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1 Introduction

A vector space is a place where you have things called vectors, and what you can do with them is
to add them and stretch them. You also need to tell when some of them are equal. In order to
tell who got added to whom, vectors are usually drawn as lines with an arrow at the tip, according
to which the rule is: start at a tail, go to the head and if there is a vector to be added, put its
tail there and continue. Of course, a lot of things are implicit in such an informal definition, such
as that vectors can be moved around without essentially changing them, that there ought to be a
single place called an origin where vectors get started off, and if they are just laying around and
happen to cross, that doesn’t count.

Addition is commutative, in the sense that you reach the same destination whichever order is
followed, something called a parallelogram law. It is also assumed that stretching is related to
addition, in the sense that 2X = X + X, and so on for all the constructions related to integers,
rational numbers, real factors and even going so far as complex numbers.

It is one thing to work up an axiomatic theory of something, like groups, or topologies, or vector
spaces, or whatever. It is quite another to discover that all of those systems and indeed almost every
theory that one can imagine, have very similar structural features, for which there is an applicable
metatheory, sometimes called Universal Algebra. That higher level theory is based on the ideas
of equivalence and order relations, classifying the functions mapping one set to another, and the
generation of new structures via the intermediary of cartesian products. To appreciate this view of
vector spaces, consider:
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2 Axiomatic Viewpoint

2.1 Vector space axioms

A Vector Space is formed from two sets, the vectors and the scalars, which are their coefficients.
Vectors form an abelian group with respect to addition, which is to say that sums are closed,
associative, commutative, and that there are negatives and a zero.

The scalars comprise a field (supposedly commutative to avoid undue complications, and typi-
cally are either the real numbers or, when occasion demands, the complex numbers). That means,
among other things, that 1 is a scalar, that scalars have reciprocals, that 0 is also a scalar, and that
it is hard to tell the negitive vectors from positive vectors with a negative coefficient.

The distributive laws, right and left, link vector addition with scalar multiplication. Even though
there is a right distributive law, coefficients are always written on the left.

2.2 Order relations

Any subset of the vectors in a vector space, keeping the same coefficients, which is a vector space
all by itself, is called a subspace. Of course, the coefficients could be changed too - to pass from a
complex space to a real space, for instance - but that is a specialty which not usually considered to be
a part of an introduction to vector space theory. Save closure, finding zero, and locating negatives,
none of the other axioms depends on whether a subset is being considered or not. Checking all
three requirements at once can be accomplished by considering closure under differences.

Vector subspaces are familiar enough: in three dimensions, just think of lines and planes. The
important point is that in whatever vector space, the subspaces are ordered by inclusion. Moreover,
there is a smallest subspace, containing just zero itself (the origin), which is contained in every
other subspace. Apparently trivial, but still important for consistency, the whole space is not just
a subspace, but it is the largest subspace, within which every other is contained.

Comparison between pairs of subspaces can be attempted, yet pairs are rarely arranged so that
one is contained within the other. Instead, there is a largest subspace common to both, as well as a
smallest subspace containing the two. The first of these is just the setwise intersection of the two,
but the second requires some construction: it consists of all linear combinations of vectors in the
two subsets; not just their union. Just keep on thinking of lines and planes.

It isn’t just subspaces which have upper and lower bounds; mere subsets can be included in the
hierarchy by looking for the smallest vector space containing a given subset, or the largest (if any)
subspace which it contains. This is an idea which gives rise to bases: Start with any non-zero vector,
and find the smallest vector space containing it. That will be the set of all its scalar multiples, or
in short, a line passing through the vector (and evidently also passing through the origin) .

Supposing that there are some vectors still left in the full space, choose one of them, and repeat
the process. But now we have to account for the first vector, so it is a good idea to find the smallest
subspace containing both vectors, which is just the set of sums taken from the two subspaces. We
might as well call that the sum of the two subspaces. Of course, there is some verifying involved,
to ensure that everything is well done and consistent.

Maybe there are still vectors not accounted for; so start all over again, finding the smallest
subspace containing all three vectors, and so on as long as the entire space hasn’t been generated.
If the process terminates, the chosen vectors are said to form a basis, whose dimension is the
number of independent vectors which it contains (linear dependence means that one vector is a
linear combination of others; equivalently, summing multiples of all of them, not all coefficients
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being zero, still gives zero). The interesting thing is that the dimension always ends up the same,
whatever sequence of vectors is chosen for the construction. It is not hard to prove; just replace the
first basis by the second, one vector at a time, while substituting all the previous results in each
new expression.

If the process of exhausting the supply of vectors never terminates, the space is not finite-
dimensional, turning the search for bases into a much more intricate activity.

2.3 Functions

Pairing up elements in the style (x, f(x)) so that there is never more than one f(x) for a given x, is
what defines a function f. When the sets from which x and f(x) are chosen have structure, functions
preserving the structure are usually set apart from more generic functions, and often have special
properties themselves. For vector spaces, requiring linearity,

f(ax + by) = af(x) + bf(y),

does the job. However, it is easy to treat functions as though they were vectors, by saying

(af)(x) = af(x),
(f + g)(x) = f(x) + g(x),

so that without further ado, we can regard all of the linear functions between a fixed pair of vector
spaces U and V as forming another vector space. To give it a name, call it Linear(U,V). From
such humble beginnings, all sorts of different combinations of functions and vector spaces can be
constructed.

Some of the possibilities are shown in the following diagram, Figure 1.

the
coefficients

another
vector
space

one
vector
spaceone linear functional

lots of others

its
Dual

Space

Linear(One, Another)

a linear mapping

others

a line

0

Figure 1: A schematic representation of different linear mappings.

Scalar valued functions of vectors are some of the easiest functions to define, which is appropriate
considering their fundamental importance. The starting point is to recall the role of a basis – every
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vector x is some linear combination of basis vectors {vi}:

x =
∑

aixi,

whence the value of the linear function depends entirely on the values which it assigns to the basis:

f(x) =
∑

aif(xi),

It is a great temptation to make up a whole collection of new functions, {gi}, each one charged
with assigning its own basis vector the value 1, all the rest 0:

gi(xj) = δ(i, j).

(here δ would be Kronecker’s delta). So doing, the function f would end up being represented by

f(x) =
∑

f(xi)gi(x),

which in turn would make the g’s into a basis for scalar valued functions of vectors. This new space,
of the same dimension as the old, is called its dual space. It is noteworthy that the dual of a dual
reverts back to the original space, thanks to the fact that arguments can map their functions into
values, all in a completely linear fashion.

Just because a space and its dual have the same dimension, they have to be practically identical.
They both have bases, but it remains to be seen just how both bases could be drawn in the same
picture the way vectors are usually visualized. First, though, it is convenient to discuss functions
of several vectors, and then to make up biorthogonal bases.

3 Equivalence Relations

Presumably there are linear mappings between any pair of vector spaces; certainly the zero map
always exists. If the spaces have different dimensions some discrepancies are bound to occur,
because not even the basis vectors can be matched up one-to-one, much less all the rest of the
vectors. One use of equivalence relations is to clarify the relatioship between two spaces connected
by a function, because the sets where the function takes a constant value are equivalence classes.
General properties of equivalence relations are thereby transferred into general relationships among
functions.

To begin with, all the counterimages of a linear mapping depend on the counterimage of zero.
Suppose that f(r) = x and f(s) = x as well. Then

f(r − s) = f(r)− f(s)
= x− x

= 0,

placing the difference of any pair of elements with a common image amongst the elements which
map into zero. That is enough to make the counterimage of zero, which is usually called the
kernel of the mappping, into a vector space, and to make all the other equivalence classes differ
from it by translation. As an example, think of orthogonal projection mapping space onto the x-y
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0
f-1(0)

f-1(x)
x

. r
f-1(x) = f-1(0) + r

Figure 2: Equivalence relations is a linear mapping

plane. The z-axis is the kernel of the mapping whose translates are the vertical lines containing the
counterprojections of any other point.

In passing, note that both the images and the counterimages of vector spaces are vector spaces,
according to a linear mapping. As far as the vector spaces themselves are concerned, that is
nothing but the definition of linear mapping. But it automatically carries over to all the subspaces
as well, which is the useful part of the remark. Besides which, the multiplicity of counterimages is
uniform everywhere, giving vector space theory an elegance which is not shared by all mathematical
structures.

The functions in the dual space, unless they are zero, have to map onto a one-dimensional space
because that is all there is. Each basis function maps its counterpart’s multiples to the full coefficient
space, leaving the space spanned by all the remaining basis vectors for its kernel. Altogether, the
dual basis allocates each vector a line and a hyperplane omitting that line (but only because the
basis was there already).

3.1 Cartesian products

To work with several things at once, it is easy enough just to make a list of them. This is the idea
behind a cartesian product, although the name was originally associated with a list of distances of
points from coordinate axes, collected for the purpose of doing geometry with algebra. It is one
of the most straightforward ways of making something compliated by joining up a lot of simpler
items.

Listing out the vectors of a basis is not quite the way cartesian products are usually found in a
vector space, because the most familiar list enumerates the coefficients of the basis vectors instead.
But the list could contain anything else, just so long as the nature of its contents is made clear.

A natural way to create operations on a list is to perform an operation relevant to its elements
on every element simultaneously. For example, when it is a list of vectors, then sums and scalar
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multiplication could be defined by:

a(x1, x2, . . . , xn) = (ax1, ax2, . . . , axn),
(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn).

With such an understanding, a cartesian product of vector spaces is a new vector space. If the
“vectors” in the product are taken from the one dimensional space of scalars, the result is still a
vector space; in fact it is the canonical form of a vector space, with basis vectors

ei = (0, 0, . . . , 1, . . . , 0),

and representation

x =
∑

xiei

and functions from the dual basis

gj(x) = xj

which simply read off the jth scalar in the cartesian product list. Functions meeting this description
are commonly called projections, serving to recover the original factors from which the cartesian
product was constructed.

Figure 3: The Cartesian Product of Vector Spaces

3.2 Functions of cartesian products

Before cartesian products were mentioned, vector spaces already had a collection of attributes, such
as bases, dual spaces, and the dual basis. Since cartesian products of vector spaces are vector spaces
in their own right, curiosity would imply examine relationships between the product space and the
factors. For example, the cartesian product of bases could be a basis for the cartesian product, but
is it true that any basis for a cartesian product can be factored into a product of bases?
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Just as there are cartesian products of sets, there should be cartesian products of functions.
Directly interpreting such an idea, any product function applied to a cartesian product of arguments
ought to produce a cartesian product of values.

However, there are less ambitious functions for product spaces than either of these two possibil-
ities. Consider a scalar valued function of a pair of vectors which is linear separately for each term,
rather than being required to be jointly linear:

f(ax + by, z) = af(x, z) + bf(y, z)
f(x, ay + bz) = af(x, y) + bf(x, z).

The main difference is that we want either af(x, y) = f(ax, y) or af(x, y) = f(x, ay), but not at all
af(x, y) = f(ax, ay), which it would have to be if (x, y) were a vector on which f were operating
linearly. According to the modest definition, we would have f(ax, ay) = a2f(x, y).

3.3 Symmetric bilinear functions

Another traditional restriction concerns the symmetry of f with respect to exchanging its argu-
ments. If the arguments matter but their order does not, it could be said that

f(x, y) = f(y, x).

In such a case only one of the linearity requirements would need to be given explicitly. Of course,
such a switch supposes the that the same vector space is used for each argument.

Another possibility would be that changing the order would change the sign of the result. This
assumption eventually leads to an axiomatic theory of determinants. But to stay with the symmetric
alternative, the next step is to refer the function to a basis (for which a two dimensional space is
sufficiently illustrative):

f(ae1 + be2, ce1 + de2) = acf(e1, e1) + adf(e1, e2) + bcf(e2, e1) + bdf(e2, e2).

This is nicely written as a matrix equation,

[
a b

] [
f(e1, e1) f(e1, e2)
f(e2, e1) f(e2, e2)

] [
c
d

]

showing how hard it is for linear algebra to escape from matrix notation. The central matrix
is determined exclusively by the basis, and is symmeric because f was. Conversely, choosing
the values of f just for the basis fixes its values everywhere else, and so uniquely defines the
function. A plausible choice is the Kronecker delta, making f (the square of) Euclidean distance.
Any other choice would be a metric matrix for some geometry, but this one gives the Euclidean
metric. Interestingly, an antisymmetric matrix (from an antisymmetric f) would imply a symplectic
geometry with a symplectic metric.

What would be reasonable requirements for f , yet not depending on a basis? To always be
positive for repeated arguments, and never zero except for a pair of zero vectors, seems to be
adequate. As a consequence,

f(x− y, x− y) = f(x, x) + f(y, y)− 2f(x, y)
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would have to be nonnegative. Dividing by
√

(f(x, x)f(y, y)), which would not be zero if neither x
nor y were, we need conditions for an expression of the form r + 1/r − s to be positive.

Note that r + 1/r has a minimum value of 2 at r = 1, for positive r, and a maximum at −1,
for negative r. Thus a positive s could never exceed 2, nor a negative s ever fall below −2, which
incidentally translates into a form of diagonal dominance for the metric matrix (if there were one).

It might also inspire the trigonometrically minded to make up an angle by writing

f(x, y) =
√

(f(x, x))
√

(f(y, y)) cos(θ).

To pursue the idea of distance further, note that three of the four quantities in the expression
for f(x − y, x − y) are positive, so that if it were necessary to add some positive quantity to the
right hand side to make them all positive, an inequality would result:

|f(x− y, x− y)| ≤ |f(x, x)|+ |f(y, y)|+ 2|f(x, y)|.

This inequality would take a more familiar form if the distance d(x, y) were defined as the positive
root of d2(x, y) = f(x− y, x− y), x− y were substituted for x in the inequality, and likewise y − z
for y. The result,

d(x, z) ≤ d(x, y) + d(y, z)

is the triangle inequality required to complete the axioms for a distance, which altogether read:

• distances are positive, zero only for coincident points,

• symmetric,

• and obey the triangle inequality.

This all sounds like deriving geometry from vector algebra, rather than the other way around.
Why do we go to so much trouble to make up this bilinear functional, especially since we already

have the dual space and linear functionals to work with? For one thing, there are the connections
with geometry - distances, projections and the cosines of angles. For another, it is less dependent on
a basis, which is crucial for vector spaces which may not have bases, such as when their dimension
is no longer finite, and which abound in quantum mechanics and its applications.

