

However, in Quantum Computing the use of the notion of entangled states
improves the communication complexities of several procedures.
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Inner Product

Let us consider the inner product of two vectors modulo 2,

(x, y) 7→ 〈x |y〉 =

∑
i

xiyi

 mod 2

and let us assume that

P : H1 ⊗ Hn ⊗ Hn → H1 ⊗ Hn ⊗ Hn , ea ⊗ ex ⊗ ey 7→ ea+〈x |y〉 ⊗ ex ⊗ ey ,

is a quantum algorithm to calculate this product.
Then it is possible to transform it to get a quantum algorithm to transmit a
sequence of n bits, say from Alice to Bob.
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Let as before H : H1 → H1 be Hadamard’s operator.

Tranforming an inner product calculator into an identitiy checker

1 Bob considers, initially, y0 = e1 ⊗ e0(n) .
2 Bob applies H⊗(n+1):

y1 := H⊗(n+1) (y0) =
√

2−(n+1)
∑

a∈{0,1},ε∈{0,1}n
(−1)aea ⊗ eε.

3 Alice and Bob apply the protocol P to obtain:

y2 := P(ex , y1)

=
√

2−(n+1)
∑

a∈{0,1},ε∈{0,1}n
(−1)aea+〈x |ε〉 ⊗ eε

=
√

2−(n+1)
∑

c∈{0,1},ε∈{0,1}n
(−1)c+〈x |ε〉ec ⊗ eε
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4 Bob applies again H⊗(n+1) to obtain y3 := H⊗(n+1) (y2) = e1 ⊗ ex .

Thus by measuring his last n qubits, Bob recovers the sequence x.
The transmission cost in this algorithm is the cost of its step 3. which is the
cost of protocol P.
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Protocol P

Since n is even,

〈x |y〉 =
n−1∑
j=0

xjyj =
n/2−1∑

j=0

(x2jy2j + x2j+1y2j+1) =
n/2−1∑

j=0

〈
(x2j , x2j+1)|(y2j , y2j+1)

〉
thus it is enough to consider the inner product in H1.
If Alice possesses (x0, x1) and Bob (y0, y1), then they will be able to
calculate directly x0y0 + x1y1 by transmitting 3 bits:

say two from Alice to Bob, x0 and x1, and

then a bit from Bob to Alice, which is the result (x0y0 + x1y1) mod 2.

However, it is possible to make the same calculation with a transmission of
at most two qubits.
We will introduce two quantum algorithms, with and without entanglement.
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Using an Entangled Pair of Qubits

In H2, registers of two qubits, the first qubit is proper of the transmitter, say
Alice, and the second of the receiver, Bob.

Alice’s 4 rotations, depending on possible configurations of her point
x = (x0, x1)

A00 =


√

2
5 −i

√
3
5

−i
√

3
5

√
2
5

 A01 =

 2√
5

√
3

4 + i 1
4
√

5
−
√

3
4 + i 1

4
√

5
2√
5


A10 =

 2√
5

−
√

3
4 + i 1

4
√

5√
3

4 + i 1
4
√

5
2√
5

 A11 =

 1√
5

i 2√
5

i 2√
5

1√
5
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Bob’s 4 rotations, depending on possible configurations of his vector
y = (y0, y1)

B00 =

[
0 0
0 0

]
B01 =


√

3
5 −1

2 + i 1
2

√
3
5

−1
2 − i 1

2

√
3
5 −

√
3
5


B10 =


√

3
5

1
2 + i 1

2

√
3
5

−1
2 + i 1

2

√
3
5

√
3
5

 B11 =

[
0 1
1 0

]

(B00 is not a rotation: if Bob knows that his vector y is null, he knows that
the protocol should output the value 0, independently of Alice’s vector).
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Procedure with entanglement

1 Alice and Bob share the entangled state

z0 =
1
√

2
(e00 + e11) =

1
√

2
(e0 ⊗ e0 + e1 ⊗ e1)

and both have access to it (this is a form of teleportation due to the so
called Einstein-Podolsky-Rosen (EPR) paradox.)

2 Alice applies in her qubit the corresponding rotation Ax0x1 :

z1 =

[
Ax0x1 0
0 12

]
z0.

