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Chapter 1

Overview

Recent correspondence (Fall, 1998) in LifeMail dealt with the possiblity of “universal
computation” using Wolfram’s (2,1) cellular automaton Rule 110. While awaiting
further details participants in the list were referred to an eight page prospectus written
by Matthew Cook cataloging the known gliders for the rule. Some of the commentary
surrounding his introduction is reproduced and elaborated here, namely the results
of the survey of the properties of Rule 110 carried out via the cellular automaton
program NXLCAU21. Since then, we have played with glider collisions, and examined
Rule 110 from the point of view of tiling the plane with isosceles right triangles.

1.1 Introduction

The one dimensional binary cellular automaton rule numbered 110 in Stephen Wol-
fram’s system of identification [9] has been an object of especial attention because of
glider-like structures which have been observed in samples of evolution from random
initial conditions. It has even been suggested that it belongs to that exceptional Class
IV of automata whose chaotic aspects are intermingled with regularities of behavior; it
is just that the background against which this development occurrs is textured rather
than quiescent, a tacit assumption in the original classification.

Whatever the merits of the classification, Rule 110 was awarded its own appendix
(Table 15) in reference [9], containing specimens of evolution annotated with a list
of thirteen gliders compiled by Doug Lind and the conjecture that the rule might be
“universal.”

Figure 1.1 contains a similar evolutionary sample, starting out from a sparse
collection of ones; the scale of diagrams such as these affects the ease with which
gliders are perceived. Complementarity applies; the more visible the glider tracks, the
harder to grasp the finer details of their structure.

There does not seem to be much published literature concentrating on Rule 110;
the sole exception seems to be some statistical studies [4] done by Wentian Li and
Mats Nordahl around 1992. The transitional role of Rule 110, as relates to its Class
IV style positioning between Wolfram’s Classes II and III, would seem to be reflected
in a slow approach to equilibrium statistics, via a power law rather than exponentially.

As for information available via Internet, Matthew Cook wrote an eight page in-

11



12 CHAPTER 1. OVERVIEW

troduction [1] listing gliders A through H and a glider gun. Cook cites Erik Winfree
as having made an exhaustive enumeration of Rule 110 gliders, and cross links to
Winfree’s www page, which, however, does not seem to mention this particular feat.
Another brief page [10] exists in the Santa Fe Institute ALife archive.

Figure 1.1: A sample of evolution according to Rule 110.

Looking at the rule itself, there seems to be a ubiquitous background texture which
Cook calls “ether” although it is but one of many regular lattices stable under the
rule’s evolution, and not the one with the smallest unit cell. Calling the artifacts which
turn up “gliders” is a way of speaking, no doubt borrowed from experience based on
Life. Alternatively, they might be termed “dislocations” and studied as lattice defects.

Taking that approach is suggested by observing that the basic entities in the lat-
tices, the unit cells, are hollow upside down isosceles right triangles of varying sizes.
The significance of using Rule 110 colud be in guaranteeing recognizably distinct tiles
to be assembled, and now that we know that the rule is supposed to be “universal”
we might look towards the evolution as a tiling problem, in the sense of Hao Wang.
It might even be possible to see fitting elements of one lattice into another as an
instance of Post’s correspondence principle, which would establish the computational
complexity of the evolution right off.
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The choice of words such as “gliders” or “dislocations” is really quite subjective.
The name glider originates from John Conway’s Life, to describe small five-cell mobile
artifacts relative to the quiescent background of a two-dimensional cellular automaton.
It is a mixture of a technical term from crystallography, alluding to a four stage cycle
in which mirror images of the phases particpate; and a certain whimsey suggesting a
gracefullnes of motion. It has came to mean anything that moves; moreover in the
case of Rule 110, against a background which is no longer quiescent, but textured.

Further complicating the analysis, and suggesting the appropriateness of at least
an occasional reference to defects and dislocations, is the fact that two or more dis-
tinguishable patterns alternate with one another, or rotate in sequence. When one
pattern is highly dominant and the others a rarity, the unusual constituents can be
perceived visually as gliders. But roles can be reversed. Even worse, they can occur
in approximately equal numbers haphazardly mixed, at which point talking about a
disordered, or partially ordered, lattice may be more appropriate than picking out
gliders.

In Life, fuses are related to gliders except for extending to infinity. Similar struc-
tures abound in Rule 110, where they are readily regarded as the junction of two
dissimilar lattices whose interface shifts with time.

1.2 Rule 110 as a consequence of triangular tiles

To the extent that its ability to tile the plane with isosceles right triangles is relevant
to the remaining properties of Rule 110, one ought to examine the uniqueness of
this characteristic. Consider the eight neighborhoods of a (2,1) automaton and their
relation to tile formation:

0000 quiescent state and interior of the triangle
0011 left expansivity, defining hypotenuse
010 |1 permanence of left edge (x10 — 1)
011 |a [square up top left corner]
10010 interior, when next to left edge
101 |b [close off bottom)]

1101 permanence of left edge (x10 — 1)
1110 top edge gives way to interior

Six of the eight transitions are hardly controversial; that the ones marked a and b
should evolve to 1, if not evident at first sight, becomes apparent after examining a
trial evolution. Leaving the values a and b open for the moment, the Wolfram scheme
of rule numbering yields four alternatives,

rule = 70+ 8a + 32b,
which are
a/b| 0 1
0 70 | 102

1 78 | 110.
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Figure 1.2: Some slight variants on Rule 110, according to the retention of the upper
left corner of triangles, and likewise whether the bottom vertex is closed off or not.

In Figure 1.2 we see that Rules 70 and 78 are clearly disappointing, whereas Rule
102 shows some character; nevertheless closing the right-angle vertex leads to lots of
diagonal protuberances which do not look very tile-like.

In essence, Rule 110 seems to be uniquely defined for tiling purposes. Of course,
we could experiment with triangles with a horizontal hypotenuse, and there may be
other interesting figures, even if not available with (2,1) rules. Within the realm of
binary, first-neighbor automata, are there other rules for which similar results can be
inferred? The Santa Fe AI archive mentions Rule 54 as possibly having computability
traits in common with Rule 110.

Generalizing to bigger neighborhoods, (2,2) rules might be a place to start. First
choice might be the iterate of Rule 110, which is Rule 729E529E (in hexadecimal).
Gliders still exist, although with an altered appearance due to essentially displaying
every second generation of Rule 110 and seeing triangles collapse twice as fast because
of the new light velocity.

To obtain a rule with the same rate of collapse, a table similar to the one shown
above can be constructed. But the results are substantially the same, and there is
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much redundancy due to the don’t-care conditions on the left to guarantee that the
triangle has the desired right-hand structure. In fact, one is practically embedding a
(2,1) automaton into a (2,2) automaton by ignoring the outer margin. However the
choice of an image for the neighborhood (x x 1 1 0) is less critical, and gives some
variation.

In fact, tinkering with any of the rules shouldn’t alter their behavior much. Wen-
tian Li and others have studied the amount of tinkering required to drastically change
the nature of the rule, and of course found that some rules were more sensitive than
others. In general, if any of the diagrams, especially the de Bruijn diagram, have mea-
gre linkages between loops sparsely interconnected, cutting or adding links can have
drastic consequences. If the diagrams are more prolifically connected, such changes
can go practically unnoticed. There is a perturbation theory of sorts for rules and
their graphs.

There are gliders in rules with more than two states, but relating them to a tiling
supposes a better idea of what the tiles should look like than has been discussed here.
As to why tiling by triangles or other tokens should be different from tiling with
individual cells, the answer is that the rule has been subsumed into the shape of the
tile, and the requirement is the purely geometric one of filling the plane (perhaps with
selected overlap) and the rule need no longer be consulted. Although that just gives
bigger tiles, it seems to be useful change of emphasis.

Some (2,2) rules displaying triangles and gliders to some extent or other are:
3CBC3CBC, 3CFC3CBC, 3CBC3CFC, 3CFC3CFC, 7TCFCFCBC. The main freedom
lies in deciding what to do with short sequences of 1’s — start a new triangle, or not.

Figure 1.3: A (2,2) rule [3CBC3CFC] with characteristics similar to (2,1) Rule 110.

Figure 1.3 shows a sample of the evolution according to the second neighbor, binary
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rule 3CBC3CFC, which resembles Rule 110. Not all triangles are completely rimmed,
and the gliders seem to be quite a bit weaker than those in Rule 110. But there
are several other nearby rules, all of which show gliders to one degree or another, all
waiting to be examined.

s e .!wu..um'u‘;r 2
R g .
3

L o

: :
Mﬁﬁ%ﬂ gL
e ity Sl e L

Figure 1.4: A (4,1/2) rule [IEF4BEF4] with characteristics similar to (2,1) Rule 110.

Although it still represents the same rule, there is a blocking technique described
by Moore and Drisko [7] which will transform any rule into an equivalent two-neighbor
rule. The (2,1) Rule 110 transforms into the (4,1/2) Rule 1EF4BEF4, a sample of
whose evolution is shown in Figure 1.4. Gliders and the ether are still recognizable,
but the half-integer radius breaks up the planar tiling which is the most evident aspect
of Rule 110.

The right side of Figure 1.4 shows some mean field contours for Rule 1IEF4BEF4
from which two fixedpoints are evident. one of which reflects the fact that 00 pairs,
representing an unused quiescent background, give an unstable fixed point. The other
corresponds to a higher density, and presumably relates to the stable background
provided by the ether.
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1.3 Some triangle-induced equivalence relations

¥

ot

il

Figure 1.5: Each triangle defines a unique successor in at least four different ways,
depending on vertex-contact. Here two tree families are partially sketched for evolution
from a random initial configuration.
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Figure 1.6: Here tree families are sketched for a particular regular lattice.
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1.4 The simplest mosaics according to Rule 110

Figure 1.7: Format of the tiles appearing in the evolution of Rule 110, as it affects the
appearance of the T3 tile.

Having agreed on the use of triangles as tiles, they can be labelled Tn, where n is
the number of zeroes in their top row, and presented as being completely bordered,
or semibordered, as in Table 1.7. The semibordered version is easier to work with
since the adjacent triangles complete missing border cells, at least along horizontal or
vertical edges. Diagonally it is sometimes necessary to overlap a diagonal cell with a
top left corner cell.It is never allowed to abut two triangles prolonging a common top
edge, which would imply one single large triangle on account of the run; otherwise the
tiling is completely geometrical without any reference to the values of the cells they
contain.

Superluminal shifts in the LCAU de Bruijn diagrams are a good source of regular
lattices in the evolution of any automaton, especially because by taking the form of
disjoint loops simple lattices result. However, other shifts and the cycle option can all
give lattice examples. For rules such as 110 which have a textured background, which
Cook calls the ether, the likely candidates should be found anong the lattices of small
period or cycle. From the point of view that Rule 110 depends on a triangular tiling
of the plane, smaller triangles should be preferred, just on statistical grounds.
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1.4.1 T1 mosaic

Figure 1.8: The plane tiled by T1 triangles.

Figure 1.8 shows the tiling constructed from the smallest triangles of all, which we
have called T1. The triangles stand in columns, alternate columns staggered. The
unit cells are square, with three of the four states equal to 1. Therefore the density
of this lattice is 75%, which is higher than Langton’s ratio [the relative proportion
of states in the defining rule], which is 5/8 or 62.5%, and therefore unlikely as an
equilibrium configuration.
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1.4.2 T2 mosaic

Figure 1.9: The plane tiled by T2 triangles. Left: alpha phase, in which the triangles
are stacked diagonally. Right: beta phase, in which they are stacked in columns.

The next larger triangles, T2, can cover the plane in two different ways. One, which
could be designated the alpha phase, strings the tiles out along diagonals, as shown
in the left mosaic of Figure 1.9. The other, similar to the T1 mosaic, arranges the T2
tiles in columns, for which there is only one way to avoid unwanted sequences of three
ones in a row. It constitutes the beta phase, shown in the right mosaic of the same
figure.