Here is an illustration of a basis i, j and its reciprocal basis, ii, jj which would have been a dual
basis except that inner products work on two copies of the same vector space, rather than on the
(space, dual) pair.

Note the difference between contavariant components which are the coefficients used in linear
combinations (parallel projections on the dual basis), and covariant components, which result from
perpendicular projection on the basis itself.

3.4 Antisymmetric multilinear functions

The contrasting property to symmetry is antisymmetry which, for a function of two interchangeable
variables, would read:

f(x, y) = −f(y, x).

10



i

j

ii

jj

Figure 4: The Reciprocal Basis as a Dual Basis

Among the most visible changes would be the result f(x, x) = 0, with corresponding changes in its
matrix representation with respect to a basis:

f(ae1 + be2, ce1 + de2) =
[

a b
] [

f(e1, e1) f(e1, e2)
f(e2, e1) f(e2, e2)

] [
c
d

]
,

=
[

a b
] [

0 1
−1 0

] [
c
d

]
,

If the dimension of the space were larger, the dimension of the metric matrix would increase
accordingly, although it would always be antisymmetric. The resulting geometry would be of a
different kind, usually called symplectic, with interesting and characteristic properties of its own.

Alternating multilinear functions provide the abstract setting, based on linear algebra, within
which to discuss objects such as determinants, minors, cofactors and a vaiety of vector products,
which became well established in the applications of algebra long before the axiomatic point of
view arose. Determinants, for which the number of arguments matches their dimension, are the
outstanding example of the unifying approach, serving as a prototype for the study of the remainder
of these functions. Its requirements are:

1. f is linear in each argument, the remaining arguments held constant,

2. f changes sign whenever a pair of arguments are exchanged,

3. the value assigned to a basis (with its vectors listed in order) is 1.

The third principle simply provides a normalization factor; if another function g follows the first
two axioms but not the third, it will have the same value as f , but multiplied by g applied to the
basis.

11



(a, b)

(c,d)

Figure 5: A Determinant referred to a Basis. The right triangles can be rearranged to show that
the area of the parallelogram is (ad− bc).

In two dimensions the formula above reduces to the familiar (ad−bc); in n dimensions, the same
process obligingly yields the traditional signed sum of permuted products. It is only necessary to
expand all the vectors according to a basis, usually the coordiate basis itself, change signs to
put the basis vectors in order, and elimate any terms with repetitions. The result is a sum over
permutations,

|M | =
∑

permutations π

sign(π)
n∏

i=1

miπ(i),

where the traditional symbol |M | has been used for the determinant of the matrix M .
A less ambitions decomposition leads to Laplace’s expansion; for example, write

|M | =
n∑

i=1

mi1|ei, X2, X3, . . . , Xn|.

Naturally, any column other than the first could have been chosen, at the cost of writing a messier
formula.

Having applied the determinant formula to the summands, zeroes and ones will occur here
and there because of the components of the constant vectors Ei. The resulting formulas can be
simplified by observing that they refer to new determinants, gotten from the old by crossing out
the first column and the ith row of M . Those are the minors of |M |, say µi1. In fuller generality,
had the jth column been used instead of the first,

|M | =
n∑

i=1

mjiµij ,
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and the transposition of the subscripts between m and µ is quite correct.
In fact, if a wrong row of µ’s were placed in this formula, it would describe a determinant in

which a wrong column had been repeated twice; once where it belongs and once where the jth

column of M ought to have been. Far from being an annoying mistake, the substitution can be
exploited to obtain the inverse of M . Under this interpretation,

n∑

i=1

mjisign(i)µik = |M |δjk,

Signed minors are called cofactors, whilst the matrix of cofactors is called the adjugate of M , written
MA. Since these equations state that

MMA = |M |I,

the inverse of M is

M−1 =
1
|M |M

A

whenever its determinant is nonzero. Otherwise there is no inverse and the adjugate contains
columns annihilated by M.

3.5 Using determinants

If an ordered set of edges is given the sign of its handedness, it is not so hard to associate de-
terminants with the volume (or area, as the case may be) of the parallelopiped whose edges are
the columns of the determinant. Or its rows, for that matter. Multilinearity is a consequence of
volume being base times height. Change of sign follows from changing the handedness of the edges,
and a unit cube is always assigned unit volume. In fact, if the multilinearity is supposed to apply
to negative (reversed direction) vectors as well as positive vectors (which it must, for arithmetic
consistency), and repeating two arguments (“flatness”) gives zero volume, then f(x− y, x− y) = 0
implies f(x, y) + f(y, x) = 0, and the alternate attribute of f is a direct consequence.

The vanishing of a determinant is a good way to detect linear dependence; When one vector is a
combination of the others, the altitude which it should carry is zero. Likewise, there should be some
other vector perpendicular (measured by the inner product) to all the vectors of the determinant.

To see how nicely recourse to the axioms sometimes shortens proofs, consider the proposition
that the determinant of a product is a product of determinants; at least when all the matrices
are square and the determinant makes sense. Let P be one matrix, Q another, and consider the
product PQ. Partition Q so that it is a row of columns, and note that, as a function of Q,

|PQ| = |PX1, PX2, . . . , PXn|

But,

|P (aX + bY ), PX2, . . .| = |aPX + bPY, PX2, . . .|
= a|PX,PX2, . . .|+ b|PY, PX2, . . .|

|. . . PXi, . . . , PXj , . . .| = −|. . . PXj , . . . , PXi, . . .|
|Pe1, Pe2, . . . , P en.| = |P |.

13



Therefore, |PQ| = |P ||Q|, whose vanishing, incidentally, requires that at least one factor vanish.
A longer calculation is required to show that the determinant of a matrix is the same as that

of its transpose, but it does not have to be carried out in detail. Simply note that the axioms for
a determinant could just as easily be stated in terms of rows as for columns, and that the only
difference in the explicit formula could be expressed by writing mπ(i)i instead of miπ(i). Since
permutations, by definition, are one-to-one and onto, the same sum results, signs and everything.
Thus its rows and columns can be exchanged without altering the value of a determinant.

The vanishing of a determinant can be used to check for linear dependence even in the ab-
sence of an explicit basis. Suppose that the vectors are Xi; make up a matrix M using them for
columns, which will have to be rectangular. Whence there must be a vector X, expressing the
linear dependence via MX = 0. The determinant

|MT M | =




(X1, X1) (X1, X2) . . .
(X2, X1) (X2, X2) . . .

. . . . . . . . .




is called the Gram determinant (of the Gram matrix, naturally), can only be factored when M is
square, but nevertheless always vanishes according to linear dependence or not. Note that it could
be the metric matrix of the subspace of the Xi’s.

4 Mappings Between Vector Spaces

4.1 Mappings

In the domain of linear mappings from one vector space to another, the mappings to the one-
dimensional space of scalar coefficients are especially important, and we have seen them in two
forms: the vector space of all such functions, which is the dual space, and the collection of positive
symmetric bilinear forms, which are usually called inner products, and written as (x, y), without
invoking any explicit function name. Functions of the dual space are often written in the same
style, [x, y], distinguished by square brackets rather than round parentheses. Curly brackets are
reserved for sets, or lists of items.

Inner products serve to connect geometry to linear algebra, as a concept familiar from many
introductory courses in engineering, physics, or even mathematics. The essential element of the
relationship is the fact that bilinear functions with one fixed argument are linear functions of the
other argument; just which one depends on the exact value of the constant argument. If that value
is taken from the reciprocal basis, the result is a function from the dual basis, which establishes the
connection between the two concepts.

When a fixed first argument makes the inner product work on basis vector columns, then
reciprocal basis rows satisfy the Kronecker delta relationship needed for the dual basis. But if
the reciprocal basis vectors are inserted into a matrix as rows, and the direct basis elements are
placed in another matrix as columns, the mutual relationship just makes the matrices inverses of
one another. That is where the reciprocal basis gets its name.

Passing on from mappings of all kinds from vector spaces and sets of vector spaces to the trivial
vector space of scalar coefficients, the next important category of mappings consists of those from
a vector space to itself; amongst all mappings, they enjoy the unique feature that they can be
combined indefinitely since no other spaces ever have to be specified. Amongst other things, that
means that mappings can be iterated, there are polynomials of mappings, and that there are such
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things as fixed subspaces of mappings. Evidently finding a basis for a stable subspace is the key to
finding the subspace itself; ever so much better if the basis itself is stable, which is the rationale for
introducing eigenvectors.

Conducting efficient and reliable searches for eigenvectors is an important activity in the practi-
cal application of linear algebra, perhaps much more so than the other significant venture, which is
the finding of matrix inverses. Over the years, the preferred schemes for finding eigenvectors have
changed, both from changes in computing technology and as the result of theoretical investigations.

Before describing specific techniques, it is worth looking at some symmetry properties of matri-
ces, because of the influence they have on the stable subspaces and the preferred bases associated
with them. At the outset, there are two great categories of matrices, which have their own distinc-
tive properties and areas of application. For physicists and engineers, normal matrices predominate,
because of their relationship to such symmetry considerations as Newton’s third law (action and
reaction) or the passivity of electrical circuits. Those matrices have a complete orthonormal set of
eigenvectors, with many nice estimates and limits for their eigenvalues.

Amongst normal matrices are those which are symmetric or hermitean, having only real eigen-
values, and even more specialized, those which are positive definite, having only positive eigenvalues.

The other great category consists of those matrices with positive matrix elements, which form
a strict subset of those with non-negative elements. Those additional zeroes permit a great deal of
limiting behavior which is not accessible to the positive matrices. Such matrices are of interest in
probability theory, and in such fields of application as economics. The outstanding attribute of this
category of matrices is the uniqueness of the largest eigenvalue, which are easily found by iteration,
and the unique positive eigenvector associated with it.

4.2 Consequences of symmetry

First, a discussion of symmetry properties, which in turn relates to bases, dual bases, and transposes.
This is required because we want to find relationships between self-mappings of a vector space and
mappings such as the inner product, which have already been described. Each time something new
is brought forth, its influence on all that has gone before needs to be considered.

4.2.1 transpose

If a bilinear form is altered by first mapping its left argument, the result is another bilinear form
because of the linearity of matrix multiplication. To use a transient notation, suppose that ((x, y)) =
(x,My). Because

((x, ay + bz)) = (x,M(ay + bz)) = (x, aMy + bMz) = a((x, y)) + b((x, y)),

the assertion is verified. But inner products are represented by projections from the reciprocal
basis, or alternatively, vectors in the dual space, so this new function must be one of them, which
prompts calling it the transposed function. Thus, by definition, MT is the mapping of the dual
space for which

(MT x, y) = (x, My).

Because of the conventional representation of vectors as columns, and functions of the dual space
as rows acting on the vectors by inner product, the use of the word transpose merely attests to the
tradition of flipping rows to get columns and vice versa. In the fortunate circumstance that M is a
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square matrix and M = MT , M is called symmetric. The Gram matrix fulfills this requirement, as
did the matrix representation of a symmetric bilinear function. Another possibility is M = −MT ,
making M antisymmetric.

4.2.2 index raising and lowering

It is an interesting question, how to turn a matrix into its transpose, just using matrix operations.
The simplest thing would be to write

MT = (MT M−1)M,

which is not an especially symmetric relationship, and of course supposes that M is invertible.
Supposing further moment that M , as well as MT had both square roots and inverses, we could
have

MT = (
√

(M)
√

((MT )−1))−1M
√

(M−1)
√

(MT )

if we wanted it. At least g =
√

(M)
√

((MT )−1) is ready for use at any time for writing MT =
g−1Mg.

4.2.3 left and right eigenvectors

Turning to the consequences of symmetry, in the technical sense of a symmetric matrix, the usual
analysis observes that for left and right eigenvectors (writing vectors as columns means that rows
are transposes of columns)

MX = λX

Y T M = µY T ,

so (Y T MX) takes alternative values according to how the associative law is applied:

λY T X = µY T X.

Accordingly, either λ = µ or else Y T X = 0, and the vectors are orthogonal. Complications arise
when there are several linearly independent eigenvectors with a common eigenvalue, which happens
when M ’s fixed subspaces have higher dimension than 1, but it is all just a matter of going ahead
and constructing a basis. Since we wouldn’t want a zero vector for an eigenvector (trivial and
uninteresting alternative) it could be supposed that left and right eigenvectors belonging to the
same eigenvalue could be scaled to make Y T X = 1.

This result holds for any matrix M , symmetric or not, and can be summarized by saying that if
we make up two matrices, one a column of left eigenrows and the other a row of right eigencolumns,
the two matrices are inverses. Or at least partial inverses, because we still don’t know how many
eigenvectors there actually are, and maybe there are not enough to complete a basis.

If M is itself a symmetric matrix, simply transposing the defining equation MX = λX to get
XT MT = XT M = λXT shows that eigencolumns are eigenrows, keeping the same eigenvalue.
Supposing there were enough eigenvectors to make a basis, B, a matrix of eigenvectors, would
satisfy BT = B−1, a condition expressed by saying that B is orthogonal.
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4.3 Canonical forms

Whether there is a sufficiency or insufficiency of eigenvectors eventually depends on cases, but some
progress can be made by rewriting the defining equation as

(M − λI)X = 0.

Were (M − λI) invertible, X would have to be zero, which is not a desirable conclusion. For finite
vector spaces, at least, there is a very simple numerical criterion for noninvertibility, namely

|M − λI| = 0.

This determinant works out to be a polynomial of degree equal to the dimension of M ; usually
called the characteristic polynomial of M.In practice, however, it is convenient to work with monic
polynomials, which is the term applied to polynomials whose leading coefficient is +1. Consequently
it would be preferable to use the definition

χ(λ) = |λI −M |.

Vanishing of the characteristic determinant is a requirement for the existence of an eigenvector.
Conversely, if the determinant vanishes, the columns of M are dependent, whereupon the coefficients
of the linear combination responsible generate a vector satisfying the eigenvalue equation. Therefore
there must be at least one eigenvector for every number which is an eigenvalue; sometimes there
are more if the equation has multiple roots.