3 Alice makes a measurement of her qubit, she obtains the bit m0 and
sends it to Bob.
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4 If Bob sees that y = (0, 0) then he knows that the ending value
should be v = 0, otherwise

1 he applies in his qubit the corresponding rotation By0y1 :

z2 =

[
12 0
0 By0y1

]
z0,

2 he makes a measurement of his qubit to obtain the bit m1, and
3 he calculates v = (m0 + m1) mod 2.

5 Bob sends to Alice the value v which is the alleged inner product
value.

This procedure transmits two (classic) bits, requires an entangled pair of
qubits and produces the correct value with a probability no lesser than 4

5 .
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Algorithm without Entangled States

Alice’s initial qubit, depending on her vector x = (x0, x1)

z00 =
√

2
5e0 − i

√
3
5e1 z01 =

√
4
5e0 +

( √
3

4 + i 1
4
√

5

)
e1

z10 =
√

4
5e0 +

(
−
√

3
4 + i 1

4
√

5

)
e1 z11 =

√
1
5e0 − i

√
4
5e1
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Procedure

1 Alice sends to Bob her qubit zx0x1 .
2 If Bob sees that y = (0, 0) then he knows that the ending inner

product value is v = 0, otherwise
1 he applies his corresponding rotation By0y1 : z = By0y1 zx0x1 , and
2 he makes a measurement to obtain the bit v.

3 Bob sends to Alice the value v which is the alleged inner product
value.

This procedure transmits one qubit and one classic bit and has the same
correctness rate 4

5 .
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Deutsch-Josza Relation

Pseudotelepathy Game

Given four sets X , Y , A and B, a relation R ⊂ X × and × A × B, and the
fact that Alice and Bob are separated, far from each other, at a given
moment Alice receives a point x ∈ X , Bob a y ∈ Y and they, trying to
interchange the minimum information, should produce, respectively, a ∈ A
and b ∈ B such that (x, y, a, b) ∈ R.
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In particular, for n = 2k a power of 2, X = {0, 1}n = Y , A = {0, 1}k = B

R is Deutsch-Josza relation

(x, y, a, b) ∈ R ⇔[
(Hn(x, y) = 0 ∧ a = b) ∨

(
Hn(x, y) =

n
2
∧ a , b

)
∨

Hn(x, y) <
{
0,

n
2

}]
(1)

If the points x and y of Alice and Bob coincide, then the sequences
that they produce should coincide

If x and y differ exactly in half of the bits, then the produced
sequences should differ

In any other case no restrictions on produced sequences
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In the space H2n, Alice and Bob create the entangled register of 2n-qubits

z =
∑

(εk−1,...,ε1,ε0)∈{0,1}k
2−

k
2 eεk−1···ε1ε0 ⊗ eεk−1···ε1ε0 . (2)

Clearly, in H2n:

z =
∑

(εk−1,...,ε1,ε0)∈{0,1}k
2−

k
2

k−1⊗
i=0

(eεi ⊗ eεi )

=
k−1⊗
i=0

(
1
√

2
e0 ⊗ e0 +

1
√

2
e1 ⊗ e1

)

=
k−1⊗
i=0

(
1
√

2
e00 +

1
√

2
e11

)
(3)

or equivalently, z = z⊗k
0 , where z0 = 1√

2
e00 + 1√

2
e11 = 1√

2
(e00 + e11) is

an entangled pair of qubits.
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Given x = (xi)
n−1
i=0 , y = (yi)

n−1
i=0 ∈ {0, 1}

n to Alice and Bob

Identify [[0, n − 1]] with {0, 1}k , i = (εk−1 · · · ε1ε0)2 = (ε)2.

Alice calculates M : Hk → Hk , eε 7→ (−1)xi eε, and

Bob, calculates the map N : eε 7→ (−1)yi eε.

Thus, the result of both maps over the entangled state z is

w = (M,N)(z) =
∑

(εk−1,...,ε1,ε0)∈{0,1}k
2−

k
2 (−1)xi+yi eεk−1···ε1ε0 ⊗ eεk−1···ε1ε0 .

Alice applies Hadamard’s operator H to each of her qubits:
vA = H⊕k (Π1(w)); and

Bob proceeds similarly: vB = H⊕k (Π2(w)).

Alice makes measurements on her k -qubits to get a ∈ {0, 1}k .

Bob proceeds similarly and obtains b ∈ {0, 1}k .

One can see that the tuple (x, y, a, b) satisfies relation R.
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