The density of the alpha phase is 5/8 or 62.5%, of the beta phase 6/9 or 67%. In
spite of the more favorable densities, neither mosaic is ever a predominant feature of
evolutions from random initial configurations.
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1.4.3 T3 mosaic

Figure 1.10: The plane tiled by T3 triangles. Left: alpha phase, in which the trian-
gles are stacked diagonally with slope -1/2 in periodic rectangular tiles 7x14. Right:
preferred ethereal beta phase, in which they are stacked diagonally with slope -2 in
periodic rectangular tiles 14x7. The beta phase welcomes intercalcated T1’s, whereas
the alpha phase does not,

Continuing, there are two tilings by T3’s, likewise designated alpha and beta phases.
Both string their tiles along diagonals, as shown in Figure 1.10, The tile to the right
sits higher in the alpha phase than in the beta phase, these two diagonal positions
being the only ones compatible with Rule 110. Trying to stack T3’s in a vertical
column would lead to the combination for which Rule 102 was rejected.

Of these two enantiomers (yes, one is a mirror reflection of the other, in the diag-
onal), the beta form is ubiquitous in evolutions, constituting Cook’s ether. It easily
combines with other tiles; two mixtures with T1’s give the two simplest gliders, des-
ignated A and B. By itself it covers the plane with a density of 57%.

"

it

Figure 1.11: Left and Right: the two enantiomers of the T3 tile. Center: The T3
can combine with a T1 to produce a hexagonal lattice with a larger unit cell than T3
alone. Only one of the two enantiomers is shown.
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Rule 110 has a predisposition toward the planar hexagonal lattice, on account of
the domination of the evolution by upside down isosceles right triangles. On the other
hand, the simple mosaics, while clearly displaying the hexagonal format, all differ in
the size and orientation of the principal axes since they depend on triangles of different
sizes.

The 1427 unit crystallographic cell for the ether lattice was noted by Lind [9], and
evidently has a more convenient periodicity than does the alpha variant. Whatever the
reason, the beta version is overwhelmingly preferred as the eventual destination of long
term evolution from random initial configurations. One good reason for the asymmetry
lies in the packing of T1’s with T3’s. T1’s and T3’s have the same symmetry, but
the diagonally reflected T1 lattice is incompatible with the rule of evolution; indeed
alternate rows belong to the Garden of Eden.

The discrepancy consists in the fact that T1’s can, and often are, stacked vertically,
but in the mirror reflection they would have to run along horixontally, violating the
abuttment proscription. Consequently, since columns of T1’s often occur in Rule 110
gliders, no enantiomer of a glider with too long a vertical stack would exist.

O

Figure 1.12: The ether lattice is a mosaic of slightly squished hexagons. In common
with hexagonal lattices it can be decomposed into three sublattices each of which can
be assigned one of three different colors.
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1.4.4 ether crystallography
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Figure 1.13: The locations of Cook’s gliders relative to the ether lattice. The two
barred gliders sit lower on the same velocity lines as the unbarred gliders. Small
circles on the T3 mosaic show possible positions of compatible gliders, but they could
be impossible, duplicates, or so far undiscovered.

By definition, mosaics define crystallographic lattices, relative to which eventual glid-
ers can be seen as dislocations or other defects. Figure 1.13 shows the ether mosaic,
together with the position of the light cone and the locations of some of Cook’s gliders.
The slope of the line connecting any of them to the origin reveals the velocity of the
glider. Conversely, these crystallographic faces determine possible velocities whereby
it appears that the simpler combinations have already been discovered.

In every generation there are lattice vectors connecting congruent points in the
lattice. Those with less than (or exactly) light velocity are listed in Table 1.1, for the
first sixteen generations. Note that such combinations as two in three generations and
four in six generations refer to the same velocity, but not necessarily the same gliders.
Sometimes additional time is required to develop a cycle fully. Of course any gliders
obeying m in n will also obey km in kn. Gliders can appear for the first time when
k = 2 which were absent for k = 1; it is more usual that all the old ones remain and
either new ones arise, or new interconnections develop between the old ones. And, of
course, the value of k can sometimes make no difference, and no gliders may exist at
a velocity which otherwise seems reasonable.
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left | generation | right
designation shift generation 3 2
A 2 3 -2 4
B -2 4 6 4
B-bar -6 12 7 0
C 0 7 -4 8
D 2 10 -8 9 6
E -4 15 10 2
E-bar -8 30 -2 11
F -4 36 -6 12 8
G -14 42 -10 13 4
H -18 92 14 0 14
glider . i -4 15 10
-8 16 6

Table 1.1: Left: Cook’s glider list, including Lind’s gliders. Right: Some potential
glider velocities, arranged by denominator.
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1.4.5 T4 mosaic

There is a tiling comprised of pure T4’s, in which they lie along diagonals as shown in
the left hand mosaic of Figure 1.14. They can share a half-plane with T1’s, producing
a fuse, or fill the plane by themselves alone. Another combination, shown on the right
in Figure 1.14, mixes T1’s and T4’s, stacking the combination in vertical columns.

There is some delicacy involved in aligning vertical columns of tiles, because three
ones in a row evolve to zero. Avoiding the combination while retainng the vertical
margin means that an additional one sits either on the left of the spine or the right,
but not both. Thus any top margin of a triangle at the right can only attach where
there is a zero on the left.

In the case of the T1-T4 combination, there are two umbilical points, leading to
the two different alignments which alternate in Figure 1.14. But there is no reason for
the full tiling of the plane to be so regular, amounting to an infinitude of phases.

No further mosaics depend on one single T tile, because of the difficulty in evenly
filling the lower half of the implicit tile square. Smaller pieces can be incorporated
and more elaborate staggering can be arranged, for which there is no lack at all of
regular or semiregular tilings for the plane which incorporate at least one of the larger
tiles.

Figure 1.14: To tile the plane, T4 triangles can be stacked diagonally, an arrangement
which is compatible with the T1 lattice. Otherwise they have to be paired with some
other, smaller, triangle such as a T1 diagonally situated. Once triangles of disparate
sizes occupy a unit cell, many combinations still having similar areas are possible.
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1.4.6 T5 mosaic

Figure 1.15: To tile the plane, T5 triangles cannot be stacked diagonally, unless they
are placed slightly off center, for reagsons of parity. There remain interstices which
can be filled by one or two T1 tiles, but not by two T1’s in a row if Rule 110’s evolution
is to be respected.
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Figure 1.16: Left and Right: the two enantiomers of the T5 tile. Center: The T5 can
combine with two T1’s to produce a hexagonal lattice with a larger unit cell than T5
and T1 alone. Only one of the two enantiomers of the central figure is shown, since
the other would never emerge from a Rule 110 evolution.
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1.4.7 T6 mosaic

Figure 1.17: Examples of the occurrence of T6 mosaics in the evolution of Rule 110.
These designs arise from shift-periodic evolution as detected by the de Bruijn diagram.

2 leftin 7 generations

Figure 1.18: The two asymmetric enantiomers of the T6 mosaic. In principle, the
T6’s could be stacked diagonally, filling the gaps symmetrically with T1’s. The T6’s
groyp naturally into a hexagonal superlattice. But the layout on the right shows that
there is no way to fill the plane without conflicting with Rule 110’s requirement that
the sequence 111 evolve into 0. Only T1’s can nestle against the T6, but whatever
is placed above the T1 necessitates a second T1, violating the prohibition against
abutting top edges.
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1.5 General properties of Rule 110

Running a survey on Rule 110 won’t produce much that is really new, but it should
fill in some details, and illuminate the results which have already been reported.

1.5.1 interpretation of graphs

The main thing in working with a graph (meaning, digraph, since the distinction is
important in this application) is that its loops may be isolated, connected in one
direction but not the other, or mutually connected.

With respect to a de Bruijn diagram, the first alternative would mean that there
is a simple pattern, persistent or shifting as the case may be, but essentially unique,
not admitting any variation. For example, superluminal patterns generally have this
form since causality is not operating.

The unilateral connections correspond to fuses, which is an irreversible change of
pattern which may be either static or shifting. Many configurations for Rule 110 have
this form, including most of the “speed zero” shifts, and in particular the C gliders,
which can abut on uniform quiescence, or vacuum. But shift 2 in five generations has
a different kind of split field — T1’s on the left giving way to a mixture of T3’s and
T1’s on the right, along a right-moving interface. And of course, we have already seen
an an almost identical combination in Figure 1.14.

Gliders depend on there being a loop generating the “ether” which has another
connection to itself constituting the “glider.” The ether loop could be an autolink
to the quiescent state, but things are different in Rule 110. There might possibly be
several handles, signifying distinct forms of gliders or different phases in he evolution
of a single glider,all moving at the same velocity.

You can’t tell the ether from the glider without a program; this is evident when
looking at the A gliders, for example. T1’s can intersperse T3’s to get the A gliders,
but lots of T1’s can harbor an occasional T3 for a role reversal. Of course, the T3’s
figure in lots of other configurations, so it is reasonable to assign them to the ether.

A still more complicated combination has the glider off in a loop of its own, but still
having mutual connections to the ether loop. That is the arrangement with respect
to the extensible gliders, and can be used to determine admissable spacings, closest
approaches, and so on. And it is a property of regular expressions, that if the glider
is once extensible, it is multiply extensible.

Once someone is familiar with these ideas, it doesn’t really require constructing
de Bruijn diagrams to take advantage of the information; however it should make it
less surprising when these relationships are observed in practice.

1.5.2 the de Bruijn diagrams

Underlying the existence of the tiling is the fact that Rule 110 has semipermeable
membranes. That is just a fancy way of saying that the sequence x10 always generates
1 (almost always - the “semi” comes from 111 — 0); more pertinent is that 210"
generates 10("~1) which is another way of characterizing the triangles. Membranes
are traceable to configurations in the de Bruijn diagram. It remains to be seen how
directly this membrane affects the analysis of Rule 110, even though it is an integral
part of the characterization of Rule 110 by tiling.
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The reason for mentioning this is that it has been known that some rules have
membranes bounding macrocells, within which evolution has to seek a cycle. But
not all membranes are permanent, leading to the conjecture that their dissolution
might be programmed. This is an idea which has probably never been followed up,
but Rule 110 may actually be an instance which fits the pattern, since the evolution
depends to a certain extent on the persistence of the left margin of the triangles, and
the way in which it eventually breaks up.

In honor of the role of C gliders in Cook’s introduction, the dimensions of the arrays
in NXLCAU21 was raised to accomodate seven generations, with the result that they are
described in a diagram of 556 nodes and 705 links. It is large for the multiplicity of
ways the ether background can join to the T6’s which in turn join to ether or vanish.
To better manage the diagram, the self-node to the quiescent state can be excised,
leaving a diagram of 502 nodes and 632 links; although only a 10% reduction, it takes
away lots of stray lines from a map which is still extremely congested.

Table 1.2 summarizes the statistics on all the de Bruijn diagrams up to and in-
cluding seven generations. The first row of each pair states the number of nodes, the
second row, the number of links. When the two numbers coincide the diagram consists
exclusively of loops, but not necessarily one single loop. Since zero is a quiescent state,
entries of the form (1,1) indicate that it is the only configuration meeting the shifting
requirement. In particular, there are no still lifes (except for zero).

The columns follow the degree of shifting, the remainder, pairs of rows, goes by
generation.

[~ 6 - 4 3 2 -1 0 1 2 3 4 5 6 7]
8 46 26 15 9 5 1 1 1 5 10 19 34 60 106
8 46 26 15 9 5 1 1 1 5 10 19 34 60 106
42 31 22 19 10 1 1 9 1 9 15 5 33 24 90
42 31 22 19 10 1 1 11 1 9 15 5 33 24 90
75 23 38 19 1 5 9 19 1 27 22 37 42 5 134
75 23 38 19 1 5 9 22 1 35 22 37 42 5 134
42 68 26 13 1 41 15 17 1 1 10 13 26 47 109
42 68 26 13 1 49 15 19 1 1 10 13 26 47 109
110 19 1 23 10 58 1 8 9 116 42 38 66 14 161
110 19 1 23 10 63 1 102 9 142 42 38 66 14 161
8 31 94 99 1 27 100 57 1 15 1 126 26 48 8
8 31 100 111 1 27 112 62 1 15 1 164 26 48 85
14 219 9 129 1 266 1 556 1 5 18 1 69 5 169
14 239 9 136 1 287 1 705 1 5 18 1 69 5 169

Table 1.2: The number of nodes (upper number) and links (lower number) in the
de Bruijn shift diagrams up to and including seven generations.