Additionally, whatever the multiplicity of the roots of its characteristic equation, there always
has to be at least one root, and so at least one eigenvector for whatever matrix. Such a definitive
statement supposes that the coefficients of the matrix belong to an algebraically closed field; oth-
erwise there may be no roots at all. Rotations in the real plane move all points save the origin; but
their characteristic equation has only complex roots (unless the angle of rotation is zero and hence
done by the identity matrix).

If all the roots are distinct, there have to be enough eigenvectors for a basis and a dual basis
as well. Questions of insufficiency of eigenvectors hinge on the existence of multiple roots for the
polynomial Since slight alterations in the matrix elements could split the roots, it may be suspected
that some sort of limiting process would account for matrices which lack their full complement of
eigenvectors. Due to the wide variety of possible limits, however, some other approach to a general
theory is preferable.

4.3.1 characteristic polynomial

The invertibility of the matrix (λI −M) merits further discussion. This particular inverse, (λI −
M)−1, has a special name — the resolvent of M . But first things first: recalling the axiomatic
definition of a determinant, calling the columns of M Mi, and the coordinate vectors ei, we have

|λI −M | = |λe1 −M1, λe2 −M2, . . . , λen −Mn|.
= |λe1, λe2, . . . , λen| −

|M1, λe2, . . . , λen| − |λe1,M2, . . . , λen| − · · · − |λe1, λe2, . . . ,Mn|+
|M1,M2, . . . , λen|+ · · ·+ |e1, e2, . . . , Mn|+
· · ·
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±|M1,M2, . . . ,Mn|
= λn

−λn−1
n∑

i=1

mii

+λn−2
n∑

i=1

∑

j<i

∣∣∣∣
mii mij

mji mjj

∣∣∣∣

−λn−3
n∑

i=1

∑

i<j

∑

i<j<k

∣∣∣∣∣∣

mii mij mik

mji mjj mjk

mki mkj mkk

∣∣∣∣∣∣
· · ·
±|M |.

This result exhibits χ(λ) in terms of its coefficients, which are sums of diagonal minors, with
orders corresponding to the power of λ which they multiply. They could be read out directly from
the matrix, albeit while performing a greater or lesser quantity of arithmetic to get all the cofactors.

Noteworthy is the role of the negative of the trace (which is the sum of the diagonal elements)
as the coefficient of the penultimate power of λ, and the determinant in the role of the constant
term. If |M | vanishes, λ = 0 is a root of χ, and there is a vector for which MX = 0. Of course that
prevents M from being invertible; an issue distinct from whether |M − λI| vanishes.

4.3.2 resolvent

Continuing on, it turns out that the resolvent can be calculated, in terms of the coefficients of the
characteristic polynomial. Needing the adjugate of (λI − M), we start by knowing that it is a
polynomial of degree n− 1 in λ because that is the maximum dimension of the cofactors and thus
the maximum number of λs which could ever be multiplied together. Grouping the coefficients of
λi together in a matrix called Ai, set

(λI −M)A =
n−1∑

i=0

λiAi,

with a corresponding expansion of the characteristic polynomial

χ(λ) =
n∑

i=0

ciλ
i.

Then the equation

(λI −M)(λI −M)A = χ(λ)I

could be subjected to a series of transformations

(λI −M)
n−1∑

i=0

λiAi =
n∑

i=0

ciλ
iI,
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n−1∑

i=0

λi+1Ai −
n−1∑

i=0

λiMAi −
n∑

i=0

ciλ
iI = O,

n∑

i=0

{Ai−1 −MAi − ciI}λi = O.

to get a result in which the matrix coefficient of each power of λ would have to vanish. That
produces a chain of substitutions consisting of Ai−1 = MAi + ciI (the missing A−1, as well as the
nonexistent An would both have to be O).

An−1 = cnI

An−2 = cnM + cn−1I

An−3 = cnM2 + cn−1M + cn−2I

· · ·
A0 = cnMn−1 + cn−1M

n−2 + · · ·+ c1I

A−1 = cnMn + cn−1M
n−1 + · · ·+ c1M + c0I

Note that these equations are readily summarized in a single matrix equation,



O
A0

. . .
An−3

An−2

An−1




=




c0 c1 c2 cn−1 cn

c1 c2 c3 cn .
. . .

cn−2 cn−1 cn . .
cn−1 cn . . .
cn . . . .







I
M
. . .

Mn−2

Mn−1

Mn




.

Matrices of the strip antidiagonal form evident in this equation are called Hankel matrices; they
occur frequently in such contexts as the moment problem or in fitting least squares approximations.

4.3.3 Cayley-Hamilton theorem

In fact, cn = 1; the last equation of the series, asserts that χ(M) = O, a proposition generally
known as the Cayley-Hamilton Theorem: a matrix satisfies its own characteristic equation.

If the factors of the characteristic polynomial are known, say by having evaluated the charac-
teristic determinant and having found its roots, the matrix polynomial could be factored:

χ(M) = (M − λ1I)(M − λ2I)(M − λ3I) . . . (M − λnI).

Grouping all but one of the factors, and equating the result to zero,

(M − λiI)gi(M) = 0
Mgi(M) = λigi(M),

results in something which could be called an eigenmatrix of M ; in any event all its columns are
eigenvectors for the eigenvalue λi, and of course, so are its rows.

If all the eigenvalues of M were distinct, there would only be one eigenvector for each eigenvalue,
aside from a scalar multiplier. Therefore, using Dirac’s bra and ket notation, and observing that
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all the rows of gi would be proportional, just as all the columns would have to manifest their
dependence, one could deduce that gi was proportional to

| i >< i |
< i | i >

.

If a multiplication table were made up for such column-by-row products, the convenient denominator
and the orthogonality of left and right eigenvectors would result in the table

|i >< i |
< i | i >

|j >< j |
< j | j >

= δij
| i >< i |
< i | i >

,

containing orthogonal and idempotent matrices.

4.3.4 Lagrange interpolation polynomials

By far the best approach to constructing such a table is to observe that the gee’s are Lagrange
interpolation polynomials without their normalization factor (which was provided by the inner
product in the denominator in the column by row formulation), with which they ought to be given
for the sake of greater consistency. Doing so, one gets

Gi(M) =

∏n
j 6=i(M − λjI)∏n
j 6=i(λi − λjI)

,

Once this detail is accommodated, the Gee’s are equal to their own square, leaving a multiplica-
tion table resembling a unit matrix. The Lagrange polynomials intervene directly in the verification
of the table, without having to look at the Gee’s in detail, because they are completely defined by
their values over a set of distinct points. Multiplying basis polynomials taking values of zero or
unity leads to similar polynomials. If at least one of the two factors contributes a zero everywhere,
the product must be the constant zero. That is just what happens when Gi contributes the factor
which Gj was lacking to complete the characteristic polynomial.

On the other hand, if both factors take the value 1 in the same places, the product still takes
the value 1, so the polynomial is the same, relative to the characteristic polynomial. It is even true
that

I =
n∑

i=1

Gi

on account of having created an interpolation for the constant 1.
Not only can the constant function 1 be interpolated, but also the identity function f(x) = x,

in the form

M =
∑

λiGi(M),

and even more generally results such as

f(M) =
∑

f(λi)Gi(M),

M−1 =
∑

λ−1
i Gi(M), [λi nonzero] .
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The function formula even gives a mechanism for calculating square roots, at least for matrices
with nonnegative eigenvalues. Such a quantity is required to map a matrix symmetrically into its
transpose:

√
(M) =

∑√
(λi)Gi(M).

Note that failing to insist on positive roots of positive eigenvalues inevitably leads to a great
multiplicity of square roots for any particular matrix, because of all the binary sign choices at
non-zero roots.

4.3.5 confluent interpolation polynomials

Lest it seem that all these results are too good to be true, be assured of that; this form of Lagrange
interpolation assumes that all points - that is, eigenvalues - are distinct. In the contrary case,
confluent forms of the polynomials may be required; and even then, considerable discretion is
required.

When there are multiple roots, they should be grouped together in factoring the characteristic
polynomial. Suppose that mi is the multiplicity of λi and that there are k distinct roots:

χ(M) = (λ1I −M)m1(λ2I −M)m2(λ3I −M)m3 . . . (λkI −M)mk .

This time the Gee’s should be defined by

Gi =
∏

j 6=i

(λjI −M)mj

(λj − λi)mi
.

They should be accompanied by the additional polynomials

Np
i =

1
p!

(λiI −M)p
∏

j 6=i

(λjI −M)mi

(λj − λi)mi

=
1
p!

(λiI −M)pGi(M).

The factorial and reduced power attest their confluent origin, because these interpolating polyno-
mials are specified by their values and p < ni derivatives at each interpolation point λi. Note that
Gi = N0

i , and also that the superscript p in Np
i is not quite an exponent, although it behaves like

one.
Complications arise for the multiplication table for the Np

i although it is still true that

Np
i Nq

j =
{

O i 6= j
O i = j p + q ≥ mi

.

Consequently the G’s are still orthogonal idempotents, but they might not quite resolve the unit ma-
trix. In principle, the remainder of the multiplication table could be worked out by calculating and
evaluating the derivatives of the products to get the data required for the confluent interpolation.

Nevertheless their sum,

G =
k∑

i=1

Gi
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by failing to vanish at any of the interpolation points, has no zeroes in common with any of the Gi,
nor with the characteristic polynomial χ(M). That means that the greatest common denominator
of G(m) and χ(M) is the constant 1, thanks to which the Euclidean algorithm assures the existence
of polynomials σ(λ) and ρ(λ) for which

χ(λ)ρ(λ) + G(λ)σ(λ) = 1.

Recognizing that χ(M) = O because of the Cayley-Hamilton theorem, the matrix version of the
equation requires G(M) to be invertible given that

G(λ)σ(λ) = I.

In order to get the confluent version of Sylvester’s formula, consider a Taylor’s series for the
function f , but written in the more complicated form

f(λi + λ− λi) =
∞∑

n=0

f (n)(λi)
n!

(λ− λi)n;

it has the immediate matrix counterpart

f(M) =
∞∑

n=0

f (n)(λi)
n!

(M − λiI)n

= fmi(M) + (M − λiI)sitmi(M).

where

fmi(M) =
mi∑

n=0

f (n)(λi)
n!

(M − λiI)n

tmi(M) =
∞∑

n=si

f (n)(λi)
n!

(M − λiI)n−mi

are respectively the head, and the tail with a common factor removed, of the Taylor’s series based
on each eigenvalue. This splitting foresees applying the sum of the Gees, combined with its inverse
in the form of the unit matrix, to f(M).

f(M) = G−1
k∑

i=1

Gi(M)f(M)

= G−1
∑

(Gi(M)fmi(M) + Gi(M)(M − λiI)mitmi(M)) ,

= G−1
∑

λi




mi−1∑
n=0

f (n)(λi)
n!

∏

λj 6=λi

(M − λjI)mi

(λi − λj)mi
(M − λiI)n




= G−1
∑

λi

(
mi−1∑
n=0

f (n)(λi)Nn
i

)
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An inconvenient aspect of this formula is the presence of the factor G−1, which compensates for
the simple form of the basis polynomials Np

i . Alternativley, a resolution of the identity could be
used which would avoid having to find and use the overall factor G. Consider the identity

χ(λ)
χ(λ)

= 1

in which the quotient 1/χ(λ) is first resolved into partial fractions, and then multiplied by the
numerator χ(λ) to get a sum of terms similar to the Np

i . The difference between the formulations
lies in relations between the basis polynomials and their dual basis. In one case, the use of powers
complicates the dual, while in the other the dual is formed elegantly by just values and derivatives,
but the basis no longer consists of simple power products.

4.3.6 stable subspaces

Constructing interpolation polynomials based on the characteristic equation leads to a family of
orthogonal idempotents resolving the identity. In the confluent case, there are supplementary
nilpotent matrices which take up the slack left by the redundant eigenvectors. Since an idempotent
satisfies the equation J2 = J its eigenvalues can only be 0 or 1; similarly 0, can be the only
eigenvalue of a matrix which satisfies Np = O. That is the way to get a concise derivation of
Sylvester’s formula, without going through the steps of constructing a basis, which is the frame of
reference likely to be required in applications.

Let M map a vector X to MX, which may or may not be parallel to X, depending on fortune.
If it is not, map this new vector into MMX, and so on. Eventually the result has to be dependent
on the foregoing vectors, because of the of the dimensionality.

The coefficients of the dependence can be transferred to the matrix powers (supposing, formaly,
that a zero power is the unit matrix), resulting in a polynomial in M :

∑
(aiMi)X = ϕ(M)X = 0

which annihilates X, although the precise coefficients could possibly differ according to the starting
vector. To counter that alternative, note that M commutes with ϕ(M) so that there is a series of
vanishing vectors,

ϕ(M)X = 0,

ϕ(M)MX = 0,

ϕ(M)M2X = 0,

. . . . . .

If they form a basis, then ϕ(M) can only annihilate all of them if it is zero, which is again the
Cayley-Hamilton theorem. But the process is fairly haphazard — what if the original choice was
already an eigenvector (consider using the unit matrix)? Or a member of some other stable subspace
of less than the full dimension of the space?

Rather than trusting to luck, it would be possible to start with a basis consisting of vectors Ui

comprising the columns of a matrix U to obtain a sequence of polynomials for which ϕi(M)Ui = O.
Not knowing whether they have common factors, it would be necessary to say that

n∏

i=1

ϕi(M)U = O
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because there would be a factor in the product for every column which would annihilate it. The
overall polynomial could possibly have degree n2, the dimension of the space of matrices rather
than the space of the vectors. Since we already know from the Cayley-Hamilton theorem that the
characteristic polynomial with degree n does the job, there must be many common factors amongst
the ϕi’s.

Just as in the case of repeated roots of the determinantal equation, there are messy cases to be
accounted for when a polynomial of lesser degree suffices, or none of the starting vectors leads up
to a full basis; as an extreme example, consider finding eigenvectors for the zero matrix or the unit
matrix.

If the coefficient of I in ϕ(M) is not zero, implying that the vector chosen for the power search
was a good choice, we could set I aside, assume its coefficient to be 1, and take M out of the
remaining polynomial as a factor, to get

inv(M)M = I.

In other words, the inverse of a matrix could be calculated using the first few positive powers of
the matrix.