Points of interest in the table, actually some of Cook’s gliders, are the entries
at (2,3) [A-gliders], at (-2.4) [B-gliders], and at (0,7) [C-gliders]. [The symbol (x,y)
indicates a shift of x, negative to the left, in y generations].

Previously unreported gliders can be found at (2,5), (-1,6), and (-4,6). The (2,5)
glider had already been observed in Cook’s extensible gliders, but none of the three
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connects directly to Cook’s ether.
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Figure 1.19: Inventory of left shifting configurations. The quiescent configuration is
an implicit component of every other shift; sometimes it is the only one. Otherwise it
is not shown. When there are still more components, the panel is split into horizontal
slices to accomodate them.
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Figure 1.20: Periodic configurations. The quiescent configuration is an implicit com-
ponent of every other shift; sometimes it is the only one. Otherwise it is not shown.
When there are still more components, the panel is split into horizontal slices to ac-
comodate them. That is not the same as a one-sided ideal, in which one single panel
divides into two distinctive regions along a vertical fissure.
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Figure 1.21: Inventory of right shifting configurations. The horizontal coordinate
determines the shift, the vertical coordinate the number of generations which have
elapsed. The quiescent configuration is an implicit component of every other shift;
sometimes it is the only one. Otherwise it is not shown.
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35

Shift
left 8
left 7
left 6

left 5

left 4

left 3
left 2
left 1

static

right 1
right 2
right 3

right 4

right 5
right 6

right 7

right 8

nodes

93
56
35

182

381

10
37
38

41

—

145

208
152

301

13

links

93
56
35

193

447

10
37
38

43

—

153

208
152

301

13

cycles

2 components

doubled B’s

1,9
1, 2x7, 22
1,37

2 components

1,21
1

1

?

4 components

1, 2x7, 193
various hashes

several

1,4,8

comments

Zero, and two big crosslinked cycles in-
volving T7’s. The interlinking makes
for two packings, so a glider pairing
could be imagined, as in some of the
combinations seen previously.

The velocity is the same as for B gliders,
with double the time available to com-
plete the shift. The (-2)/4 B configura-
tion must be a subset; it is an absorb-
ing ideal paired with a T5 combination
in an emitting ideal. This is a fuse, not
gliders, and the figures move parallel to
one another.

T1 emitting ideal connects to zero as
an absorbing ideal in a diagram with 33
nodes, 35 links. An independent cycle
length 8 contains a T2 mosaic.

1) Quiescent zero configuration

2) T5’s over T1’s, in 2 phases

3) T1 emitting ideal connects to 4 dif-
ferent absorbing ideals, phases of T3’s
over T1’s, which might be seen as some
staggered B gliders.

a variety of cycles, some of them rather
pretty.

Table 1.3: The number of nodes and links in the de Bruijn shift diagrams for eight
generations.



36 CHAPTER 1. OVERVIEW

Shift nodes links cycles comments
left 9 10 10 1,9 Zero, T2’s stacked vertically
left 8 57 57 1, 4x14 This combination is important because

it is one of the two in the ninth gen-
eration in which the crystallography of
the ether tiles allows gliders. We see
the zero configuration and four of spa-
tial period (cycle) 14, of which one is
the ether lattice and the other three
phases of a salvo of fat A gliders with
seven T1’s, even though they conform
to a left-moving displacement criterion.
Since only the one combination is al-
lowed and there are no alternatives,
this mixture might not be a glider even
though it has the appearance of one.

left 7 1 1 1 only the quiescent configuration

left 6 59 59 1, 3x12, 3x6, 4

left 5 26 26 1,25

left 4 216 225 fuse 4-high A’s defer to diagonally stacked
T&’s.

left 3 9 9 1,8

left 2 370 406 1, fuse Zero, and a component in which T1’s

form the emitting ideal, a combination
of T8, T3, and 3 T1’s repeat to consti-
tute the absorbing ideal.

left 1 587 666 1, mixed A combination of T8, T3, and two T1’s
remimiscent of the C glider; they can
waver in their vertical alignment in a
way which could be construed as form-
ing a glider family.

Table 1.4: The number of nodes and links in the de Bruijn left shift diagrams for nine
generations.
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Shift

static

right 1
right 2
right 3
right 4
right 5

right 6

right 7
right 8
right 9

nodes

689

125
51
94

links

771

125
51
94

cycles

big diagram

1,124
1, 50
1,9, 21, 63

comments

Includes the T2 emitter, Zero absorber
visible in the third generation as one
component, There is also a glider bom-
bardment of a T5 wall, and the T5 wall
as a source of B glider salvos which an-
nihilate an oncoming A salvo. This is
a “black hole” configuration which of-
ten forms from two oppositely directed
shift configurations. The T5’s form an
absorbing ideal which contains one of
the two allotropic forms of the gliders
previously found in the “four left in six
generations” analysis.

Zero, all kinds of A’s but nothing evi-
dent which was not already visible with
the “2 left every 3” row, so there are
neither double nor triple A-bar’s. This
is the other shift combination for which
the ether lattice could have had ninth
generation gliders.

37

Table 1.5: The number of nodes and links in the de Bruijn static and right
diagrams for nine generations.

shift
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1.5.3 cycle, or basin, diagrams

Continuing the listing of de Bruijn diagrams by looking at cycle diagrams doesn’t turn
up much beyond what is already in Wuensche and Lesser’s Atlas [11]; in fact after
increasing the arrays in LCAU they now cover the same range.

p/c|1l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1
2 . 2 2 . 2 . . . 2
3 X 3
4 X . .

5 X X 3

6 X X .

7 X X .9 11 2
8 X X . 1 .

9 X X X 2 6

10 | x x x
11 | x x x .

12 | x x x 7
13 | x x x .

14 | x x x 1 . 1
15 | x x x .. 2 . . . ; ; .
16 | x x x 2 . . . . . ; ; 2

Table 1.6: Number of configurations of given cycle and period.

The x’s in Table 1.6 mark unavailable periods, but the limit to the lengths of
periods increases exponentially leaving little point to trying to incorporate this detail
into the table. Equally, there is an exponential limit to the lengths of prime cycles
running across columns, to be noted alongside the fact that multiples of periods are
periods.

cycle period multiplicity

10 25 2
11 110 1
12 18 2
13 351 1
14 21 2
14 91 2
15 295 3
16 24 6
16 32 3

Table 1.7: Long periods up to cycle length 16.

Amongst these first sixteen cycle lengths are some which have periods too long for
inclusion in Table 1.6; they are listed in Table 1.7.

But in both the de Bruijn diagrams and the basin diagrams there is an interesting
item of note, the short height of the basin of attraction for the quiescent state (0, that
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is), which doesn’t pass 9 and is frequently shorter.

The basin diagram for zeroes is cummulative, since anything which evolves to zero
stays zero. But since a line of ones is the only alternative, it is interesting to see
what produces ones for each ring circumference. That is where the small height is
noticeable.

cycle mass max height

2 4 2
3 8 3
4 4 2
5 32 5
6 10 3
7 9 2
8 20 3
9 17 3
10 134 9
11 35 3
12 34 3
13 54 3
14 67 3
15 113 5

Table 1.8: summary of the structure of the cycle diagrams for evolution to the constant
value 0.

Note that cycles of length 10 seem to be favored. That also shows up in the
de Bruijn diagrams for evolution to the constant value 1:

generation nodes links comment

2 3 4 2-cycle fused with 3-cycle

3 7 8 3-cycle having common vertex with 5-cycle
4 16 18 2 5-cycles, one way connection in 2 places
5 33 38 cycles 5-5-13 all interlinked

6 10 10 single cycle length 10

7 32 34 10-cycle intercommunicates with another
8 38 40 2 10-cycles attached to a 20-cycle

9 81 90 several interlinked cycles

10 0 0 empty diagram

Table 1.9: summary of the structure of the de Bruijn diagrams for evolution to the
constant value 1.

Upon further analysis it appears that the largest triangle which can possibly emerge
from the evolutionary process is T42. Of course, larger triangles could be specified
as part of an initial configuration, but otherwise they belong to a multiple generation
Garden of Eden. Even so, the level ten de Bruijn diagram for evolution to 1 shows
that up to ten generations, triangles of any size can be prearranged. The interest in
the synthesis of T23 lies in the fact that, as a result of a composite glider collision of a
D, a C2, and a packet of four B’s, there is no limit to the delay that could be incurred
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while waiting for one of them to appear.

evolving to 1 in 6 gen 110

evolving to 1 in 6 generations

Rule 110 December 11, 1998

Figure 1.22: The de Bruijn diagram for evolution to the constant 1 after six genera-
tions.
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b/l < Vo
21048 43290 544ﬂ 99/ 5

Figure 1.23: The de Bruijn diagram for evolution to the constant 1 after eight gener-
ations.

The de Bruijn diagram for evolution to the constant value 1 in nine generations
is empty, which simply means that the diagram is acyclic, and its nucleus is empty.
The full, unlabelled de Bruijn diagram has a quarter million nodes with half a million
links. Appproximately half of these evolve to a single 1, of which another half can join
with another link to produce a pair of 1’s. Actually the percentage remains as high as
a half but briefly, drops down to the order of ten percent, and continues to diminish.
Altogether, a dozen or two chains remain, overlapping to a degree, with a length of
44 1’s.

Since the resultant figure is acyclic, and there are two less 0’s in the next generation
than there were 1’s in the current generation, T42 is the largest emergent tile. Of
course, the initial configuration could have arbitrarily long strings of zeroes, whose
remnants would still be encountered until the left expansivity of the right margin
closed them off.

Except for the fact that the de Bruijn diagram is already quite large, graphs for
additional generations could be examined to see whether the necessarily acyclic graphs
would have even shorter transients, thereby limiting still further the maximum size of
emergent tiles. Working from the opposite direction, finding initial conditions such as
the proper positioning of gliders for a future collision, would establish lower limits to
the size of emergent tiles.
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Figure 1.24: One of the largest triangles whose emergence has been observed is the
T23. Left: construction by electronic quadrille paper. Right: verification by computer
simulation.
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decomposition product in a (7 right in 6 generations) lattice

T26

Figure 1.25: Large triangles are correspondingly rare, but many of them can be found

by systematic search. Some are collision products, which means that they can be
formed at arbitrary late times. Others are decomposition products in lattice interfaces,

while still others just appear, without having any clear origin.



44 CHAPTER 1. OVERVIEW

1.5.4 ancestors and symbolic de Bruijn matrices

By de Bruijn matrix we understand the connectivity matrix of the de Bruijn diagram.
Actually there are several de Bruijn matrices according to whether the diagram is
labelled or not, and to whether it is taken as a numerical matrix or a symbolic matrix.
Accordingly, the A matrix is the part of the de Bruijn matrix labelled according to
evolution bearing the label 0, just as the B matrix goes with the label 1. In the case
of Rule 110, these matrices are:

A matrix B matrix
1 0 0 O 0100
0 0 0O 0 011
1 00O 01 00
0 0 01 0 010

As we see, the A matrix is idempotent, largest eigenvalue 1, and just three nonzero
elements, two of which are diagonal (00 — 00 and 11 — 11) with the other one at 10
— 00 which is only operative in non-cyclic contexts. That means, the only way to get
zeroes is to have zeroes, let a solid string of ones evolve into zero, or to have 1 as a
left fence without worrying what lies beyond (lots more 1’s, for example).

The largest eigenvalue of B is a little larger than 1.32, just less than /2, The
number of ancestors of a line of ones doubles by adding between 2 and 3 new cells.

The matrices AB and BA are nilpotent, so that there is no point trying to develop
long sequences in which 0’s and 1’s alternate. So much so that 01010 turns out to
be the shortest excluded sequence. Following the same route, the regular expression
00*100*10 corresponding to a pair of isolated 1’s, is also ancestorless, as are numerous
other sequences.

With a view toward understanding the occurrence of large triangles, consider pow-
ers of the matrix B, which should converge towards the product of its Perron eigen-
vectors. Its 14** power, as shown in the table below, has the convenient number of
200 ancestors, readily permitting the approximate factorization also shown there.

B factored, normalized
0 16 21 12 0.25
0 21 28 16 0.30
0 16 21 12 0.25 [ 000 0.30 0.45 0.25].
0 12 16 9 0.20

The one really clear conclusion is that 00 can never be the trailing edge of an
ancestor of a string of 1’s. The remaining possibilities are fairly evenly distributed,
with a slight preference for beginning 01 and ending 10, and a significantly slimmer
chance (1/3 less, roughly) of being surrounded by 11’s.

The mixture does not change appreciably between even and odd chains, as would
be expected from the uniqueness of the Perron eigenvalue. If the second eigenvalue
had been large, an alternation of generations might have been observable in short
chains.
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1.5.5 subset diagram

Figure 1.26: Subset diagram for Rule 110. The shortest excluded word is 01010.

There is other information; for example the shortest poison word seems to be 01010,
as can be seen by consulting the subset diagram shown in Figure 1.26.

1.5.6 plaid diagram

= 2
Rule 110
Figure 1.27: Excluded words are responsible for the plaid diagram’s woven texture.

The same information shows up in the plaid diagram. A plaid diagram is obtained
by first selecting an origin for a configuration. The sequence of cell states, assuming
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they are represented by integers modulo &, the number of states, is then regarded as
a knary number lying in the interval 0 - 1, which is considered to be the z-coordinate
of a point. The same process is applied to the portion of the configuration lying to
the left of the origin, except that it is read backwards from the origin, and used as the
y-coordinate of a point.

The plaid diagram is made by tracing the trajectories of several initial configu-
rations for a number of generations. Garden of Eden configurations will have a low
density because they can only be found at the beginning of a trajectory; their absence
will show up as blank strips. Recall that any sequence which begins or ends with an
excluded string is also excluded, which gives width to the strips. .

1.5.7 mean field probability

Figure 1.28: Mean field probability distributions for the first five generations of evo-
lution of Rule 110. The uniform 50% distribution tends toward superstability.

As Figure 1.28 shows, the distribution of cell states for Rule 110 tends quickly toward
50%, even though the a priori estimate favors 1’s, and any strict alternation of 0’s and
1’s is ruled out. Note that the curves shown in the diagram are rigorously calculated
mean field probabilities for successive composites, or generations of evolution, but that
they tend to behave as iterates would.

Although they don’t adhere to the first generation fixed point, they tend toward
a superstable fixed point at 50%, while the fixed point at zero becomes ever more
unstable.
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1.5.8 two block probability

Figure 1.29: Two-block probabilities, showing a linear (rather than quadratic) relation
valid at low densities, slope 1/2, holding over an extensive range.

In the contour map of pair probabilities, shown in Figure 1.29, single 1’s, whose
frequency forms the horizontal coordinate, tend to occur with double the frequency of
pairs of 1’s, whose frequency defines the vertical coordinate. That would indicate that
the 1’s are more likely to form blocks than to be isolated, a predilection compatible
with the scarcity of sequences in which 0’s and 1’s alternate.
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1.6 Evolutionary generalities
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Figure 1.30: A T2 lattice is subject to erosion on both edges. Depending on how the
erosion is initiated, and the format of the surrounding environment, periodic interfaces

in its turn the T1 merges into the

3

is more complicated

a T2 lattice decays asymmetrically. To the left, a T1 lattice forms,

separated from T2 by a reasonably thin interface;

will develop. Here,

and establishes itself

after a transient which is still not finished in a hundred generations or two. It remains

’

’

ether. On the right the decay takes longer

to be seen whether the D which has formed will be stable under the repeated A salvoes,

whose existence has stabilized towards the bottom of the figure.
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Figure 1.31: A more complicated decay example in which T18’s recur periodically in

the decay of the left margin of a “shift right seven in six generations” lattice. The T18’s
with the decaying lattice. They are just barely shadowed by the left spine of the T18

and the T3 (which could be bigger, but can’t be smaller, which is all that matters)

themselves shift right fourteen every thirty six generations, which is commensurable
sitting immediately under it.
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Chapter 2

The Gliders

2.1 Gliders not using the ether tile

Since the ether is composed of T3 tiles stacked according to one of the two phases by
which they can cover the plane, it might be tempting to call just any T3 an ether tile.
To avoid such quibbles, a T3 is an ether tile only if it is part of an assemblage of T3’s,
especially when providing background.

By this interpretation, T3’s may form part of composite tiles, and may have other
tiles attached to them, without being ether. On the other hand, many interesting con-
figurations exploit the versatility of considering boundary T3’s as sometimes belonging
to the ether and sometimes not.

A survey of all the de Bruijn diagrams for shifts through six generations not only
revealed three of Cook’s gliders, but also three more combinations interpretable as
gliders against a background other than the ether. Continuing the survey for additional
generations would undoubtedly reveal still more gliders, including the ones which have
already been found via search programs.

2.1.1 two right in five generations

Amongst the gliders so far discovered, there seems to be a preference for leftward
motion, with only A and D gliders running to the right. However, an additional one,
which might be called an alpha glider, was discovered among the de Bruijn diagrams.
Once their discovery was made, they were found to be an essential element in the
formation of Cook’s extensible E and G gliders; others seem to have been aware of
their existence, such as their mention by Li and Nordahl [4].

AF

Figure 2.1: There are three species of composite tile from which gliders of velocity 2/5
¢ arise.

51
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If the T1’s are used, they extend inexorably to the left. On the other hand, the
other two can be mixed at will, so that either can be a glider against a background
formed by the other. As a philosophical point in glider theory, it should be recognized
that a structure is best regarded as a glider when it stands out against a background,
thereby supposing a thin glider with fat background.

Figure 2.2: Reading left to right, the T1 tiles can be repeated until they meet a T3,
following which T3’s and T5’s may repeat or alternate arbitrarily.

The T3’s aren’t ether tiles because the T1 is always stuck on to them. But they
can readily join up with other T3’s, especially in the form of glider collisions. However,
the relative positioning of the T1 appendage differs between B gliders and E gliders.
In the same spirit, a crosscurrent of B gliders can be seen in a thick layer of the second
species, running between source and sink T5’s.

Once the de Bruijn diagram for a shift-generation combination is available, the
relationships between the different structures visible in the field of evolution is greatly
clarified. Of course, it can turn out that the de Bruijn diagram iteslf defies compre-
hension, as the number of vertices and links increases with the number of generations.

Figure 2.3 shows the de Bruijn diagram for the a gliders. To begin with, the
vertex of ten zeroes is self-linked and isolated from all other vertices. That is the
quiescent configuration, which would have any shifting characteristic immaginable. If
it is isolated, then any other pattern must extend to infinity, but if there are inter-
connections, there may be regions of activity separated by quiescent regions, or there
may be quiescent half-spaces. “Islands of chaos in seas of tranquility” was Wolfram’s
poetic description of Class IV behavior.
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shift 2in5 gen 110

Figure 2.3: The de Bruijn diagram provides the only satisfactory description of the
interrelation between the three a species. The cycles of length 10 are the five phases
of where T5’s and T3’s alternate. However there are also domains of pure T1-T5
“squares” and domains of pure B gliders.
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Zero need not be the only absorbing component or emitting component, as the
loop of length 4 in this diagram shows. As an emitting component, it defines left-
hand behavior which, once discontinued, can never resume. The strict loop generates
the T1 tiling, the first of the three species of gliders. There are five loops of length
ten. If any one of them is followed out, it will be seen to comprise a slice through one
T3, one T5, and a T1 nestled between them. It is no one single species, but a mixture
having cycle ten and period five; however that turns out to be one of the primitive
loops - loops of shortest length in virtue of having no shorter subloop.

Figure 2.4: Detail of the interface between a sublattice of alpha glider symmetry and
the ether lattice. Notice how the location of the marginal T1’s should be adjusted to
ensure continuity along the interface..

The five loops are not really independent, since they correspond to the five different
phases of evolution followed by a cyclic repetition of any one of them. Of course the
number of loops could be a divisor of the period of the diagram; but since 5 is prime
that could be only 1 or 5, but 1 would mean the strict shift of a sequence unchanging
from generation to generation.

One lesson to be learned is that there is not necessarily a strict correspondence
between prime loops in the de Bruijn diagram and species of glider.

A detail concerning the alpha lattice which is important for the construction of
gliders, but which will not show up until one examined the shift symmetry left four
in fifteen generations, is the fact that there are sublattices compatible with the ether
lattice.
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2.1.2 four left in six generations

There are two more glider situations in the sixth generation. Both are based on the T5
triangle as a base piece, but since its use with the two gliders are diagonal reflections
of one another, there probably isn’t a clear coexistence situation in which one can
overtake the other and produce nice simple collisions. That’s something that still has
to be tried, however.

In the first combination, there is a shift of four cells after six generations. The two
different tiles needed to make up two species are are:

[#

Figure 2.5: One species moves 4 left every six generations against a background gen-
erated by the other.

To tile the plane and thus construct an evolution, make diagonals from either tile:

Figure 2.6: The second species is the glider, moving against a background established
by the first.

Figure 2.7: The first species is the glider, moving against a background established by
the second.
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shift -4 in 6 gen 110

Figure 2.8: The de Bruijn diagram for shifting four cells left in six generations shows
the ways in which one of the species can move within a background generated by
the other, and all the combinations in between. The diagram has three connected
components, one of which is the field of zeroes, meaning that designs belonging to
one of them cannot mix with designs belonging to the other. On the other hand,
the large component contains several cycles, transitions between which will result in
intermingling their patterns.
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2.1.3 one left in six generations

Figure 2.9: One species moves one left every six generations against a background
generated by the other. They are based on the same tiles that figure in the « lattice.

To tile the plane and thus construct an evolution, make diagonals from either tile:

Figure 2.10:
by the first.

Figure 2.11: The first species is the glider, moving against a background established
by the second.
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Figure 2.12: Shift periodicity of one left every six generations. Two motifs can be
recognized; one moves against a background provided by the other.

Neither this collection nor the one with a shift 2 every five generations is as elegant
as the collection which Cook and Lind have shown; nevertheless under some stretch of
the imagination or other, these objects do qualify as gliders, giving both new families,
and families using different arrangements of tiles than those previously seen.

It is interesting to speculate why the T3 ether fits in with so many other gliders.
As we have seen, there are two different T3 packings, one of which lends itself to
dislocations (or gliders) and another which does not. Also, if this is going to fit into a
Class IV framework, it would be interesting to see how it jibes with mean field theory.

There the criterion was a superstable quiescent state and a superneutral other
density. The ether should take the place of the superstable state, which is vaguely
accomodated by what appears by such a state at 50% density. It is something to check
more closely. Anyway, you do want a tenacious background. As for superneutrality,
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that allows a variety of forms to coexist without worrying too much about their exact
density.

This is reminiscent of Eigen’s Hypercycles, and is probably no more scientific than
the reading of tea leaves. As to the question of why other Rules don’t show gliders
and all, the only readily available comparison is with Rule 22, where they are not in
evidence.

This pretty much completes the survey of shifts up through generation 7. There
were about as many fuses as gliders, including the property of C gliders that they
can just stop at the zero configuration. What might have been expected to be an
interesting doubling of the A gliders apparently isn’t, although the diagram is much
more complicated due to having to describe everything in terms of much longer neigh-
borhoods. Tripling seems to give the B-bar’s alongside the B’s, although that would
need twelve generations - unrealistic - to check and be sure, and the marginally acces-
sible doubling in eight apparently hasn’t resulted in anything which has already been
observed, dilligent search presumably having been made.
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2.2 Cook’s A-gliders, with forward velocity 2c/3

This data is interesting for what it implies about the origins of large triangles, the
prime tiles for tiling the plane according to Rule 110. One thing is that when the
triangle is big enough, it has a fringe of T1’s, T2’s and T3’s on top. Empirically, large
triangles seem to occur - T12’s can be seen without trying hard - but the clusters of
triangles appearing in the gliders which have been so far reported never seem to be
very big.