This construction of the characteristic polynomial leaves the impression that the set of powers
of a matrix is a vector space of the same dimension (or less) as the space on which the matrix itsef
operates. Of course the set of all linear mappings from a vector space to itself is another vector
space, whose dimension would have to be the square of the original dimension. Polynomials in
a single matrix constitute a subspace of Linear(V, V); one might speculate whether there could
be be another matrix, generating a second polynomial subspace, such that the entire set of linear
mappings were expressible as polynomials in just those two variables.

4.3.7 minimal polynomial

To understand the influence of repeated factors in the characteristic polynomial, it is worth con-
sidering whether their presence is essential for generating a zero matrix, in the sense of whether
the product of the remaining factors is already zero, or it is not and the additional factor is re-
quired to realize the Cayley-Hamilton theorem. In other words, it could happen that there were
other vanishing polynomials for the matrix M , say φ(M) = O and ψ(M) = O. They could always
be normalized to become monic. But, by long division, one of them, depending on their relative
degrees, would be a multiple of the other with a remainder:

φ(M) = ψ(M)σ(M) + ρ(M).

Since both φ(M) and ψ(M) vanish, so must ρ(M). The upshot of this is that there will always be a
unique monic polynomial of least degree, µ(M), satisfied by any given matrix. Accordingly it would
be called the minimal polynomial of the matrix, and ought to be used in place of the characteristic
polynomial when discussing eigenmatrices.

Even so, the minimal polynomial may still have repeated roots, which means that there is a
nontrivial chain of matrices, none of them zero, which map from one to another in sequence, and
finally to zero. Their rows and columns must have the same property, which could be exploited in
forming a basis and establishing a canonical form for the matrix.
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4.4 Diagonal matrices

The eigenvectors of a matrix are expected to form a basis, something which is not always true but
with exceptions which can be treated separately, or as limits. If we create a matrix U by writing a
row of eigencolumns of M,

U = [X1, X2, . . . , Xn] ,

then submatrix multiplication gives the immediate result

MU = [MX1, MX2, . . . , MXn] ,
= [λ1X1, λ2X2, . . . , λnXn] ,

= [X1, X2, . . . , Xn]




λ1 0 0 0 . . .
0 λ2 0 0 . . .
0 0 λ3 0 . . .
. . . . .
. . . . .




= UΛ,

where Λ is a matrix full of zeroes except for its main diagonal, whose elements may also be zero, but
usually are not. Such a matrix is called a diagonal matrix, satisfying the relationship MU = UΛ;
such an equation is possible because the scalars λi commute with the Xi’s, even when the M ’s
refuse.

Since U is a square matrix, it too is a mapping - one which transforms unit vectors into its
columns - thereby making them into a basis of eigenvectors. Its inverse, V, goes in the other
direction; from previous remarks, it can be described as a column of row eigenvectors, for which
V M = ΛV . Using V , changing bases for M leads to

V MU = Λ,

a process which is called diagonalizing M . From this it is apparent that the eigenvectors comprise
the preferred basis for a matrix, although in reality we have to work with a reciprocal pair of bases,
one for vectors and the other for components.

4.5 Commuting matrices

As an application for diagonalization and the diagonal form, consider the question of discovering
which matrices N commute with a given matrix M :

MN = NM.

Choosing the preferred basis,

V MUV NU = V NUV MU

ΛK = KΛ,

after introducing K = V NU . In more explicit detail,



λ1 . . .
. λ2 . .
. . . .







k11 k12 . .
k21 k22 . .
. . . .


 =




k11 k12 . .
k21 k22 . .
. . . .







λ1 . . .
. λ2 . .
. . . .
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in general summarized by the relations involving the individual matrix elements,

(λi − λj)kij = 0.

Once again, distinct eigenvalues yield a clearcut conclusion, whereas multiple eigenvalues require
further analysis. The conclusion is: K is diagonal too, but in the presence of multiplicity, some
further adjustment, resolved by a modified basis, may be necessary to manifest both matrices in
that form.

The conclusion which we seem to have is that matrices commute only when one is a function
of the other, or better yet, are common functions of a third matrix which has distinct eigenvalues.
Which function, exacty? It is a polynomial whose degree is no higher than the dimension of
the matrix, but to find out which one, the eigenvalues with which the Lagrange interpolation
polynomials operate have to be taken over to the maclaurin basis to discern the coefficients of the
polynomial.

The result also casts some doubt upon whether we know how to find the square root of a matrix;
so far we really only know how to get square roots which commute with the matrix; there may still
be others.

Another curiosity: the exponential of a matrix is just a polynomial, even though the exponential
is an infinite series; the same observation holds for sines, cosines, and whatever other function. The
infinite series still plays a role; it is one way to calculate the appropriate function of the eigenvalues
before inverting the lagrange interpolation to get the polynomial.

4.6 Anticommuting matrices

A variant on commutation of matrices is anticommutation. As before, consider M and N as two
matrices for which

MN = −NM,

with X an eigenvector for M whereby MX = λX. Then

MNX = −NMX

M(NX) = (−λ)(NX).

Either N is singular, λ is zero (making M singular), or (NX) is another eigenvalue belonging to
−λ. Evidently the relationship is a mutual one, M mapping eigenvectors of N into new ones with
reversed eigenvalue sign. We need to consider four regions: vectors annihilated by M , vectors
annihilated by N , the vectors with positive eigenvalue associated with M , and those with negative
eigenvalues, conjugated from the first group by N .

Setting up the explicit format of the previous section and repeating the derivation leads to the
conclusion that

(λi + λj)kij = 0.

Various schematic representations of the situation are possible, but are probably best summarized
by saying that M and N have the respective forms:




A . . .
. −A . .
. . F .
. . . .







. B . .
B . . .
. . . .
. . . G
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The F and G parts can be discarded except for singularity (but then the dimension of M and N
must be even), leaving the general impression that anticommuting matrices can be brought to a
form with one of them diagonal, the other antidiagonal, and both with their nonzero eigenvalues
arranged in negative pairs.

4.7 Fourier pairs

The anticommutativity condition can be extended in different directions. One is to look for more
and more pairs which anticommute. That would lead to such things as quaternions, Dirac matrices,
and similar artifacts. Another is to take some other numerical factor, writing MN = ωNM . Then
there is a new alternative: ω would have to be a root of unity if M and N generated cycles of each
others eigenvectors, or else one of the matrices would have to be singular to terminate the chain of
eigenvectors, each with different eigenvalues. Or, finally, the space might not be finite dimensional.

Amongst all the possibilities, there is one which has an interesting symmetry. Suppose ω is
the nth root of unity with smallest nonzero argument for n-dimensional matrices M and N . Then
following the same reasoning as before, these matrices could be brought to the associated forms W
and S,

W =




1 . . . . . .
. ω . . . . .
. . ω2 . . . .
. . . . . . .
. . . . . . ωn−1




S =




. 1 . . . . .

. . 1 . . . .

. . . . . . .

. . . . . . .
1 . . . . . .




so any general matrix could be written in the form

A =
∑

aijW
iSj ,

which is a Finite Fourier Series decomposition of A, in a manner of speaking.

4.8 Equivalent matrices

It takes eigenvectors and eigenvalues to define a matrix. We have seen that the condition of
having a common eigenvector set depends on whether two matrices commute or not. One could
equally wonder whether there is an analogous relationship for matrices which have common sets
of eigenvalues? Since the eigenvectors define a basis, the question is essentially one of how to
recognize pairs of matrices whose only difference lies in the coordinate system in which they are
defined. Suppose that M and N are two square matrices, and that O defines a mapping between
vector spaces (not necessarily the same one), in which case M and N could even have different
dimensions.

O
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Space 1 −→ Space 2
M ↓ ↓ N

Space 1 −→ Space 2
O

The required relationship is that

ON = MO.

with the further relationship

N = O−1MO

whenever O is invertible. This is the usual representation for the new matrix after a change of
basis.

So far it is just a question that M and N produce the same results, independently of the stage
at which O is introduced, and nothing has been said about eigenvalues. Nevertheless note that
if NX = λX, we would have O(NX) = λ(OX) whilst (ON)X = M(OX) (indicating a use of
the associative law by introducing parentheses). Altogether, M(OX) = λ(OX), so that M and N
can be expected to have matched eigenvectors with the same eigenvalue unless a singularity of O
intervenes. To that extent, M and N have the same eigenvalues.

To observe the correspondence of the whole set of eigenvalues, suppose that U diagonalizes M
to Λ and that V diagonalizes N to K:

MU = UΛ,

NV = V K,

and that the eigenvalues correspond. They don’t have to match in order, but they should have the
same multiplicities. There is then a permutation of the diagonal elements of K to get the diagonal
elements of Λ. This could be remedied by introducing a permutation matrix, but it is just as well
to take advantage of the ambiguity in defining U and V , that their columns can be arranged in the
order that we want, to make sure that the corresponding eigenvalues were listed in the same order
since the beginning. That would make K = Λ, so

M = UΛU−1 = (UV −1)(V ΛU−1),
N = V ΛV −1 = (V ΛU−1)(UV −1).

Of course, Λ could be inserted elsewhere in a similar product and other variants may exist. The
essential point is that there is a pair of matrices A and B such that M = AB, N = BA. The
existence of such a factorization could be taken as a the test of whether M and N have a common
set of eigenvalues. Furthermore, A and B play the role of O in the previous discussion because

MA = (AB)A = A(BA) = AN,

and similarly in the other direction.
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4.9 Gerschgorin’s disks

In the business of working with eigenvalues, it is useful to know how large or how small they can
become. Likely as not to be negative, smallness is often a matter of absolute value, a zero eigenvalue
implying singularity, while relative smallness of some eigenvalues relative to others could imply near
singularity (if they were all tiny, it would likely be that the matrix was small overall). A good,
general purpose upper bound for the absolute value arises from taking absolute values of the terms
in the equation for a component of an eigenvector; if MX = λX,

λxi =
∑

j

mijxj ,

|λ||xi| ≤
∑

j

|mij ||xj |.

Not all the components are zero; furthermore there those for which |xi| is larger than for any other;
let I be the index of one of them. Then

|λ| ≤
∑

j

|mIj | |xj |
|xI | .

Every one of these quotients is less than 1, so the inequality can only be enhanced by dropping
them and using 1 instead, with the result

|λ| ≤
∑

j

|mIj|.

Quite reasonable; although a matrix is a collection of numbers, products in which they are
involved can’t get much larger that the factors permit, nor can a sum of such products ever surpass
n (the dimension) times the largest summand, a conclusion already evident in this inequality.

Changing the derivation slightly, moving the diagonal term of the sum over to the left hand
side of the equation before taking absolute values, tells how far an eigenvalue may deviate from its
diagonal element, even when the eigenvalues are complex.

|λ−mII | ≤
∑

j 6=I

|mIj |.

The resulting disks are Gerschgorin disks, so called in honor of the source of their inspiration.
Since it is not always obvious from inspection which was the largest component of the eigenvector,
all the disks have to be considered, with the assurance that the eigenvalue lies under at least one
of them (no reason for them not to intersect, particularly if diagonal elements are equal or close
to one another). Continuity arguments (multiply the off-diagonal elements by a factor and vary it
from zero to one) require each isolated group of disks to have their quota of eigenvalues.

The derivation works as well for rows as for columns, providing a practical choice of the row
sum or the column sum of absolute values, whichever gives the smaller disk. What doesn’t matter
in the presence of symmetry can still be useful in other contexts.

Finding an eigenvalue at the center of a Gerschgorin disk is possible, but less likely in the
presence of additional elenents in the same row or column. To find an eigenvalue on the rim of
one of the disks requires a degree of cooperation, since all products of matrix elements by their
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centered at zero

Gerschgorin disks

Figure 6: some Gerschgorin disks

matching component need a consistent sign to avoid discrepancies between the absolute value and
the actual summand. Furthermore all those quotients replaced by ones must actually be ones,
requiring the absolute values of all components of the eigenvector to be equal. In turn all row sums,
using the sign convention established by the principal row, have to coincide. Under those conditions
the eigenvalue lies on the rim, and all disks intersect at that point. The configuration is typical of
stochastic matrices.

4.10 Variational principle

A good way to visualize a matrix is to use it to define a conic - that is, a second degree surface -
of the corresponding dimension. Given a symmetric matrix M , the conic could be defined as the
contour for the value c of the function f(X) = (X,MX) = c. Another representation woud be to
chose vectors of unit length (for which (X,X) = 1), graphing the values of f . Taking this point of
view, and looking for stationary values of f , X could be modified slightly by adding εE, to obtain

(X + εE, M(X + εE))
(X + εE, X + εE)

.

The denominator compensates for the change in length of X; alternatively a Lagrange multiplier
could have been used. Using the bilinearity and symmetry of of the inner product, we get

numerator = (X, MX) + 2ε(X, ME) + ε2(E, ME),
denominator = (X, X) + 2ε(X, E) + ε2(E, E).

Dividing numerator and denominator by (X, X), approximating 1/(1+ε) by (1−ε), and extracting
the term proportional to ε, one gets

(E,MX)− (E, (X, MX)X),
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which is supposed to vanish irrespective of E. If the bilinear form is positive definite, that can only
happen when

MX = (X, MX)X,

which is to say, when X is an eigenvector and (X,MX) is its eigenvalue.

x

y

z

maximum - no other
vector is this long

minimum - no other vector is this short

saddle - longer vectors toward
x-axis, shorter toward z axis

Figure 7: The Ellipsoid Defined by a Quadratic Form

These ideas have been expressed in a variety of ways. For example, the Courant Minimax
Principle maximizes the quadratic form within a lower dimensional subspace, then minimizes for
all such subspaces. To appreciate this in the figure at left, intersect the ellipsoid with planes and
find the semimajor exis in each plane. Then choose the smallest of them all. That will get the one
along the y-axis, not the x-axis, because the lattter is not the longest axis in any ellipse at all.

The symmetry of M is not really a requirement, and the form (X, M Y) could be examined
relative to independent variations of X and Y. The result would be separate equations for left and
right eigenvectors, with the practical difficulty that the normalization by (X, X) would change to
(X, Y) without a guarantee that the product would not vanish even when X and Y were non-zero.
That possibility is excluded for normal matrices, but can readily occur whenever the Jordan normal
form describes M; in fact it characterizes nontrivial Jordan decomposition. Also note that we have
been using calculus arguments in an algebraic environment, which may not always be such a good
idea; for integer matrices, say.