2.2.1 tiling approach

Figure 2.13: T1 based gliders, showing the four ways that they may seem to be
attached to the ether tile. Strings of T1’s running diagonally downwards are quite
conspicuous, and a very common form of glider.

The evolution of random configurations according to Rule 110, especially when viewed
under good conditions of scale and coloring, eventually run to a proepondeance of the
ether tiles, crisscrossed by trajectories which have been called gliders. The smallest,
fastest, and most common of these are the A and B gliders, no doubt the reason that
they were assigned the first letters of the alphabet. A gliders run right, B gliders run
to the left, and both are dislocations in the etheric background caused by T1 tiles.

Speculation as to why the ether is made from T3 tiles and the gliders from T1
should probably start by realizing that the field will not be quiescent because of the
left expansivity of the rule. This characteristic keeps zero density of cells in state 1
from being a stable fixed point in the return map of mean field theory; the favored
density is somewhat beyond 50%.

Neither is the T1 mosaic favored; its 75% density is larger than the 63% a priori
estimate taken from the rule and the mean field fixed point, and in fact higher com-
posites of Rule 110 favor 50% as a superstable fixed point. T3 mosaics come closer to
meeting the density requirements, but mesh nicely with T1’s to create gliders.
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Figure 2.14: Thicker gliders with two, three, and four diagonals of T1’s.

thicker A gliders

Figure 2.15: Turn about is fair play. T3’s can appear to be gliders when displayed
against a T1 background.
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2.2.2 de Bruijn approach

shift 2 in 3 gen 110

Figure 2.16: Cook’s A-gliders and the de Bruijn diagram from which they may be
derived. The outer periphery corresponds to the period-7, cycle 14 period rectangle
of the ether tiles. If T3’s and T1’s alternate, there are three phases each of which has
a cycle of length of 6. Also, if pure T1’s run in succession, there is a loop of length
4 which will geberate them. Other mixtures correspond to other paths through the
diagram.
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2.2.3 non-existence of (4,6) A-bar gliders

N\

Figure 2.17: The only (4,6) gliders seem to be those already implicit at (2,3): the
A-gliders.
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2.3 Cook’s B-gliders, with backward velocity -c/2

Using the second tile gives the illusion of a glider moving against a background gen-
erated by the first tile. Using several of the second gives the illusion of a whole fleet
of gliders.

Now, the other possibility is where the glider appears to move left just by a single
cell every six generations. Once again we need a T5 tile, but with the T1 stuck on a
little differently. but the buffer column can be optionally inserted. Again that can be
seen as a single glider, but repeating the process produces a fleet.

Their usage is that ether’s or B’s give way to a left margin, which can be followed
by as many interiors as desired, terminated by one of the two right margins, followed
once again by ether’s or B-bar’s.

2.3.1 tiling approach to the B gliders at -2 in 4 generations

o B #I 7 == g

SR _SEesi - ==

Figure 2.18: T1 based gliders. However, T1 tiles cannot be juxtaposed as they can in
the A gliders.
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2.3.2 de Bruijn approach to the B gliders

shift -2 in 4 gen 110

Figure 2.19: Cook’s B-gliders and the de Bruijn diagram from which they may be
derived. The outer periphery corresponds to the period-7, cycle 14 period rectangle
of the ether tiles. If T3’s and T1’s alternate, there are four phases each of which has
a cycle length of 8.
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2.3.3 tiling by B-bar gliders at -6 in 12 generations

dternate

left margin right margins

interior

Figure 2.20: B-bar gliders have the same velocity as B gliders, but take three times
as long to develop their cycle; however the two types, B and B-bar, may coexist.

Figure 2.21: B-bar gliders can have varying widths and one or the other of two optional
right margins. At least one midsection must be included.
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2.4 Cook’s C gliders, static with velocity 0

The C gliders don’t glide, but that is a technicality; a limiting case.

2.4.1 tiling approach

Figure 2.22: T6 based gliders, C in Cook’s nomenclature, which actually don’t move.

The C gliders are based on T6 tiles, which must be supplemented if they are to fill up
the plane. Placing a T1 just under the diagonal at bottom left creates a niche for a
T3 just to its right, but which is better kept separate.

Thus the first tile is the combined T1 and T6, which has a height of seven cells.
The second tile has two T3’s, one above and slightly to the right of the other, for a
combined height of eight cells. But this pair can be stacked in a vertical column by
aligning the top row of the bottom tile with the bottom row of the lower tile, once
again an effective height of seven.

Another combination with a height of seven and stackable in a vertical column
compatible with either of the first two tiles, is the third tile shown at the far right in
Figure 2.22. Tt is built from a stack of two T1’s nestled under a T3, whose staggered
four-three left margin is congruent to the margin in the T3 stack.

The T6ish tiles have a left margin which is a vertical spine — a column of 1’s which
extends indefinitely, which is just the left margin of a whimsical Too. Meanwhile the
third tile, featuring T1’s, has a similar right margin. As a result, T6’s which have been
connected to none or more T3’s can reconnect to another T6 to create an environment
in which T6’s and T3’s alternate; or they can connect to a zero half-space, from which
there is no return. In other words, a static fuse can exist.

Figure 2.23 summarizes the sequences which can be formed, all of period 7. The
columnar form of some of the margins is to be noted; it is related to the ability to
interface with a half-space of zeroes, and on a more modest scale, with any large
triangle..
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Figure 2.23: Sequence diagram for the tiles in C gliders.

2.4.2 de Bruijn approach

C gliders can occupy a split configuration space, in which the right half is the quiescent
zero. That makes the zero vertex an absorbing ideal in the de Bruijn diagram, with
its 556 vertices and 705 links. This huge population congests the diagram beyond
what will fit nicely on a letter sized page, but removing the zero vertex and all the
transients thereby created only reduces the load by about 10%, to 502 nodes and 632
links. No improvement is to be disparaged, however.

The main thing is that the C’s pack densely, just like sardines. Basically they are
T6’s, but a T3 and 3 T1’s can be nestled in to get a columnar arrangement of cycle 9.
As remarked in Cook’s Rule 110 document, there are three different membrane-shift
points allowing vertical displacement between successive vertical columns.

As aresult the de Bruijn diagram has some cycle-9 loops, although not all of them
have been spotted yet. But given that there are seven distinct rows in a C, there ought
to be seven of these loops visible in the diagram, the more so because this seems to
be the shortest loop present.

There ought to be seven cycle-14 loops as well, containing the unit cells of the pure
ether, but they haven’t been located, either. On the other hand, since all the nodes
have been positioned by hand, it seems certain that the diagram consists of a single
component. That does not exclude something communicating just with the zero ideal
but not with the nucleus shown in Figure 2.24.

On the other hand, there are readily visible cycles of length 11 sharing part of their
arc with cycles of length 20, and there is also a loop of length 17.

What is happening is similar to the layout already apparent for the A and B
gliders. Namely, there are some composites which have a shorter cycle length than
the full periodicity of the raw ether. The A diagram, for example has a long loop of
length 14 which can be taken as the circumference of a big circle, within which there
are shorter loops, possibly sharing circumference, which correspond to ether-glider
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doublets. There is even a short cycle, sharing circumference with others, generating

the T1 lattice of “pure glider.”

In the case of the C’s, examination of the cycles shows that they correspond to
polymers. This isn’t like trees, for which there are polar coordinates and a rather
satisfactory diagram can be generated automatically. No doubt, given the interest
there is in drawing graphs, there are more suitable programs available, but they haven’t

been used in this presentation.
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Figure 2.24: Cook’s C-gliders and the de Bruijn diagram from which they may be

derived. [Zero removed]
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2.5 Cook’s D-gliders, forward velocity c/5

It has been asserted that there are only two D-gliders, running right two every ten
generations, and that they are the only right-running gliders besides the family of
A’s, which run two cells right in three generations, making them about a third as
fast as the A’s. Note that listing the velocity as ¢/5 is a reduction to lowest terms
of the actual relation, which is to advance two cells in ten generations. The only
configuration which meets the one-in-five requirement is the alpha phase of the T2’s,
as seen in Figure 1.9.

Defining the width of a glider has its interesting points. Lind apparently took
the cycle-14, period-7 character of the ether for granted, exhibiting an appropriate
interlude to define the members of his list. That works well enough except for the E,
where 00000 doesn’t make a clean insertion. In all the other cases there is varying
amounts of slack which often gets taken up by additional ether tiles (taking as ether
the 4x4 T3 with a notch cut from the lower right corner). But if you don’t do it his
way, you can run into phase relationships which have to be explained.

Just gathering up the minimal unit which repeats, supposing that all the ether
continuations are implicitly and uniquely defined, The two D-tiles differ quite subtly,
the principal difference being where to position the T1 at the upper left of the first
tile. As Cook remarks, there is a discrepancy of two or three little dots now and then
distinguishing the two gliders.

From diagram experience, these tiles come from loops (several, in fact, if the lines
of successive generations are not cyclic permutations of one another) and the ether
tile is lurking in there somewhere, either as a loop or in the linkage between the other
loops. Well, tile juggling shows that the D1’s and D2’s can be juxtaposed in any
combination at will and separable when desired minimally by an ether strand which
can be interpreted as a jittering (D1 to D1) or intermittent (D2 to D2) glider! Or, of
course, something even thicker.

Which goes to confirm that the definition of a glider is rather subjective; it depends
on which of several tiles is in the minority, generally a strong minority, with respect
to the others.

Figure 2.25: T4 based D gliders, which move slowly right. The one on the left is D2,
on the right is a D1.
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Figure 2.26: There are two kinds of D gliders, each slightly different.
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2.6 Cook’s E-gliders, velocity -4c/15 (~ -c/4)

Going on to the strict E gliders, but still not attempting the E-bar, The E itself is a
fairly complex aggregate incorporating a T8, a T5, two T2’s, and seven T1’s:

2.6.1 tiling approach to -4/15 gliders

Although some overlapping of corner pixels is required, the extension can be run out
to the right as far as desired. The next course, nestled beneath them, will give the
illusion of T5’s and T3’s gliding off to the right and downwards, at the velocity of
two right every five generations. The E’s run 4 left every fifteen generations; as Cook
remarked, Lind apparently misjudged the veolcity of the E2. What is moving at which
velocity is something of a subjective judgement; of course the slopes in the evolution
diagram are well defined, but the subjectivity lies in whether to call something a glider
or not.

The extension tiles can be contiued with other tiles of the same velocity. Consis-
tency fixes the lengths of successive rows; all combinations are not possible, and there
is apparently no going back to extension tiles without encountering another E base
first. So the E is accompanied by a fleet of extensions giving way to the ether again.

Figure 2.27: T8 based E gliders, which move leisurely leftwards.
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2.6.2 tiling approach to -8/30 gliders
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Figure 2.28: The E-bar glider has the same velocity as E gliders, but it takes twice as
long to go through all its motions. Two periods of the E-bar are shown on the left, to
better to see how it fits in with the ether tiles. It is also presented on the right with
S tiles, to show the details of its embedment in the ether. Stripped to their barest
essentials, two EBars could snuggle quite closely, but that would violate the rule that
two top edges cannot abut directly. Some ether tiles must be inserted to avert the
problem, following which the gliders can be made to follow each other quite closely.

The EBar glider has coincidentally the same velocity as the E glider (from which it
derives its name), but it takes twice as long to complete a period. On the left it spans
six ether files, which are the routes along which an A glider would approach. On the
right there are only two files, so that it is only necessary to distinguish between low
mode and high mode when contemplating collisions with a B glider.

In examining pictures of evolution according to Rule 110, it is fairly noticeable
that a single isolated T10 is a precursor to the EBar. Or at least when it interrupts
the grain of the ether lattice in one particular fashion (ether one low on the left, one
high on the right). A good example is seen in Figure 3.10.
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2.7 Cook’s F-glider, backward velocity -c/9

Cook remarks that the F glider can be triggered from an A-C collision, the details of
which are shown in Section 3.2.2.
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Figure 2.29: The lackadasical F glider, which moves 4 left in 36 generations, for a
velocity of -1/9 c. Left: the unit cell, expressed with T tiles. Right: presentation with
S tiles, showing the different approach aspects. F gliders can be overpacked just as
well as EBar gliders, but no such arrangement can arise from natural evolution.

One period of an F glider occupies six ether files on the left, such as would be
used in the approach of an A glider. However, it occupies only four files on the right,
the path along which a B would approach. The difference is due, of course, to the
differences in velocity between A’s and B’s, given that their orientations relative to
the ether are different.
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2.8 Cook’s G-gliders, backward velocity -c/3

Figure 2.30: G gliders based on a mixture of T5, T6, T7, T8 and smaller ones, which
move left at 1/3 light velocity.

The G family, on the other hand, fulfills its promise of involving the “two right in five”
gliders. It differs from the E family in that the two superluminal traces comprising
the extension alternate a two-high B strip inside the alpha with a three-high B strip
in the same place.

These alphas are not such orphans as seemed at first sight, since they can merge
with the ether, fuse style. Moreover, they just plain stop with the left-running slopes
appropriate to the E’s or B’s, which means that their connection to the ether would
also show up on the corresponding de Bruijn diagrams.

They also have fuse-like behavior on the left hand, and since the boundary slope
is congruent, maybe an effort should be made to embed them totally into the ether.
As it is, they need the large triangles in the slim E’s or G’s to anchor them. But
since those large triangles are fairly common, one wonders whether they might extend
other gliders. In fact, near the upper right hand corner of Cook’s random sample is
an episode which fits this description.

Extending the extension occurs when B gliders join up with the latent B’s already
present, and the process is totally additive, even for two B’s right alongside each other.
Apparently the effect of A’s and B’s, as dislocations, is to raise everything vertically
by two cells. But that is just the rise needed to put new T5’s in the superluminal
stream. Since a superluminal stream is a phase effect, it isn’t a real glider, and doesn’t
have to run on and on, as a true glider might.

Since the alphas run out from selected larger triangles, it is also possible to wonder
whether there is a family present here, and whether it has any further members?
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Figure 2.31: The G glider is extensible by the same mechanism which extends E
gliders, with the difference that alternative a tiles are used which gives proportional
spacing between the T5 chains.
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2.9. COOK'’S H-GLIDER, VELOCITY -18C/92 (=~ -C/5)

2.9 Cook’s H-glider, velocity -18c/92 (~ -c/5)
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Figure 2.32: The H glider moves left 18 cells in 92 generations, about -¢/5.

This glider takes so many generations to develop that an analysis by de Bruijn diagram

is manifestly beyond reach.
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2.10 Cook’s glider gun, velocity -20c/77 (~ -c/4).
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Figure 2.33: The glider gun glides, and having glid, glides on. The horizontal lines
delimit one single period.

The glider gun has a velocity intermediate between the velocities of the streams whixh
it launches, giving them ample opportunity to clear the domain of the gun. If A and
B gliders annihilate on colliding, there is no obstacle to having a whole phalanx of
glider guns, although they won’t produce any extra effect on the remainder of the
plane (except maybe for spacing) beyond the effect of a single gun.



Chapter 3

Glider Collisions

Most of Rule 110’s gliders seem to have been known at the time of Wolfram’s World
Scientific book [9], although Cook seems to be justifiably proud of discovering the
“useless” glider gun and the highly convoluted H-glider, which he reveals to be the
product of a three-glider collision. When his results were announced to Life-Mail,
search programs were reported to have discovered his list of gliders and none others.
Whether there are others is still a moot question; statistical considerations favor their
existence (even after discounting complicated extensions of the known families), al-
though it is evident that those which do will have to have longer periods and more
complicated cycles than those now available.

Just having gliders doesn’t do much for reaching the higher levels of understanding
the behavior of a cellular automaton; the evident place to start the analysis is to study
the glider collisions. Cook mentions such studies, but his report [1] did not include
any of them,

Given a half dozen or more gliders, most of them with extensive variant families,
the study of even the binary collisions is going to be long and laborious, although it
does reveal some interesting patterns and regularities. These include the systematics
of glider extension and reduction, and also some solitons.

79
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3.1 Generalities

3.1.1 glider widths and glider parities

glider width width mod 14 parity

nA 6n 6n mod 14 even
nB &n 81 mod 15 even
BBarb 22 8 even
BBar8 39 11 odd
C1 23 9 odd
C2 17 3 odd
C3 25 11 odd
D1 25 11 odd
D2 19 5 odd
E1l 19 5 odd
E2 27 13 odd
E3 21 7 odd
En +10 every n+ 3 odd
EBar 21 7 odd
F 29 1 odd
G 38 10 even
H 59 3 odd

Table 3.1: The widths of Cook’s gliders.
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3.1.2 maps of collision chains

abse

Figure 3.1: A’s and B’s meeting E’s, C’s, and some others. All A labels have the A
either in the high or the low position. Exceptions are one link marked “A mid,” and
the tetrad, pentad links. whose collisions stop BBar and F solitons of all aspects.
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3.2 Collisions with A gliders

Although glider collisions and puffer trains are not the real province of de Bruijn dia-
grams, some information can occasionally be gleaned from the diagrams. For instance
“black hole” configurations are often interpretable as collisions. Just manually adjust-
ing the coexistence of A and B gliders, it looks like they should begin to collide in the
generation-9 de Bruijn diagrams. These are still within computational limits, being
16 times as big as the generation-7 diagrams, but will involve millions of nodes.

However, two kinds of collision are easily described, and are discussed below. Be-
sides the A - B collisions and the A - C collision converting into an F, there is the
whole class of collisions by which B gliders extend the E or G gliders, but which has
already been incorporated in the foregoing analysis. For A collisions, we can make the
following table:

target residue

B null
C1 F

C2 C1
C3 C2
D1 C2
D2 D1
E1l D1
E2 E1l
E3 C2

F EBar

Table 3.2: Collisions between right moving A’s and others.

Similarly, a table can be constructed for B collisions:

target residue

A null
C1 C2
C2 D1
C3 E1l
D1 El

D2 EBar + A
E(n) E(n+1)
F varied

Table 3.3: Collisions between left moving B gliders and others.

Besides simple encounters, there is a multitude of collisions between glider poly-
mers, and still more between closely spaced groups of polymers.
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3.2.1 the A - B collision vanishes

Figure 3.2: A and B gliders, travelling in opposite directions, can collide. They leave
no trace of their former existence.

A and B gliders, along with their polymers, induce simple fault lines in the ether lattice
along which the ether is displaced vertically by two cells but with relative offsets which
run in opposite diredtions. So collisions just balance the offsets, leaving the difference
as the overall result. An A polymer colliding with a B polymer of equal weight leaves
no trace; otherwise the higher polymer continues its course, appropriately diminished.
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3.2.2 the three A - C collisions

The simplest, and presumably amongst the commonest, gliders are the A’s, B’s, and
C’s. Because of their simplicity, it is relatively easy to catalogue the multitude of
collisions which results from different alignments and relative phases of the oncoming
gliders. The A’s move right, C’s are static and B’s move left, leaving A - B - C as the
only ordering which needs detailled examination.

The C’s embed into the ether according to three possible alignments of the vertical
spine formed by the left edges of the column of T6’s with T3’s on the left. Since A
gliders are formed by inserting some number of T1’s just below each T3 in a slanting
file of slope -2/3, the net effect of an A glider or a barrage of n A’s is to move everything
a distance 2n downwards along a fault line.

However, the T6’s have period 7 in contrast to the even displacement occasioned by
the T1’s of the A’s, which means that A’s arriving in the wrong phase, or in sufficient
numbers, can disrupt the alignment, which otherwise just shifts in accomodation.

On the right, there is less freedom, because there is but one alignment of ether
T3’s with respect to the T6’s of a C. As a result there will always be a rearrangement,
seen at first from the position of the C as an exchange of the points at which a T1 and
a T3 tile connect to the hypotenuse of the T6. But of course that provokes greater
change as the generations go on.

There are nine possibilities for the simplest collisions, according to the realignment
required to match up the A’s followed by the reaction to that alignment in the after-
math of an oncoming B. By separating the A’s from the B’s only six cases need to be
considered unless the A’s and B’s arrive simultaneously or nearly simultaneously.

\ EmEm ,ﬁiii ]

Figure 3.3: Two of the three phases of an A - C collision rotate the phase of the C
tiles relative to the lefthand ether.

In Figure 3.3 the collisions are shown for the alignments “lower T1” [C2] which
converts into “upper T1,” [C1] on the left, and “T3” [C3] which converts into “lower
T1,” [C2] on the right.
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Figure 3.4: A and C gliders, colliding just right, coalesce into an F. Left: ordinary A
glider collides. Right: Instead, an A dimer participates in the collision.

In Figure 3.4, the remaining collision does not rotate “upper T1” [C1] into “T3”
[C3] but rather converts the collision mass into an F glider after a slight delay. An
F glider moves leftward at one ninth the velocity of light. Actually Figure 3.4 also
includes a similar reaction based on an incoming doubled A glider to produce the same
final result.
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3.2.3 Multiple A - C collisions

When the T1 which constitutes an A glider finally makes contact with a C glider,
it adds its height, which is 2, to the T1’s in the C margin. The result is a shift in
the indices of the C, decrementing them except at the discontinuity at C1, which
enlarges the C1’s T6 to a T7, which transforms the C1 into an F. As long as the
effect is shifting, there is no restriction on the spacing between successive A’s. From
then on, the spacing matters, due to the internal structure of the F or any subsequent
intermediaries.

Any spacing at all is possible between A’s, from zero onwards, leading to innumer-
able sequences of A gliders. Two arrangements occur often enough to examine them
separately and give them names. The term polymer, or more specifically monomer,
dimer, trimer, ... refers to a cluster of T1’s without any spacing at all. On the other
hand, polyad, as in monad, dyad, triad, ... contemplates streams of T1’s separated by
one single ether tile.

polymer C1 C2 C3
monomer F C1 C2

dimer EBar F C1

trimer EBar + A EBar F
quadrimer E1 EBar + A EBar
pentamer D1 El EBar + A

Table 3.4: Collisions of A polymers with the three C gliders.

polyad C1 C2 C3
monad F C1 C2
dyad EBar F C1
triad E2 EBar F
tetrad El E2 EBar
pentad D1 E1l E2

Table 3.5: Collisions of A polyads with the three C gliders.
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3.2.4 A - D collisions

target | residue
D1 C2
D2 D1

Table 3.6: A - D collisions
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Figure 3.5: An A glider transforms D2 into D1 after a short while.

There is only one way that an A glider can approach a D glider, but there are two
species of D glider, according to the way its left margin matches the ether. The two
results are very different, because the collision rapidly promotes a D2 to a D1, but the
conversion of a D1 into a C2 takes about twice as long. In Figure 3.6 the process is
drawn using electronic quadrille paper.

The drawing on the left contains an error, but the drawing has been reproduced
because it is a common error with instructive consequences. The main problem is
that the first representation of the Rule 110 triangles which was used includes the
hypotenuse as part of the tile. However, the upper left vertex of a tile contacting
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the hypotenuse must overlap the hypotenuse. The reason is that otherwise three ones
in sequence would evolve into a zero, and not the one which forms the left edge of
the triangle. It is extremely easy to overlook this requirement, especially if a small
triangle like a T2 is being brought in.
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Figure 3.6: An A glider transforms D1 to a C2 after many generations, which is shown
in the right diagram; but the drawing on the left contains a common error towards
the very end giving, of course, a wrong result.
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It is safer to leave the hypotenuse off the tiles, and to invent a TO — just a single
live cell — to fill in the parts of the diagonal which remain unused. In fact any TO’s
necessarily occupy alternate positions along the diagonal, and that is the only place
where they are to be used. Which means that there are two parities for every tile, as
can be seen upon close inspection of actual evolutions.

If it were simply a matter of an annoying error, the matter could be forgotten,
or at least saved and brought out as a warning for anyone drawing an evolution by
hand. But the results are often extremely interesting, even if they aren’t part of a
legitimate sequence of events. For example, Figure 3.6 was originally seen as providing
a unit delay, which could have been useful in a circuit-theory approach to realizing a
computation with glider collisions. As frequently happens, the errors are often more
artistic and more interesting than true results.