4.11 Avoided level crossings

In applications, there is not only a requirement for eigenvalues and eigenvectors of matrices; beyond
that it is often required to have the eigenvalues of combinations of matrices, such as their sums or
products. These quantites are evidently related to those of the constituents, but not always in a
way which is easily seen. It is still possible to work out some guidelines.
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Consider two matrices A and B, normal if you will, and their convex linear combination, by
which we mean, C = (pA + (1− p)B) for a parameter p varying between zero and one. If the two
matrices commute there is no problem: there is a coordinate system in which they are simultaneously
diagonal, the eigenvalues ai and bi can be listed in order so that we know which pair attach to the
same eigenvector, and the new eigenvalues are

ci = pai + (1− p)bi.

Of course, indexed order is not necessarily numerical order, so there could be some values of p
for which ci(p) = cj(p), a degeneracy which is always interesting and sometimes causes numerical
problems.

p = 0 p = 1

a1

a2

b1

b2

b3

Figure 8: Eigenvalue crossing for common eigenvectors.

If A and B are changed ever so little, they may no longer commute, changing this picture,
although the indexing scheme may still persist. For some insight into what may happen, consider
that A is a 2x2 diagonal matrix with eigenvalues 1 and -1, and that B is skewdiagonal, but symmetric
with 1’s in the corners, so that its eigenvalues are also 1 and -1. We are therefore interested in the
2x2 matrix [

1− p p
p p− 1

]

whose characteristic equation is
∣∣∣∣

1− p− λ p
p p− 1− λ

∣∣∣∣
or

2(p− 1
2
)2 − λ2 =

1
2
,
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p = 0 p = 1

1

-1

1

-1

Figure 9: Eigenvalue crossing for differently oriented eigenvectors

which is the equation of a hyperbola opening upwards and downwards, with vertex at (0, 1/2) and
approaching the x-axis no closer than 1/

√
2. The lines of the previous diagram are now asymptotes,

but the interpolating lines no longer cross and the energy levels keep their places, so to speak. That
is the content of the “no crossing rule” which specifies that this is a general proposition so the
eigenvalues will retain their relative order even when the two matrices do not commute. Unless
some common eigenvectors still remain, that is.

4.12 Perturbation

Continuing to speculate on the eigenvectors and eigenvalues of a sum of two matrices, consider the
case where the second is small relative to the first, perhaps on account of multiplying it by a small
parameter. Maybe a small change of coordinates, depending on the same parameter, could account
for the changed matrix; suppose then that

(I − εP )A(I + εP ) = A + εB,

with the intention of disregarding anything multipying ε2. First,

A + ε(AP − PA) + . . . = A + εB,

so the task becomes solving for the commutator AP − PA = B, which is a special case of a more
general first order (not linear) equation involving an unknown P and given matrices A and B, or
even A, B, and C (instead of the second A).

As usual, the first step is to diagonalize A, but it is reasonable to suppose that that has already
been done, since it is only a question of the coordinate system. Once that is done, and the equation
reduced to components, we find

λipij − pijλj = bij ,
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or for reference,

pij =
bij

(λi − λj)
.

As always, a problem arises when λi = λj , which is traditionally resolved by making still further
preparations, namely choosing coordinates for which bij vanishes, avoiding the necessity of division
by zero - just leave that part of the equation alone. The new eigenvectors can now be read off from
the columns of I + εP and the rows of I − εP .

Not only is degeneracy an obstacle to this derivation, there is the impicit assumption that B has
no diagonal elements, avoiding (λi − λi) as a divisor. Consequently this procedure cannot change
the eigenvalues of A, just its eigenvectors. If it is necessary to change the eigenvalues of A as well,
that has to be done independently of applying the operator P . Why is such a subterfuge necessary?
Because

(I − εP )(I + εP ) = I − ε2P,

making the transformation orthogonal to first order. That is a rotation, which will not change the
lengths of semiaxes of an ellipsiod, which are eigenvalues.

This whole scheme is cometimes called Primas’ method.

4.13 Matrices as vectors

Before leaving the subject of mappings, recall that Linear(Space, Space) is a vector space itself, fo
it ought to have a basis, inner products, a bilinear functional, a dual, and so on. A Fourier Pair has
already been exhibited as such a basis, at least for any matrix with a complete set of eigenvectors.
The basis which is most directly connected with Linear(Space, Space) is the collection of matrices
eij , all of whose matrix elements are zero except for the one at the intersection of the ith row and
jth column. The rule of multiplication is

eijekl = δ(j, k)eil,

The expansion of a matrix in this basis is just

M =
∑

mijeij .

The trace of a matrix is the sum of its diagonal elements, and is the coefficient of (−λ)n−1 in its
characteristic polynomial. Consider the bilinear mapping of two matrices to the scalar coefficients,

[M, N ] = Trace(MN).

It suffices to define a dual space, whilst the use of a transpose,

(M, N) = [MT , N ],

not only provides a positive definite inner product, but tells us that

(M,M) =
∑

m2
ij
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which is eucliden length, squared, for a vector which is just a list of all the matrix elements. Another
interpretation is that theis inner product is just the Gram Matrix of the columns of M , and that
two matrices are orthogonal to one another if Trace(MT N) = 0.

Why isn’t the determinant of a matrix product a candidate for an inner product? Because it
is not bilinear. Are other inner products feasible? Consider Trace(MT QN) for a positive definite
matrix Q, but that is just like introducing a metric matrix into the ordinary inner product for
vectors.

How do we get a basis for matrices compatible with the eigenvector basis for vectors? Con-
sider the column-by=row products (column i)(row j); their multiplication table is similar to the
multiplication table for standard vectors; the trace relationships are also verifiable.

How do we get a basis for matrices consisting of monomials M iN j when M and N don’t
commute and so MN isn’t NM and MNM isn’t M2N , and so on? Evidently it is sufficient to
know how to rewrite NM , even though the calculation could be tedious. The best thing is to let
the eigenvectors speak for themselves, which they do through the diagonalizing matrices and the
column by row idempotents.

Suppose that M has a family of idempotents Gi which are column by row products of eigenvec-
tors, and that N has a similar family Hi. That leaves us with four bases which can be collected into
matrices: U whose columns are the eigenvectors of M , U−1 whose rows are also eigenvectors of M ;
similarly V and V −1 for N . All the column eigenvectors of N are linear combinations of column
eigenvectors of M since V = UU−1V (U−1V ) stands to the right since the matrix product wants
to combine columns of U to get V ). That means that the products GiHj form a basis for square
matrices, since they are just multiples of a column eigenvector of M by a row eigenvector of N , and
columns by row already created bases, both for M and for N , just as they do in the standard basis.
Also, U−1 = U−1V V −1, making a particular row eigenvector of M satisfy eiU

−1 = (eiU
−1V )V −1.

The point of this exercise is that M and N , as well as any other matrix, can be written in this
mixed basis; in that form their powers and products can then be calculated in terms of the matrix
UV −1 and its relatives.

If we truly belive everything we have said, then we ought to find

Q =
∑

Trace(GiHj , Q)GiHj .

4.14 Confluence

Consider the fate of a Vandermonde determinant when two of its columns coincide, for example
when a and b were nearly equal.

∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1
x a b c d
x2 a2 b2 c2 d2

x3 a3 b3 c3 d3

f(x) f(a) f(b) f(c) f(d)

∣∣∣∣∣∣∣∣∣∣

= 0.

Starting from the determinant, we could subtract the a column from the b column,
∣∣∣∣∣∣∣∣∣∣

1 1 0 1 1
x a b− a c d
x2 a2 b2 − a2 c2 d2

x3 a3 b3 − a3 c3 d3

f(x) f(a) f(b)− f(a) f(c) f(d)

∣∣∣∣∣∣∣∣∣∣

= 0.
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and to save writing all the steps one by one, observe that (b − a) is now a common factor of all
the terms in the third column except for the last which would leave (f(b) − f(a))/(b − a) and a
determinant whose neareness to zero depends on this factor. That suggests discarding the factor and
recognizing a derivative. The result is called the confluent form of the Vandermonde determinant,
leading to Hermite interpolation when used for that purpose. It is not excluded that several pairs
of points coalesce, it just means using more derivatives as well as values at all those points. If three
points condense, the second derivative can also be extracted from the assemblage, and so on for as
many clusters as might appear.

A similar limiting process reccommends itself when the characteristic equation of a polynomial
has multiple roots, because the spectral decomposition of the matrix is essentially a Lagrange
interpolation over the eigenvalues. Derivatives ought to begin to make their appearance.

To see how this works, pick out a simple 2x2 matrix, such as
[

1 1
ε2 1

]
.

whose characteristic equation is

((λ− 1)2 − ε2) = 0,

with roots 1 + ε and 1 − ε. Consequently, if ε were near zero, there would be an approximate
degeneracy.

Two matrices of eigenvectors, left and right, are,

2εU−1 =
[

ε 1
ε −1

]
, U =

[
1 1
ε −ε

]
.

from which it appears that there is only one eignvector when ε = 0, and that that left eigenvector
would be orthogonal to the only right eigenvector, precluding its normalization to unit projection.
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Figure 10: Confluence of eigenvectors in the Jordan Normal Form, showing how the left eigenvector
becomes orthogonal to its own right eigenvector.

5 Band Matrices

A band matrix is one for which elements far from the diagonal are zero; distance is usually required
to be uniform in the sense that the remoteness of the farthest nonzero element must always be the
same. That closer elements are zero does not materially affect the behavior of such a matrix, but
deciding whether a border element is zero can be a delicate numerical problem. The band need
not be centered, a configuration which would be an automatic consequence of its forming part of a
symmetric matrix.

5.1 Band matrices

Band matrices arise from a variety of sources; for example from discretizing a linear ordinary
differential equation, from the classical equations of motion of a string of masses coupled by Hooke’s
law springs, or the study of the electrical characteristics of a lumped transmission line, the quantum
mechanical study of pi electrons in linear organic molecules, and quite a goodly assortment of other
places. For numerical analyses, straightforward procedures will reduce a matrix to band form,
following which one of a variety of iterative procedures can be set in motion.

Diagonalizing a band matrix is particularly interesting for theoretical purposes because the
procedure can be transformed into solving a recursion relation using supplementary matrices no
larger than the width of the band, no matter how large to starting matrix. To see how it can all
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be done, imagine a tridiagonal matrix A (band width three, centered) of the form

A =




a11 a12 . . . . .
a21 a22 a23 . . . .
. a32 a33 a34 . . .
. . a43 a44 a45 . .
. . . . . . .




.

with its eigenvalue equation AX = λX. For any one component the equation would read

ai,i−1xi−1 + ai,ixi + ai,i+1xi+1 = λxi,

which could be rearranged to the form

ai,i+1xi+1 = (λ− ai,i)xi − ai,i−1xi−1,

and recognized as the first half of a 2x2 matrix equation, whose second half consists of the tautology
xi = xi:

[
xi+1

xi

]
=

[
λ−ai,i

ai,i+1
−ai,i−1

ai,i+1

1 0

] [
xi

xi−1

]
.

For ease of reference, suppose that this equation says MYi+1 = Yi. Any high-indexed com-
ponent can be derived from one with a lower index by successive substitution, which translates
into calculating a product of 2x2 matrices. There is always the question of how to start and stop,
which in turn depends on some alternative structures for the matrix A. The extreme skewdiagonal
corners could be non-zero without violating the bandwidth hypothesis if the system described by
the matrix were cyclical, in which case it would be supposed that some power of M were the unit
matrix.

Otherwise fictitions components x0 and xn+1 could be introduced, obligated to vanish, and the
overall symmetry of A preserved by inserting arbitrary corner elements, for example ones which
would preserve the integrity of the diagonal in which they sit.

Several conclusions can be drawn at once. The matrix M ought to be defined and invertible.
Its definition supposes nonzero ai,i+1, so the righthand edge of the band must be intact. For it to
be invertible, its determinant ai,i−1/ai,i+1 ought not vanish, placing a similar requirement on the
left hand edge. Once those two conditions are realized, all possible consecutive pairs of components
can be deduced from any single one of them, for example, a terminal pair.

The next observation is: whenever two consecutive components are zero, all components vanish,
contrary to the assumption of non-zero eigenvectors. In applications to vibrating strings, places
where the displacement vanishes at all times are called nodes, implying that nodes contain no more
than a single particle.

A different matrix Mi would arise from each row of A, not excluding that some of them might be
numerically equal if A had some similar rows. In fact, that is one of the most interesting cases, since
it would imply a physical problem derived from connecting a series of similar units. The eigenvalue
of A is a parameter in these matrices, resulting in matrix elements which were polynomials in the
eigenvalue after a series of M ’s were multiplied together. To give M or its products a name, they are
often called a transfer matrices, because they relate components in one place to those in another.
Nor should it be surprising to find the characteristic polynomial of A amongst the matrix elements
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of an all-encompassing transfer matrix running from one of the string to the other. Depending on
the context from which A arose, its eigenvalues (the roots of the characteristic equation) would be
frequencies (squares of frequencies, actually), decay rates, energy levels, or whatever.

Ease in calculating transfer matrices would reduce the labor calculating components of eigenvec-
tors, especially that part relating the extreme components which reveals the characteristic polyno-
mial. Calculation with matrices often reduces to diagonalizing them to get their eigenvector basis,
creating an entirely new eigenvalue problem for the matrix M instead of the matrix A, namely
finding Y for which MY = µY . Once done, we end up writing the components of X as linear
combinations of the eigenvectors of Y . Because of the liklihood that A has something to do with
vibrations, eigenvectors of M are called waves, its eigenvalues wave numbers, and its characteristic
polynomial a dispersion relation. That is because it influences how fast a wave of a given frequency
travels, and the fact that they usually don’t all travel at the same speed.

Although it is theoretically possible to bring any symmetric matrix to tridiagonal form (for
general matrices it is called a hessenberg form, which only has to be banded on one side of the
diagonal), there are advantages in not doing so if there is a polydiagonal form with appreciable
regularity. That would happen from the beginning if the matrix resulted from discretizing a higher
order (than second) differential equation or maybe from studying the vibration of a chain of coupled
masses with long range coupling.