An interesting way to exploit this blunder would be to work with a probabalis-
tic cellular automaton, in which Rule 110 would be modified to the extent that the
evolution of the neighborhood 111 to 0 could be reduced slightly by assigning it a
probability of 97% or some similar figure, maybe even negligibly but still reliably less
than 100%.
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3.2.5 A - E collisions

There are three relative alignments at which A and E gliders may meet, which could be
called high, medium, and low. Besides that, since the E glider is extensible, there is a
whole infinity of E thicknesses, which are actually paddings with «a gliders. Therefore,
the discussion of A-E collisions turns into a survey of a demolitions.

n | main extra n | main extra
1| D1 . 17 | D1 2B
2 | El1 . 18 | E 2B
3 | EBar A 19 | EBar A, 2B
4 | EBar . 20 | EBar B
5 | EBar B 21 | EBar 2B
6| F B 22 | F 2B
7| C1 B 23 | C1 2B
8| C2 B 24 | C2 2B
9| D1 B 25 | D1 2B
10 | EBar 2A, B || 26 | EBar 2A, 3B
11 | E2 B 27 | E2 3B
12 | EBar B 28 | EBar 3B
13 | EBar 2B 29 | EBar 4B
14 | BBar + F B 30 | BBar + F 3B
15 | BBar + F 2B 31 | BBar + F 4B
16 | C2 2B 32 | C2 4B

Table 3.7: A mid-collisions with En are periodic, repeating every time n increases
by 16, with the proviso that an additional B glider is always produced every time n
increases by 8.

When the A glider meets the E, glider in the low position, the reaction is very
clean, always resulting in F, ; except that the nonexistent Ey is a C3. Even so, the
indexing is consistent because A collisions with C’s lower their indices, C1 turning
finally into an F.
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Figure 3.7: Left: An A glider in a “mid” collision can be absorbed by an E glider
which promptly transmutes into a D. Right: But in a different alignment, whatsoever E
retracts, which makes a nice counterpart to the extension occasioned by B-E collisions.



3.2. COLLISIONS WITH A GLIDERS

Figure 3.8: An A glider can be absorbed by an E2 which then reverts to an El.

93
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O

Figure 3.9: An A glider can be absorbed by an E3 which thereupon reverts to an EBar
rather than to an E2, emitting a rightrunning A in the process. The alternatve result
is due to the different relative alignment of the oncoming A.
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Figure 3.10: An A glider can be absorbed by an E4 which reverts to a BBar rather
than to an extended E. Note the isolated T10, which is a sure precursor of the EBar
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3.2.6 nA - EBar collisions
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Figure 3.11: There are six different alignments for an A glider approaching an EBar;
they also serve as points of reference for A complexes and D’s.

align | monomer dimer trimer tetramer tetrad pentad
top | E2 E1 D1 C2 C2 C1
hhi | E2 EBar,2 B, Atet D1 EBar, Atet C2 C1
hi | EBar, A EBar,2 A C3 C2 C2 C1
mid | EBar, A D2 D1 C2 C2 C1
lo | EBar, A E1l F,BBar,2B F,BBar,B C2 C1
llo | EBar, A El D1 EBar,Atet C2 C1l.

Table 3.8: A’s can almost pass EBar’s, except that in the two highest alignments they
turn them into E2’s and stop. An A tetrad (four equally spaced vs tetramer [block of
four]) uniformly yields C2’s.
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Since the spine of the column of C2’s is already formed, the subsequent

arrival of another A, say as a member of a pentad, will simply promote the C2 to a

C1.

Figure 3.12: A tetrad of A gliders striking an EBar produces C2’s from whatever

3.2. COLLISIONS WITH A GLIDERS
rlll

aspect.




98 CHAPTER 3. GLIDER COLLISIONS

3.2.7 nA - F collisions
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Figure 3.13: There are six different alignments for an A glider approaching an F; they
also serve as points of reference for A complexes and D’s.

align | monomer dimer trimer tetramer tetrad pentad
top | EBar C1+3B (C1+2B Cl1+8B C3 C2
hhi | EBar EBar + A El D1 D1 C2
hi | EBar EBar + A El El1+A D1 C2
mid | EBar E2 El D1 D1 C2
lo | EBar EBar + A E1l BBar + F + 2B D1 C2
llo | EBar EBar+ A C1+2B Cl1+B C3 C2

Table 3.9: A single isolated A will transmute an F into an EBar. However, if a second
A arrives before the reaction is complete, the results could be quite different. In any
event, once the F has changed, any subsequent collider would have to deal with the
EBar.
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Figure 3.14: A single A glider can strike an F with any alignment to create an EBar
glider, which is faster. Note that in many cases an isolated T10 presages the EBar’s
emergence some twenty generations later on, starting out by producing a T5 - T6 pair.
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Figure 3.15: A tetrad of A gliders can strike an F to produce either C3’s or D1’s.
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Figure 3.16: A pentad of A gliders can strike an F to produce C2’s no matter what.
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3.2.8 A - G collisions

A - Gecollisi

aspect nonone

w11 C3 + D2
2 A+ G
3 Cl1 + EBar
4 Cl1 + F

N 5 2B
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Figure 3.17: There are nine different alignments for an A glider approaching a G; they
also serve as points of reference for A complexes and D’s.

align | monomer dimer dyad triad
1| C3+ D2 BBar5 A+ 2B null
2 A+G A +2B C1 + EBar A+ C2+D1
3| Cl+ EBar 2C3 C2 + E1 C2+C3
4| Cl+F B A + 2B null
5|28 B B null
6 | C3+ D2 A, 2B A + A dimer + B+ G A dimer + 2B
7| 2B 2B B null
8| 2B B B null
9| Cl+EBar C2+El1 C2+El C2, C3

Table 3.10: The collisions between A gliders and a G glider are quite varied. Note
that the break in the G margin comes at aspect 5.
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th B gliders

the three B - C collisions

3.3 Collisions wi

3.3.1

residue

C2

D1

E1l

target

C1

C2

C3

Table 3.11: B - C collisions

Figure 3.18: B and C gliders, when the C tile is in the “upper T1” [C1] alignment,

displace the C stack leftwards by four cells and turns it into a “T2” [C2].
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3.3.2 the three BB - C collisions

target | residue
C1 D1
C2 El
C3 E2

Table 3.12: B dyad - C collisions
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Figure 3.19: The collision of a B dyad with each of the C gliders follows the same
sequence as the collision with a single B, except that the result is advanced one step
in the general B-C collision chain. In other words, there is no penalty for the second
B having followed in close succession to the first.
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3.3.3 the three BBB - C collisions

target | residue
C1 El
C2 EBar, A
C3 E3

Table 3.13: B triad - C collisions
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Figure 3.20: The collision of a B triad with each of the C gliders almost follows the
same sequence as the collision with a single or double B. However, in the C2 collision,
the secondary salvo of B’s meets the developing D prematurely, placing a T3 instead
of a T5 at a critical point, culminating in the release of an A and the formation of an
EBar after a longer delay than was experienced in the other two collisions. In the C3
collision, the secondary B salvo is hidden in the a fragment which forms part of the
evolution.
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3.3.4 B - D collisions

B gliders can approach a D glider from two offsets.

low high
D1 E1l E1
D2 | EBar + A EBar + A
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Figure 3.21: B and D1 collide, leave E. Although the same glider results from either
collision, the intermediates differ slightly, as do the final positions of the resultants
and the delay in their formation. The low collision on the left gives an instant result,
whereas the high collision on the right almost creates an E, which only comes forth in
full bloom thanks to the fact that its essential ingredients were already there.
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Figure 3.22: B and D2 collide, leave EBar and A, respectively, but following different
routes. In the hi collision (right), the incoming T1 meets the D’s T2 allowing the
formation of a T5 two ether heights later, which in turn becomes an EBar glider after
te emission of an A. In the lo collision (left), the incident T1 meets a T4, immediately
generating a T8 which promptly falls into the hi sequence. Except for the discrepant
intermediates and their corresponding delays, both B - D collisions produce the same
eventual results. Still, they will respond differently to multiple B collisions.
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3.3.5 polyadic B - D collisions

main extra
E ;
EBar A
EBar
EBar
F

C1
C2
D1

0~ Uk WN =B

ssiesiiveliveRive

Table 3.14: 8.

al phacycl es May 16, 2001

Figure 3.23: Bombardment of any structure by a salvo of B gliders takes on the
character of an erosion of the alpha lattice. Therefore it can be expected that it will
eventually become periodic. Here the target can be D1 hi, which itself belongs to a
cycle of eight, or D2 hi, which evolves into the D1 hi cycle after a transient, also of
length eight.
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Figure 3.24: Three of the nBhiD1 collisions, for n = 6,7,8. The gradual growth of the
period 8 margin of the region of B gliders can be seen. Every time the T1 cluster to
the left of the T4 launches a new glider to the left, the B tally for the reaction must
be incremented; otherwise the whole process is cyclic. Note that the A glider which
transforms D1 into D2 is implicit in all three diagrams, which could be made more
evident by changing the coloring of some of the T3’s.
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3.3.6 B - E collisions

Only one approach is possible, and invariably promotes E, to E,t1. Any number of
B’s can approach an En with arbitrary separations between them, without affecting
the final result.

Figure 3.25: A swatch of Eb5 glider, including the B’s which extended it from E1.
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3.3.7 B - EBar collisions

There are two B - EBar collisions, both of them leaving the EBar advancing between
three consecutive B precursors and working away from a pair of A’s. Actually, the high
aspect collision immediately switches over to a low aspect collision, with an attendant
delay in becoming effective.
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Figure 3.26: B and EBar collide in two aspects, leaving the EBar amidst a shower of
sparks - two A’s and a B triad.
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3.3.8 B -F coll

B gliders can approach an F glider from four alignments.

BBar + F
D + A dimer

lst
2nd

B+ F
BBar + F

3rd
4th

There are four relative alignments between B and F gliders, two of which exchange
the gliders for a BBar5 and an F, one of which is solitonic, and one of which leaves a

residue travelling to the right.
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3.3.9 B - G collisions
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Figure 3.28: The collision of a B glider with a G glider is symmetrical between the T7
and the T8, from both of which a T5 protrudes as part of an incipient « lattice.

B gliders can extend a G glider from two alignments; both resemble B - E collisions,
in which the incoming T1 grazes the protruding T5 creating a reararrangement which
accomodates another T5. The process can be repeated arbitrtarily often, without any
requirements on the spacing between B’s.
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3.4 Collisions with BBar5 gliders

3.4.1 BBar5 - C collisions

lo mid hi
Cl | D1+A EBar + 2 A dimer F+2B
C2|E+A EBar + A dimer + A BBar+ F + 2B
C3 | EBar+2A EBar+2A EBar + A dimer

Table 3.15: BBar5-C collision

3.4.2 BBar5 - En collisions

When B’s collide with E’s or G’s, an extension results. When BBars approach for a
similar encounter, the results are variable. That is probably because the B’s are a
direct interface between the a’s and the ether, whilst the BBars are not.

El Cl1+4B
E2 El1 + B + 3 A + A trimer
E3 E5 + A
E4 E6 + A
E5 E2+3A

EBar F+G+B+3A

Table 3.16: BBar5-En collision

3.5 Collisions with BBar8 gliders

lo mid hi
Cl|. . A, 3B, more
C2|. . A dimer, 2B more
c3 . . G, more

Table 3.17: BBar&-C collision
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3.6 Collisions with C gliders

The C gliders are static, readily interfacing to the ether on either the left or the right,
and to an expanse of zeroes on the right. They can also be closely stacked, producing
phalanxes of C’s, and the attendant necessity to examine collisions with the phalanx
in detail.

3.6.1 C - D collisions

D1 D2
Cl | A+ Atrimer+3B A + A dimer + G
C2 2A+2B A+2B
C3 A+2B A+3B

Table 3.18: Most C - D collisions cancel out into A’s and B’s, although sometimes
after prolonged indecision during which various gliders almost materialize underneath
a BBar leading edge.
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3.6.2 C - E collisions

Any description of collisions with E gliders can become quite complicated simply
because of the large variety of E gliders once their extensibility has been reckoned
with. From a much larger perspective, there is far less variation because large E
gliders are really margins of the alpha lattice, whose interface with other lattices is
periodic on a sufficiently large scale.