The principal differences between tridiagonal and polydiagonal matrices lie in the maximum
width of a node, and in the complexity of the dispersion relation, which would be a polynomial of
ever increasing degree. And of course, the number of waves - basis vectors for the transfer matrix
- grows with the width of the band. The components of the eigenvectors of a tridiagonal A form a
Sturm sequence, but wider bands begin to allow a certain number of coincident roots - related to
the thicker nodes - which complicate discussions of the separation of frequencies, which bespeaks a
possibility for degeneracy which is absent from tridiagonal matrices.

Since tridiagonal matrices already show most of the characteristics of polydiagonal matrices,
but with 2x2 matrices Mi, studying their properties is a good place to begin. To avoid working
with fractions, the previous matrix elements can be assigned some letters, to obtain

[
xi+1

xi

]
=

[
aλ− b −c

1 0

] [
xi

xi−1

]

Observing that
[

1 0
1 −1

] [
xi+1

xi

]
=

[
aλ− b −c

1 0

] [
xi+1

xi+1 − xi

]

it is easy enough to transform the equation into
[

xi+1

xi+1 − xi

]
=

[
aλ− b− c −c

aλ− b− c− 1 0

] [
xi

xi − xi−1

]
.

The point of this exercise is to use a vector consisting of displacements and an approximation
to their derivatives, and to show that the sequence of such vectors is generated the same way as
before, albeit with a different matrix, whose characteristic equation has to be the same because of
the similarity transformation.

The original form might as well be retained, along with the characteristic equation for the wave
number, ∣∣∣∣

aλ− b− µ −c
1 −µ

∣∣∣∣ = 0,
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or

µ2 − µ(aλ− b) + c = 0.

There is advantage to dividing the characteristic equation by the nonzero µ
√

(c) (M must be
invertible, so no root is zero; c cannot vanish) and writing

µ√
(c)

+
√

(c)
µ

= aλ− b.

The advantage lies in seeing the dispersion relation immediately, but also presenting the lefthand
side as cosh(t), permissible if µ/

√
(c) = exp(t)/2. Should this series of substitutions seem somewhat

contrived, bear in mind that we really want to raise M to powers, and that multiplying logarithmns
is a good way to do that. Not to be overlooked is that c would be 1 if the two bands of A were
equal, and that balancing powers of µ against their reciprocals to get hyperbolic cosines eventually
depends of the form of the bands in a polydiagonal A.

Calling the two roots of the characteristic equation µ+ and µ−, the (unnormalized) matrices of
eigenvector rows and eigenvector columns are

U−1 =
[

µ+ −c
µ− −c

]

U =
[

µ+ µ−
1 1

]
.

With eigenrows and eigencolumns, the spectral decomposition is immediate:

M =
µ+

< +|+ >
|+ >< +|+ µ−

< −|− >
|− >< −|

5.2 Sturm sequences

The matrix elements of each transfer matrix are polynomials with respect to the eigenvalue λ,
beginning with the basic matrix whose 11 element is of the first degree in λ, which is absent from
the remaining elements. Multiplying transfer matrices raises the degree of the matrix elements, the
11 element always retaining the highest degree - the sum of the degrees of the factors - when the
matrices have the form we are using. Boundary conditions eventually dictate that some combination
of matrix elements gives zero, which means the vanishment of a polynomial whose degree is the
length of the string, whose expression is evidently the characteristic equation of A.

If the boundary condition is independent of the length of the string, there is a series of char-
acteristic equations, each having a similar structure yet differing by the degree of the polynomial
involved. Moreover, the pecuiliar structure of the matrix M , arising from the tautology which was
incorporated in its definition, interlaces the polynomials used at each stage. It is worth seeing how
this is done, in the simple case where the boundary condition is that there be a terminal node.

Mi+1 =
[

aλ− b −c
1 0

] [
P i

11 P i
12

P i
21 P i

22

]

=
[

(aλ− b)P i
11 (aλ− b)P i

21

P i
11 P i

12

]

40



If the initial vector were (10), implying x1 = 0, x2 = 1 (any factor will do), and the final vector
were (0, 1) implying that xi+1 were also zero, then the 11 element of Mi+1 would vanish, or

(aλ− b)P i
11 − cP i

21 = 0,

aλ = b + c
P i

21

P i
11

y = a x - b

old roots

new roots

older roots

Figure 11: Interleaving of eigenvalues

The new roots lie on a line determined by the diagonal element of A with slope likewise deter-
mined by A - the ratio of its diagonal to off-diagonal elements. The roots also lie on the quotient of
two polynomials; the zeroes of the denominator are just the roots of the next smaller A, the roots
of the numerator are those of the second previous A. Not both polynomials have roots in the same
place because of the limit on the maximal thickness of a node. Thus zeros and poles of the quotient
alternate, and the new roots lie between the poles so they are also separated. Thus all roots are
distinct, and interleaved; this is called a Sturm sequence.

There are interesting details in the graph which has been sketched. The derivative of the quotient
is nonzero and always has a consistent sign, making it monotone within the panels delimited by its
poles. Consequently the intersecting line crosses the quotient just once in each panel, assuring the
interleaving of roots and keeping them real. The root cause of all this is the sign-symmetry of the
matrix A; were it sign-antisymmetric, roots would have to run along in conjugate pairs. In fact,
the interleaving property was already proved on more general grounds by Ledermann, so that we
mainly have a more graphic presentation of the result.

The value where the line crosses the axis is the diagonal element of the bordering matrix, which
will not be an eigenvalue although it will necessarily sit between some pair of old roots. It acts as
a center of readjustment, crowding new eigenvalues toward the edges of the panels defined by the
old eigenvalues while distancing them from still older eigenvalues. Eventually there will be very
little change in eigenvalues far from that diagonal element since the line will intersect the quotient
near its asymptotes, but finally one of the new eigenvalues will lie outside the range established
previously.

5.3 A uniform treatment for 2x2 matrices

The foregoing discussion is related to the Riactti transformation for differential equations, wherein a
linear system is converted into a nonlinear system (actually, a second order system) by introducing
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a quotient of the linear solutions. The quotient would also be the basis for a continued fraction
exposition of the properties of the solutions of the recursion equation, but nowadays matrix theory
is more familiar than continued fraction theory which is why it is used instead.

Nevertheless, the graph of the quotient which figures in the development just outlined is very
reminiscent of the graph of the tangent of a multiple angle, leading to the question: why not use the
angle itself? This would be analogous to using the Prüfer transformation from differential equation
theory, and is not so far from the appearance of hyperbolic cosines in the dispersion relation.

5.3.1 quaternions versus elementary matrices

The best way to get this point of view, and at the same time give the whole topic of 2x2 matrices
an elegent formulation, is to use quaternions. Starting from the natural basis for 2x2 matrices,

e11 =
[

1 0
0 0

]
,

e12 =
[

0 1
0 0

]
,

e21 =
[

0 0
1 0

]
,

e22 =
[

0 0
0 1

]
.

whose rule of multiplication is eijekl = δjkeil, quaternion-like matrices can be defined by

1 =
[

1 0
0 1

]
,

i =
[

0 1
−1 0

]
,

j =
[

0 1
1 0

]
,

k =
[

1 0
0 −1

]
.

In detail,
1 = e11 + e22, i = e12 − e21, j = e12 + e21,k = e11 − e22,

all built from sums and differences, thereby retaining real matrices. Like quaternions, these matrices
anticommute (except for the identity), so the difference is that only one square is −1, the others
are +1. Because of that, exponentials will follow Euler’s formula by using either trigonometric or
hyperbolic functions according to the sign.

The multiplication table is
1 i j k

1 1 i j k
i i −1 k −j
j j −k 1 −i
k k j i 1

.
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The usual way of performing algebraic operations on these matrices is to write a sum such as
a1 + bi + cj + dk in the form s + v, where s = a1 and v is the rest of the sum. Doing that allows
writing

(s + u)(t + v) = st + sv + tu + (u.v) + (u× v), (1)

particular interest attaching to the case where s and t are zero, leaving the product of two vectors
to take the form of a scalar plus a vector. However, the inner (or dot) product is not the usual one,
rather one with a Minkowski type metric:

(u · v) = −u1v1 + u2v2 + u3v3,

=
[

u1 u2 u3

]


−1 0 0
0 1 0
0 0 1







v1

v2

v3


 .

Since the inner product for a Minkowski metric can be positive, negative, or zero, taking it for the
square of a norm requires considering the sign, unless an imaginary norm is acceptable. So to define
the norm of a vector, use the absolute value of the metric, by setting

|v| =
√

abs((v,v)),

note that it can vanish for a nonzero vector, and never forget the possible influence of the bypassed
sign.

In turn the vector product differs slightly from its cartesian version. It is

u× v = (u3v2 − u2v3)i + (u3v1 − u1v3)j + (u1v2 − u2v1)k.

= −
∣∣∣∣

u2 u3

v2 v3

∣∣∣∣ i +
∣∣∣∣

u3 u1

v3 v1

∣∣∣∣ j +
∣∣∣∣

u1 u2

v1 v2

∣∣∣∣k

=

∣∣∣∣∣∣

−i j k
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
The latter formula, almost traditional, abuses determinantal notation. But this particular for-

mula never implies any multiplication of quaternions, so it works out well enough, although differing
from the classical formula in the sign of the term associated with i.

5.3.2 quaternion inverse

The easiest way to get the inverse of a full quaternion a1 + v is to go back to its representation by
elementary matrices, in the 2x2 form

a1 + bi + cj + dk →
[

a + d b + c
−b + c a− d

]
.

The determinant, (a + d)(a − d) − (c + b)(c − b) = a2 − d2 + b2 − c2, which is a2 − (v,v), could
be considered to be a candidate for the square of the norm of a full quaternion, in contrast to the
norm of a mere vector. Under that assumption, the formula for the inverse of a 2x2 matrix gives
the inverse quaternion

1
(a2 − |u|2)

[
a− d −b− c
b− c a + d

]
→ 1

(a2 − |u|2) (a1− bi− cj− dk).
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which is almost the formula for inverting Hamilton’s authentic quaternions, except for the way the
norm is calculated.

Nevertheless, the difference is important, because null quaternions exist, just as well as null
vectors, and they cannot be invertible. Hamiton’s quaternions are invertible unless zero. Not
only do they constitute a field, albeit noncommutative; they lie amongst the very few examples of
algebraically and topologically complete infinite fields. The objects which we have just defined are
not quaternions according to Hamilton’s definition; neither are Hamiton’s own quaternions taken
with complex coefficients (look at (i− ij)2, which vanishes).

At least we have a quantity which decides the invertibility of a quaternion such as a1 + v,
multiplicative for being a determinant, and consistent with the definition of the vector norm relative
to a sign choice.

‖a1 + v‖2 = a2 − (v,v)

5.3.3 null vectors

There are null vectors in the Minkowski metric, which is to say, nonzero vectors with zero norm.
What would a null vector look like? Consider

√
2i + j + k.

[
1 1 +

√
2

1−√2 −1,

]

whose trace and determinant are both zero, yet it is not the zero matrix. It has to have the Jordan
normal form with eigenvalue zero. Those are generally the null vectors; by satisfying u2 = 0, they
are their own eigenvectors, and manifestly nilpotent.

5.3.4 vector inverse

Since the square of a vector is not only a scalar, but the square of its Minkowski norm, it follows
that it once divided by that norm, it is its own inverse, or that a unit vector is involutory. That
is almost true, since the square of the vector can be negative; in that case the square root of the
absolute value should be taken, and a minus sign should be appended to the inverse.

5.3.5 square roots

The unit quaternions are square roots of either unity or of minus one. Are there any others?
According to Eq. 1, to get a root of unity needs

(s + u)2 = s2 + 2su + (u.u)
= 1,

leading to two mutually exclusive alternatives

s2 = 1 u = 0
(u.u) = 1 s = 0.

Besides the two expected scalar roots, any vector of unit norm fills the bill, infinitely many in all.
A second glance at the derivation shows that any vector, the square of whose norm is −1 (such as
i) is a root of −1, but that there are no (real) scalar roots.
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As for square roots in general, the square root of any scalar follows the same line of reasoning
with the exception that everything is scaled by the positive square root of the scalar when it has
one. The general requirement for

s + u =
√

(t1 + v)

would be

(s + u)2 = s2 + 2su + (u.u)
= t1 + v,

which would require in succession

u =
v
2s

s2 +
(v · v)
4s2

= t

s2 =
1
2
(t±√(t2 − (v · v))

If s were 0 then v would have to be zero, and only a scalar could have a vector square root. But
non-vector quaternions can have quaternion roots, of which there would appear to be exactly four
possible values for s, not all necessarily real. For example,

√
i = ±(1 + i)/

√
2.

5.3.6 quaternionic eigenvectors

To find an eigenvector with respect to quaternion multiplication, consider that 1 commutes with
all quaternions, so adding or subtracting a scalar will only add or subtract from any eigenvalue,
leaving the task of diagonalizing the vector part of the quaternion. In turn, a scalar factor of the
vector will only multiply the eigenvalues by that factor, so the real task is finding eigenvectors of
unit vectors - those of norm 1 or norm −1 (and those of norm 0, for completeness). The eigenvalues
of unit vectors had better be ±1, those of norm −1 had better be ±i, and those of the null vectors,
0.

Unit vector or not, we have two expressions, according to sign

v(v + |v|1) = |v|21 + |v|v
= |v|(v + |v|1)

v(v − |v|1) = |v|21− |v|v
= −|v|(v − |v|1).

In other words, its norm is v’s eigenvalue, with associated eigenvector given by the formula.
Although these formulae give eigenmatrices, the matrices are singular, containing each eigencol-

umn twice, each eigenrow twice. It would be nice to get one of each, and both in the same matrix.
Try

v (v + |v|k) = |v|21 + |v|vk

= v|v|k + |v|k|v|k
= (v + |v|k) (|v|k),

and it works.
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5.3.7 vector exponential

All this introduction may look tedious, but its reward is to be found in the elegance and beauty of
the exponential of a vector, defined according to the traditional power series.

exp(v) = 1 + v +
1
2!

v2 +
1
3!

v3 + . . .

= [1 +
1
2!

(v · v) +
1
4!

(v · v)2 + ...] +

v√
(v · v)

[
√

(v · v) +
1
3!
√

(v · v)3 + . . .]

= 1 cosh(
√

(v · v)) +
v√

(v · v)
sinh(

√
(v · v)),

= 1 cosh(|v|) +
v
|v| sinh(|v|)

generalizing Euler’s formula. The exponential of a quaternion is not much more complicated, since
any scalar which could be added would commute with the quaternion, so its exponential could just
be set aside as a multiplying scalar factor. How much to set aside in the general case depends on
satisfying the identity cosh2(x) − sinh2(x) = 1, but in general there is much to be said in favor of
working with vectors of unit norm and treating norms separately.

So, where is all that beauty? In great part, it lies in the law of exponents. Notice that the angle,√
(v · v), is the norm of v, and that imaginary quantities can be avoided by using trigonometric

functions, such as should be done in association with the quaternion i.
Consider, for unit vectors u and v,

exp(αu) exp(βv) = (1 cosh(α) + u sinh(α))(1 cosh(β) + v sinh(β))
= 1(cosh(α) cosh(β) + sinh(α) sinh(β)(u · v)) +

u sinh(α) cosh(β) + v cosh(α) sinh(β) +
(u× v) sinh(α) sinh(β),

and the prospects for seeing this as

exp(γw) = 1 cosh(γ) + w sinh(γ).

Just define a new angle, cosh(θ) = (u · v); then copy the two parts of the previous result:

cosh(γ) = cosh(α) cosh(β) + sinh(α) sinh(β) cosh(θ),
w = u sinh(α) cosh(β) + v cosh(α) sinh(β) +

(u× v) sinh(α) sinh(β).

Somewhere between trivial and formidable, the definition begins by ascertaining the angle |γ|
using a formula reminiscent of the spherical law of cosines, but in actuality the variant relevant to a
two-sheeted hyperboloid of revolution. Once that much is known, the vector w is defined in terms
of known quantities, for which it can be said that it lies off the plane of u and v unless they lie on
a line, in which case w falls on the same line giving a much more familiar law of exponents. By the
antisymmetry of the cross product, when the order of the factors is reversed, w moves to the other
side of the u− v plane.
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5.3.8 relation to complex numbers

This collection of arithmetic curiosities can be summarized by referring to the original objective in
introducing quaternions, to be able to rotate vectors. Rotating implies angles, and suggests polar
coordinates. In the familiar environment of complex numbers, the norm is the radius and the argu-
ment is the angle measured from the real axis. Real and imaginary refer to cartesian coordinates.
The following table draws analogies between complex numbers, Hamilton’s quaternions, and the
2× 2 matrices.

concept complex quaternion 2× 2 matrix

number z = x + iy q = a1 + bi + cj + dk m =
[

p r
s t

]

real part x a

[
p+t
2 0
0 p+t

2

]

remaining part y bi + cj + dk
[

p−t
2 r
s −p−t

2

]

conjugate z∗ = x− iy q∗ = a1− bi− cj− dk · · ·
adjugate · · · bi + cj + dk

[
t −r
−s p

]

squared norm |z2| = x2 + y2 ‖q‖2 = a2 + b2 − c2 − d2 det(m) = pt− rs

angle φ = arctan y
x cosh(φ) = |u|

a cosh(φ) = 1
2 trace(m)

inverse x−iy
x2+y2

q∗

‖q‖2
1

pt−rs

[
t −r
−s p

]

polar form |z| exp(iφ) ‖q‖ exp(uφ)
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6 Applications to String Vibrations

To illustrate the quaternion representation, a series of examples from the theory of electrical trans-
mission lines, or equivalently, the small vibrations of a classical string, can show both some math-
ematical techniques and illustrate diverse properties of these systems.

6.1 Description of the physical problem

Suppose that there is an indexed system of particles, each bound to a position of repose by an
elastic spring obeying Hooke’s law while its excursions from equilibrium follow Newton’s law:

mi
d2xi

dt2
= −kixi.

Subscripting all three, displacements from rest, masses, and elastic constants, implies that in full
generality, every particle has its own characteristics and environment. The solutions to differential
equations such as these are well known to be sines and cosines, or phased cosines, or even complex
exponentials taken up in real combinations.

An easy way of letting some of these particles be influenced by their neighbors is to suppose the
existence of additional elastic springs whereby the displacement of one particle from its equilibrium
exerts a force on some other particle - in the direction of the displacement, in contrast to the force
felt from a particle’s own displacement, which urges it back to whence it came. If the influence
extends to neighboring particles and no farther, a collection of differential equations describing the
motion would be

mi
d2xi

dt2
= ki−1xi−1 − (ki−1 + ki + ki+1)xi + ki+1xi+1.

In these equations, signs have been chosen so that the symbols themselves represent positive quan-
tities. The middle terms are negative because all springs restrain a moved particle if the others are
fixed at their origins.

The system can be placed in a more agreeable form by transformations which can either be made
at the outset, or incorporated later by suitable matrix transformations, but the present interest is
in the matrix, not the physics. Suffice it to say that multipying by square roots of masses solves
the immediate problem (or just suppose they all equal one gram, or adjust the unit of time to
compensate) and get on with the differential equation which still lets the elastic constants vary.
There is a vector of coordinates and a matrix of elestic constants satisfying the differential equation

d2

dt2




x1

x2

x3

. . .


 =




k11
m1

k12√
m1
√

m2
. . .

k21√
m2
√

m1

k22
m2

k23√
m2
√

m3
. .

. k32√
m3
√

m2

k33
m3

k34√
m3
√

m4
.

. . k32√
m3
√

m2

k11
m1

k12√
m1
√

m2

. . . . .







x1

x2

x3

. . .




6.2 Solving the vibration equations

Without going too deeply into differential equation theory, one way to solve the equation is to
diagonalize the matrix of coefficients, which can be done by a constant transformation that is
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invisible to the second derivative, once again solving differential equations in a single variable,
setting out initial conditions, and transforming back to the coupled equations. Each eigenvector,
which is called a normal mode, has its own time dependence, that of the overall system is their
sum. An alternative would be to postulate exponential solutions, note that the second derivative
multiplies the left hand vector by the square of the frequency, and treat discovering the frequencies
as an eigenvalue problem. Either route requires diagonalizing the tridiagonal matrix of coefficients.

Using matrix algebra, and assuming that matrix calculus differs from scalar calculus mostly
through the necessity to maintain the order of factors in a product and to write inverses where
they belong instead of quotients, it is easy to describe the solution to forced motion once it is
assumed that free motion is governed by the matrix exponential solution to a system of second
order equations with constant coefficients.

6.2.1 solving inhomogeneous equations

First, consider a system inhomogeneous equations written in matrix form:

dZ

dt
= RZ + F

Z could be a vector, but all the linearly independent solutions of the system can be treated simul-
taneously by gathering them up into a matrix as columns. In that case the forcing terms F should
be spread out into a matrix as well.

Now suppose that Z = UV and recall the rule for differentiating a product:

dUV

dt
=

dU

dt
V + U

dV

dt
,

whereupon

dU

dt
V + U

dV

dt
= RUV + F.

If the homogeneous equation

dU

dt
= RU,

has already been solved, especially from the unit matrix as an initial condition, its terms would
drop out of the equation, leaving

U
dV

dt
= F,

dV

dt
= U−1F,

At this stage, the right hand side of the equation is a completely known matrix of functions,
characterizing the solution as a quadrature:

V (t) = V (0) +
∫ t

0

U−1(σ)F (σ)dσ,

and the entire solution by:

Z(t) = U(t)Z(0) +
∫ t

0

U(t)U−1(σ)F (σ)dσ,
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6.2.2 solving second order equations

A second order version of the inhomogeneous system which has just been solved, suitable for a
chain of particles, would read

M
d2X

dt2
= −KX + F.

It should be turned into a pair of first order systems by inventing momenta (mass times velocity),
but splitting the mass coefficient in the interests of having a symmetrical dynamical matrix to
diagonalize later on:.

√
(M)

dX

dt
=

√
(M)−1P

√
(M)−1 dP

dt
= −√(M)−1K

√
(M)−1√(M)X +

√
(M)−1F.

For the sake of not writing so many mass radicals, weighted coordinates and momenta could be
introduced, and the elastic matrix replaced by a dynamical matrix. The forcing term might as well
be adjusted too. So define:

ξ =
√

(M)X
π =

√
(M)−1P

κ =
√

(M)−1K
√

(M)−1

f =
√

(M)−1F

to have the pair of systems of equations summarized in one matrix equation,

d

dt

[
π
ξ

]
=

[
0 −κ
1 0

] [
π
ξ

]
+

[
f
0

]

The coefficient matrix is a matrix of constants, so the solution of the homogeneous equation is a
matrix exponential. Furthermore, since

[
0 −κ
1 0

]2

=
[ −κ 0

0 −κ

]
,

there ia an Euler’s formula

exp(
[

0 −κ
1 0

]
t) =

[
1 0
0 1

]
cos(

√
κt) +

[
0 −κ
1 0

]√
κ−1 sin(

√
κt)

=
[

cos(
√

κt) −√κ sin(
√

κt)√
κ−1 sin(

√
κt) cos(

√
κt)

]
.

Note that since κ is a matrix, it could only invite misunderstandings to write 1/
√

κ instead of
√

κ−1

in these formulas.
Turning at last to the inhomogeneous term, the overall solution is

[
π(t)
ξ(t)

]
=

[
cos(

√
κt) −√κ sin(

√
κt)√

κ−1 sin(
√

κt) cos(
√

κt)

] [
π(0)
ξ(0)

]

+
∫ t

0

[
cos(

√
κ(t− σ)) −√κ sin(

√
κ(t− σ))√

κ−1 sin(
√

κ(t− σ)) cos(
√

κ(t− σ))

] [
f(σ)

0

]
dσ.
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The integral, which makes a sine or cosine transform of the forcing function, has various interpre-
tations, one of which is that it reduces all the accumulated forces to equivalent initial conditions
which then modify the stated initial conditions propagate the result up to time t. The forcing
function can be a pulse, a function of limited duration, or a permanent influence. Supposing the
latter to be a harmonic force, say a sine or cosine itself, the phenomonon of resonance makes its
appearance. Assuming that κ were diagonal, there would be a series of scalar (really, 2x2) equations
saying (putting

√
κ = ω0 and f = sin(ωt))

ξ(t) = initialvalue +
1
ω0

∫ t

0

sin(ω0(t− σ)) sin(ωσ)dσ

= initialvalue +
1

2ω0

∫ t

0

(cos(ω0t− (ω0 − ω)σ)− cos(ω0t− (ω0 + ω)σ))dσ

= initialvalue +
[
sin(ω0t− (ω0 − ω)σ)

2ω0(ω0 − ω)
+

sin(ω0t− (ω0 + ω)σ)
2ω0(ω0 + ω)

]t

0

Given that ω0 is (the square root of) an eigenvalue, and that its provenance from a square
root could endow it with either sign, one of the two terms will have a zero denominator whenever
the forcing frequency coincides with ω0. No doubt physicists and engineers first became aware of
eigenvalues on account of this circumstance. Although the denominator could be zero, that does
not mean that the amplitude is immediately infinite, only that it will build up without limit. The
integral with ω = ω0 has a constant integrand, and the amplitude will build linearly at first, giving
the zero denominator time to take effect.

In practice, a mechanical system would have friction, which would render ω0 complex, so reso-
nances could be large without becoming infinite. Equivalently, the exciting force could be damped,
with an implicit complex ω, so the excitation would never last long enough to build up to an extreme
amplitude.
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7 A Variety of String Vibration Examples

There are some standard layouts which give various insights into the vibrations of a string, some
of which will be discussed as examples.

1. uniform string with fixed ends,

2. uniform string with unrestrained ends,

3. two half-strings joined in the middle,

4. two half-strings with an impedance-matching joint,

5. a diatomic string - one with two masses alternating heavy, light,

6. a string with a point defect, say a discrepant mass,

7. a string with an insert larger than a point, of a different material,

8. a whip, with mass continuously varying from one end to the other.

9. a disordered string, whose masses and elastic constants are chosen at random from a proba-
bility distribution.

7.1 Uniform strings

The tridiagonal matrix for the vibrations of a a uniform string consisting of particles of mass
m connected by springs of elastic constant k, none of whose particles is bound in place (all the
oscillations are due to the influence of the particles on one another) would have the form

a row of masses joined by springs

k
m

k k kmm

Figure 12: a row of identical masses connected by identical springs

A =
k

m




−2 1 . . . . .
1 −2 1 . . . .
. 1 −2 1 . . .
. . 1 −2 1 . .
. . . . . . .




.
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7.1.1 eigenvalues and eigenvectors

The equations for the wave matrices would all have the form
[

xi+1

xi

]
=

[
m
k λ− 2 −1

1 0

] [
xi

xi−1

]
,

whose characteristic equation, or dispersion relation, could be written in one of the other of two
forms, the first favoring trigonometry and the second, half-angles:

µ2 − µ(
mλ

k
− 2) + 1 = 0,

(
√

µ +
1√
µ

)2 =
mλ

k
.

Matrices of (unnormalized) row and column eigenvectors are as before,

(rows) =
[

µ+ −1
µ− −1

]

(columns) =
[

µ+ µ−
1 1

]

making Sylverster’s theorem read:

f(M) =
f(µ+)

(µ2
+ − 1)

[
µ+

1

] [
µ+ −1

]
+

f(µ−)
(µ2− − 1)

[
µ−
1

] [
µ− −1

]

7.1.2 Tchebycheff polynomials

This expression simplifies drastically when µ is written as an exponential, µ = exp(ϕ), and it is
supposed that f is an nth power:

Mn =
exp(nϕ+)

exp(2ϕ+)− 1

[
exp(ϕ+)

1

] [
exp(ϕ+) −1

]
+

exp(nϕ−)
exp(2ϕ−)− 1

[
exp(ϕ−)

1

] [
exp(ϕ−) −1

]
,

=
1

exp(2ϕ+)− 1

[
exp((n + 2)ϕ+) exp((n + 1)ϕ+)
exp((n + 1)ϕ+) exp(nϕ+)

]
+

1
exp(2ϕ−)− 1

[
exp((n + 2)ϕ−) exp((n + 1)ϕ−)
exp((n + 1)ϕ−) exp(nϕ−)

]

Still further simplification awaits: First take exponential factors out of the denominators

Mn =
1

exp(ϕ+)− exp(−ϕ+)

[
exp((n + 1)ϕ+ − exp(nϕ+)

exp(nϕ+) − exp((n− 1)ϕ+)

]
+

1
exp(ϕ−)− exp(−ϕ−)

[
exp((n + 1)ϕ− − exp(nϕ−)

exp(nϕ−) − exp((n− 1)ϕ−)

]
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and then recognize that the µ’s are reciprocals, so their logarithms are negatives. The matrix Mn

is accordingly a function of a single angle and with common denominators the sum becomes a
difference:

Mn =
1

sinh(ϕ)

[
sinh((n + 1)ϕ) − sinh(nϕ)

sinh(nϕ) − sinh((n− 1)ϕ).