EBar

eve odd
Cl EBAa r CAZ a1 A A a1 a | @
EBar | pentam| 3 B' s | EBar F EBar
F D2

A A A ’ , cl o BBar o
2B St |3Bs| 3B F EBar cl F

S| EBar | BBar F
BBar

A A c2 Cl , Cl

! 4 B
C3 3Bs G F 4Bs| o *l @ FCZ
Ccol i si May 31, 19

Figure 3.29: Some selected collisions amongst C, E, EBar, and F gliders exhibit the

properties of solitons.



3.6. COLLISIONS WITH C GLIDERS

C + En colli1si

Cl C2 C3
EF1 h | EBar, F, A A,2Bs A,3Bs
El | o < D2 A| c, eBar, A G A
E2 hi | EBar, F 2 Bs| 3 Bs
E2 |lo| C, D2 | Cl, EBar G
E3 hi|C, eBar | 3 Bs|  40Bs
E3 |0 A 2Adimég *FS7 b1, EBar
E4 hi D2, E 4 Bs| 5 Bs
E4 | o c1, E 2BsC3, EBar D1, EBar, A
E5 hi |[E,L EBar, A 5 Bs| 6 B's
ES | o
E6 hi 6 Bs 7 Bs
E6 | o
CEncol li s June 24, 19
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Figure 3.30: A pair of C’s standing to the left can act as an En decrementer similar to
an A coming in from the left. Still others simply get eaten away as the En dissolves
into a burst of B gliders which the next C in line refurbishes into another En.
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Figure 3.31: Many collisions with E complexes simply unravel the margin of an «

domain, which means that they will always follow a predictable pattern.
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1

producing a shower of B’s. These can collide with a

but with decremented index.

’

Figure 3.32: C2 collides with E
waiting C2 to restore the E,
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fattening itself in the process.

Figure 3.33: En eats up C3’s,
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3.6.3 C - EBar collisions

I high even high odd | low even  low odd
C1 C1 + EBar A penta | A+3B C1+ EBar
C2 || A+ 3B+ BBarh 3B Cl1+F C2+ EBar
C3 C2+F 1B 2C1 4B

121

The EBar glider can transport information from right to left across a line of C1’s or

C2’s provided that it encounters them in the odd low aspect.
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Figure 3.34: Although it has to be aligned correctly to do so, an EBar can pass by

either a C1 or a C2, allowing it to carry information across a line of C’s.
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3.6.4 C - F collisions

F high F low
C1 EBar + C2 F+C1
C2 | F+Cl+BBar F + C1 + BBar
C3 Cl1 + C2 F + C2 + BBar

Figure 3.35: Illustrating the two different alignments for C - F collisions. They can
be distinguished visually by whether an odd or an even number of ether tiles separate
their two margins. Left: high aspect, Right: low aspect.

C gliders are static with period 7, while F gliders move left 4 every 36 generations,
for a velocity of -1/9. Thus an F glider falls by one cell relative to the C chain, while
coming 4 cells closer, every time it runs through its period.

Since the two gliders must be separated by an integral number of ether tiles, and
there are two phases of ether tile which abut on the right side of a C, there are
essentially two relative alignments for an F and any C.
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Figure 3.36: C1 collides with F in the low alignment, wherein they pass each other

by.
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3.6.5 C - G collisions

C gliders are static with period 7, while G gliders move left 14 every 42 generations,
for a velocity of -1/3. Thus a G glider falls by one cell relative to the C chain, while
coming 14 cells closer, every time it runs through its period. On the other hand, a G
glider has a simple top margin consisting of three cycles of BBar margin, followed a
drop of two ether tiles along an A dimer margin, there are essentially eleven positions
for an oncoming G along a B line of sight, and only one B line of sight per C cell.
These combinations are shown in Figure 3.37.

LI
|

Figure 3.37: There are eleven aspects from which a G glider can approach a C glider.

It is then a matter of setting up each aspect for the three C gliders, and tabulating
the results, as shown in Figure 3.38. The results vary in complexity, ranging from the
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completely clean C3 + G(® — EBar to the two C2 collisions resulting in A + C1 +
D2 + EBar. An EBar is by far the most common resultant, with most of the collisions
producing varying numbers of A’s; although B’s arise almost as often. Sometimes a
C glider will be left behind; usually a C2, but sometimes a C1, never a C3.

The BBaric periodicity of the G along the top margin, which is the part that
reaches the C first, is very much in evidence; however it is not a rigorous periodicity
because of the influence of the remainder of the environment.

cl - Gcolli 2 - Geollisic © - Geollisi
1]2A 1A
1 B dya 2 2/_\: A*2, A*4, 2 Btetrad, C
g iAirimr 3A Cl, O | 3/ 3A Btriad, EBs
4| 2A : 41 A, 4] A triner, C
5 B dya 5 Btriad 5/ A
6| A diner, 6| 4A, Btriad, 6
7] 2A, 7|A*3, BBar 5, 7 A B dyad, c2,
8 B dya 8| 2A, 8| A
9| 2A, 9|2A, A*2, A*4, 9 B tetrad, ‘
10| Atriner, 10| A Cl, D 10| 3A, B triad, EB3
11| 2A 11|2A, A*2, A*4, 11 B tetrad, ‘

Figure 3.38

C3aable
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: The thirty three different collisions between C gliders and G’s.
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3.7 Collisions with D gliders
3.7.1 D - E collisions

hi mid lo
D1 | A dimer + 4B A dimer + 4B B dyad
D2 2 A dimer G via T13 B triad

Table 3.19: D - E collisions mostly cancel out into A’s and B’s. a noteworthy exception
being the D2E1mid collision which cleanly produces a G glider via a freestanding
intermediary T13. In this respect the evolution resembles the commonplace production
of an EBar from a single T10.

3.7.2 D - EBar collisions

3.7.3 D - F collisions

3.8 Collisions with E gliders
3.8.1 E - F collisions

En - F collisions tend to dissipate, sometimes after long intervals.

3.9 Collisions with EBar gliders

1t EBar + F
2nd  EBar + F
3rd EBar + F
4th B

Table 3.20: Of the four relative alignments between an EBar and an F, the three
highest let the EBar pass. The lowest removes them both leaving only a B to mark
their presence.

3.10 Collisions with F gliders
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2).

1). Right: EBar collides with F(

(

Figure 3.39: Left: EBar collides with F



Chapter 4

Running an Obstacle Course

Having enumerated binary collisions and examined some of their products, attention
naturally turns to more complicated collisions. If the reactants are well separated, it
is just a matter of combining the binary results. But given that collisions take time to
resolve themselves, a third (or even more) gliders can intrude into the reaction area,
changing the final result.

An intermediate type of collision consists of those where the interaction is perfectly
predictable, but the combination of a whole series may turn out to be interesting. One
example lies in the use of an En as a counter, which can be manipulated by two different
mechanisms.

The outstanding characteristic of an En glider is that n will be incremented by
B collisions, surely and independently of their relative spacing. Two of the possible
collisions by an A glider decrement the index (taking Ey as D1, and observing that
B D1 can bring the E back, thereby allowing a mild deficit). Although symmetrical
with respect to the indices, the arrival of the index modifying gliders from opposite
directions reccommends isolating the En, complicating any plans to use it as a tally.

The other index changing collision arrangement uses C gliders (which, of course,
are static), relying upon the difference between C2 or C3 to get the sign of the index
change. Whichever, the modifier sits on the same side, always the left, of the oncoming
E. Creating a series of index changes depends on arranging the sign changing C’s in
the required linear order.

Running off the end of the series, with a non-existent Fy, also has to be foreseen
and provided for.

129
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Right: A pair of C3’s can

A pair of C2’s can decrement an En.

Figure 4.1: Left:

increment an En.
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Figure 4.2: By alternating incrementation and decrementation, an En can maintain it-
self while erasing (right to left) C2, C3 pairs. Incrementing, followed by decrementing,
is secure; reversing the order could create an EBar as an intermediate.
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Figure 4.3: Unfortunately, reversing the order of C2 and C3 in an En sweep breaks
the sequence, introducing EBars. The T10 visible at the bottom of the figure is a
canonical EBar precursor.
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Figure 4.4: The C3 - E collision creates a B triad plus an A. But an A - E collision,
high or low, produces a C3. Therefore a C3 can move to the right against an E stream
at the expense of releasing three B gliders for every two E’s which it absorbs. All
those B’s could be used to produce a huge E at some point, if that were desired.
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LCAU21 Evolution X

Figure 4.5: A slowly drifting complex can be formed from an infinite sequence of A, C2,
and D2 gliders. Absorption of the A during the triple collision leads to regeneration
of the C - D pair and the emission of a new A. The A’s can be used to link successive
pairs to get a figure with an overall shift period of 2 left every 86 generations.



Chapter 5

Conclusions

Figure 5.1: One of the reasons that large triangles do not occur often in evolutions is
that they do not pack well. Extremely large triangles belong to the Garden of Eden.
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Figure 5.2: After the first few hundred generations, a boundary layer stabilizes along
the advancing edge of the expansion of a single cell into the vacuum. It still has to
come to terms with the right edge. (Figure courtesy Genaro Juarez Martinez)
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Figure 5.3: Eventually the expansion of a single cell into the vacuum comes into
equilibrium, with A gliders from the left meeting C3’s on the right in a reaction which
displac es them slightly to the left. (Figure courtesy Genaro Juarez Martinez)
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Using cyclic configurations to find gliders has limitations, especially when the gliders
are sought against a textured background, as in the case of Rule 110. The idea of the
straightjacket consists in fixing the boundary cells of an interval and looking at the
evolution so constrained, which is certainly not a new idea by any means. In the case
of gliders, the boundary can be staggered according to the velocity of the glider.

However, there is a complication, namely that the postulated boundary may not
be compatible with the evolution of the full field, after all. The result is that running
out the constrained basin diagram gives a necessary, but not sufficient, condition that
the nuclear (transient-free) diagram defines gliders which can be inserted into the
given background. Between necessity and sufficiency lies a compatibility problem,
expressible via the Post Correspondence Principle, a/k/a the word problem, with a
good liklihood of being undecidable: “It is undecidable whether there exists a glider
of arbitrary velocity s/d (displacement/generation) in a textured automaton.”

“Textured” rules out arbitrary Class III automata unless agreement on an “ether”
can be reached, whereas Class I and II automata do not have enough texture to raise
the word problem out of triviality. In other words, it all depends on whether the
sequence the straightjacket program generates is complex enough to create a word
problem when checked against the boundary sequence.

Note a difference between the basin calculation and what is proposed here: Basin
programs generate trees rooted on loops (and hence loop nuclei) because of the func-
tional character of cyclic evolution. A stipulated boundary has to compensate the
degradation of the automaton’s interval due to the discrepancy between neighbor-
hood and cell; when there is shifting, it has to be thicker still. Therefore the map of a
glider’s- width-interval always depends on some boundary cells, but still more at shift
points. An interval will always have a successor, but possibly more than one, in con-
tradistinction to the cyclic case; therefore nuclei need not be simple loops. Otherwise
there would be no word problem.

As far as actually testing this, the gliders reported by Cook and Lind together with
the margins they require imply a greater computational effort than that to which I
have been accustomed.

5.1 Acknowledgements and Disclaimer

Visual inspection of the gliders in Cook’s www page [1] has been the source of all the
tilings presented here. Beyond that, the further exchange of information via LifeMail
has helped to clarify much of the structure and organization of his gliders. NXLCAU21
is part of an extensive program development made possible by the NeXT workstation
provided by the CONACYT.

Naturally one expects to fill a document such as this with correct information.
Evolutions copied from the screen of a computer program are more likely to be correct
than those drawn by hand; results obtained both ways verify one another but may
still be erroneous. Therefore, a certain amount of scepticism should be exercised and
the results viewed accordingly.

By far the most common error in the hand drawn diagrams arises from juxtaposing
top margins; T tiles suffer more than the S tiles.
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