]

Moreover, the matrix elements, with the participation of the obstreperous denominators, are nothing
other than Tchebycheff polynomials of the second kind (with imaginary argument),

Un(cos(ϕ)) =
sin((n + 1)ϕ)

sin(ϕ)
,

the denominator sin(ϕ) generally serving to make derivatives turn out right.

Mn =
[

Un(cos(ϕ)) −Un−1(cos(ϕ))
Un−1(cos(ϕ)) −Un−2(cos(ϕ)).

]

Some patience with trigonometric identities will confirm MmMn = Mm+n, which must be so
because of the context in which it occurs.

Slight additional trigonometrical transformation (writing s and c for sinh and cosh to fit the
formula onto the page) produces

Mn =
1

sinh(ϕ)

[
sinh((n + 1)ϕ) − sinh(nϕ)

sinh(nϕ) − sinh((n− 1)ϕ).

]

=
1

sinh(ϕ)

[
s(nϕ)c(ϕ) + c(nϕ)s(ϕ) − sinh(nϕ)

sinh(nϕ) −s(nϕ)c(ϕ) + c(nϕ)s(ϕ)

]

= cosh(nϕ)
[

1 0
0 1

]
+

sinh(nϕ)
sinh(ϕ)

[
cosh(ϕ) −1

1 − cosh(ϕ)

]

= exp
(

nϕ

[
cosh(ϕ) −1

1 − cosh(ϕ)

])
.

The algebra of the wave matrices having been attended to, the determination of the eigenvalues of
the dynamical matrix depends on choosing appropriate boundary conditions for a relationship such
as

Xn = MnX1.

7.1.3 boundary conditions and the spectrum

An expedient, and sometimes physically appropriate, condition is to suppose that the string closes
upon itself, treating the first particle as though it were an (n + 1)st particle; the cyclic boundary
condition would require a unit matrix:

Mn = I.

Two of the four requirements on the matrix elements of Mn are identical but all four are consistent:

Un−1(cosh(ϕ)) = 0,

sinh(nϕ)
sinh(ϕ)

= 0,

ϕ = i
kπ

n
.

54



With such values of ϕ (ϕ = 0 being excluded), µ = exp(ikπ
n ), leaving

λ =
4k

m
cos(2

kπ

2n
)

sqrt(l)

pi/2

wave numbers k/n

frequency

Figure 13: the dispersion relation for a uniform string

To check whether this is credible, suppose there is only one single particle. Then no shift is
needed, n = 1, and M ought to be the unit matrix. So λ = 0, there is no restoring force, and
the result is correct. If there were two particles, λ = 0 persists, but for k = 1, λ = 2k/m is also
possible, appropriate to having a pair of springs to connect the particles.

Altogether there are many other ways of assigning boundary conditions to a string. which can
be broadly subclassified into boundary values and boundary conditions. A boundary value specifies
the value of a component, such as making it zero to signify that the particle is constrained so that
it cannot move. A boundary condition specifies a linear combination of components, and would be
realized as a row vector whose inner product with a wave vector would vanish, for instance. The
two kinds of condition mostly state the same information in two different ways. Whatever their
form, an expression relating elements of the wave matrix must vanish, producing a polynomial
equation which is the characteristic polynomial of the dynamical matrix. Since the arguments of
the polynomial are built from wave numbers, the characteristic equation is a dispersion relation.
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Figure 14: Normal modes of a uniform chain of eleven particles with with fixed ends. The amplitude
distribution of the displacements of the particles is sinusoidal, each normal mode displaying one
additional node as its frequency increases. The only nodes for the lowest frequency are the points
of restraint, each particle having approximately the same displacement as its neighbors. Nodes for
the highest frequency lie between adjacent particles, each of which keeps as great a distance from
its neighbor as possible.
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7.2 Joining dissimilar strings

Solving a uniform string with wave matrices requires powers of a single wave matrix, which turns out
to be a convenient combination of Tchebycheff polynomials. Mixing wave matrices for nonuniform
strings is more complicated algebraically, not only because the wave matrices don’t commute, but
also because the wave matrix at the joint is slightly different. To start with a simple example,
consider two dissimilar strings joined together.

dissimilar strings joined by a connecting spring

k K
Mm

k

Figure 15: two strings spliced by a single connecting spring

The dynamical matrix would look like:

A =




. . . . . . . . . . . . . .

. . . k
m

−2k
m

k
m . . . . . . . .

. . . . k
m

−2k
m

k
m . . . . . . .

. . . . . k
m

−k−kk
m

kk√
(mM) . . . . . .

. . . . . . kk√
(mM)

−kk−K
M

K
M . . . . .

. . . . . . . K
M

−2K
M

K
M . . . .

. . . . . . . . K
M

−2K
M

K
M . . .

. . . . . . . . . . . . . .




with two lines of recursion differing from those in the main body of the matrix. They only affect
the wave matrix in the respect that its 12 element is no longer −1, but something else. In terms of
masses m and M , with elastic constants k, K, and an intermediate k′, we need

[
λ+a+c

c −a
c

1 0

] [
λ+a+c

c − c
b

1 0

]

in terms of their eigenvalues and eigenvectors (or else to endure the algebra resulting from using
them in their crude form).

A first observation is that the two new wave matrices are probably not unimodular (determinant
1), an essential requirement for the derivation of the uniform chain just given, but easily remedied
by division of the whole matrix by the square root of their determinant. The result is

√ c

a

[
λ+a+c

c −a
c

1 0

]
=

[ λ+a+c√
(ac) −√a

c√ c
c 0

]
,
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with dispersion relation

(−µ)
λ + a + c√

(ac)
− µ) + 1 = 0;

as before, it can be rewritten

2 cosh(ϕ) =
λ + a + c√

(ac)
;

the half-angle formula could even be extracted with a little initiative. However, the eigenvector
matrices change over into

(rows) =
[

µ+ −√a
c

µ− −√a
c

]

(columns) =
[ √a

c µ+
√a

c µ−
1 1

]

leaving a normalization factor of (µ2−1)
√

(a/c) for Sylvester’s theorem, which is not only a numer-
ical multiple of the previous normalizer, but one which is the same for both eigenvalues. Moreover
the projectors themselves will behave consistently, with the net result that the Tchebycheff poly-
nomials will have some numerical factors, and the angle of their argument will be slightly different.

In the end it is necessary to calculate

[
λ+a+c

c −a
c

1 0

]M [
λ+a+c

c − c
b

1 0

]N

,

for M particles of one type and N of the other. Even before working out the details, it is not
hard to foresee the results. If the element c in the dynamical matrix were zero, there would be two
independent chains which would follow the guidelines already worked out for uniform chains, which
means two cosinusoidal spectra with sinusoidal eigenvectors, although the exact nature of their
boundary conditions would have to be worked out. To first order, the perturbation c should not
change the eigenvalues, but would result in a slight adjustment to the eigenvectors, in magnitude
depending on the relation of eigenvalue difference to matrix elements. Mainly, the waves could no
longer be zero in each other’s domains, as they would have been before.
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light heavy

heavylight

highest

Figure 16: Normal modes of a split chain of eleven particles with with fixed ends and two different
masses.
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7.3 Point defect

The dynamical matrix would look like:

A =




. . . . . . . . . . . . . .

. . . k
m

−2k
m

k
m . . . . . . . .

. . . . k
m

−2k
m

k
m . . . . . . .

. . . . . k
m

−k−kk
m

kk√
(mM) . . . . . .

. . . . . . kk√
(mM)

−kk−K
M

K
M . . . . .

. . . . . . . K
M

−2K
M

K
M . . . .

. . . . . . . . K
M

−2K
M

K
M . . .

. . . . . . . . . . . . . .




with two lines of recursion differing from those in the main body of the matrix. They only affect
the wave matrix in the respect that its 12 element is no longer −1, but something else. In terms of
masses m and M , with elastic constants k, K, and an intermediate k′, we need

[
λ+a+c

c −a
c

1 0

] [
λ+a+c

c − c
b

1 0

]

in terms of their eigenvalues and eigenvectors (or else to endure the algebra resulting from using
them in their crude form).
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Figure 17: Normal modes of a chain of eleven particles with with fixed ends and a point defect
consisting of a variant mass.
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7.4 Diatomic string

In a diatomic chain, two different kinds of particles are supposed, but they alternate with one
another rather than having similar particles grouped together in sequence. The effect remains the
interaction of one group with the other, but now that they are interspersed, the consideration has
to be the even numbered particles competing with the odd numbered particles.

two different masses joined by similar springs

k
Mm

k
Mm

k
Mm

Figure 18: heavy and light particles alternate

The dynamical matrix would look like:

A =




−2k
m

k√
(Mm) . . . .

k√
(mM)

−2k
M

k√
(Mm) . . .

. k√
(Mm)

−2k
m

k√
(mM) . .

. . k√
(mM)

−2k
M

k√
(mM) .

. . . . . .




.

Introducing a mass ratio ρ =
√

(M/m) and writing the common factor k/
√

(Mm) outside the
matrix gives the dynamical matrix a better appearance:

A =
k√

(Mm)




−2ρ 1 . . . .
1 −2

ρ 1 . . .

. 1 −2ρ 1 . .

. . 1 −2
ρ 1 .

. . . . . .




.

Mathematically, what could be done is to combine a consecutive pair into a single unit cell by
multiplying their wave matrices, and then raising this product to a power. Depending on whether
the chain is of even or odd length overall, a single wave matrix may have to be incorporated to finish
off the full chain. Although the dispersion relation for a single cell has to be more complicated, the
advantage of constant wave numbers irrespective of the number of unit cells remains.

The eigenvalue equation for this matrix gives even and odd recursion equations,

xi−1 − 2
ρ
xi + xi + 1 =

√
(Mm)

k
λxi even, light mass

xi−1 − 2ρxi + xi + 1 =
√

(Mm)
k

λxi odd, heavy mass
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Note that the geometric mean of the masses is a factor of λ in both equations. To avoid square
roots, introduce

ω2 =
√

(Mm)
k

λ

and two wave matrices,
[

ω2 + 2
ρ −1

1 0

]
even, light mass

[
ω2 + 2ρ −1

1 0

]
odd, heavy mass

Individually, they define dispersion relations similar to those for the uniform chain, but here it is
necessary to evaluate their alternating products, taking into account that they do not commute
unless ρ = 1.

[
ω2 + 2

ρ −1
1 0

] [
ω2 + 2ρ −1

1 0

]
=

[
(ω2 + 2

ρ )(ω2 + 2ρ)− 1 −(ω2 + 2
ρ )

ω2 + 2ρ −1

]
.

By symmetry, changing the order of the product would exchange the skewdiagonal elements. Re-
calling that AB has the same eigenvalues as BA, the dispersion relation is the same for either
product, namely

(ω2 +
2
ρ
)(ω2 + 2ρ)− 1− µ)(−1− µ) + (ω2 +

2
ρ
)(ω2 + 2ρ) = 0

Introduce more abbreviations,

ν = µ + 1

Ω = (ω2 +
2
ρ
)(ω2 + 2ρ)

to get the sequence

(Ω− ν)(−ν) + Ω = 0
Ων + ν2 + Ω = 0

Ω(ν − 1) = ν2

Ω =
ν2

ν − 1

=
(µ + 1)2

µ

= µ + 2 +
1
µ

= 4 cosh2(ϕ).

So the calculation of Ω goes pretty much as usual. To get ω out of Ω is the interesting part; to
simplify formulas still further, define α = ρ + 1/ρ.

Ω = ω4 + 2ω2α + 4
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ω2 =
−2α±√(4α2 − 4(4− Ω))

2
= −α±√(α2 + 4 sinh2(ϕ))

[
λ+a+c

c −a
c

1 0

] [
λ+a+c

c − c
b

1 0

]
=

[
λ+a+c

c
λ+a+c

c −− c
b

λ+a+c
c − c

b
1 − c

b

]

What really counts is whether sinh(ϕ) has to be imaginary or complex, which is best seen by yet
another reformulation of the dispersion relation.
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the two chains in

even particles
at rest, odd

Figure 19: heavy and light particles alternate
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7.5 Tapered string

The dynamical matrix would look like:

A =




k11
m1

k12√
m1
√

m2 . . .
k21√

m2
√

m1
k22
m2

k23√
m2
√

m3 . .

. k32√
m3
√

m2
k33
m3

k34√
m3
√

m4 .

. . k32√
m3
√

m2
k11
m1

k12√
m1
√

m2

. . . . .




tapered string with constant mass increments

k

Mi = M0 + m i

Mi

M0

Figure 20: A tapered string with a constant mass increment running to the right.
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increasing

increasing

Figure 21: A tapered string with a constant mass increment running to the right.
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7.6 Second neighbor influences

a row of masses joined by springs

k
m

k k kmm

Figure 22: a row of identical masses with identical springs connecting neighbors and another set of
springs connecting second neighbors

A =
k

m




. . . . . . . . . . · · ·

. . . y 1 −2(1 + y) 1 y . . · · ·

. . . . y 1 −2(1 + y) 1 y . · · ·

. . . . . y 1 −2(1 + y) 1 y · · ·

. . . . . . . . . . · · ·




.

The component by component equations for the eigenvectors of a pentadiagonal matrix would
have the form

axi−2 + bxi−1 + cxi + bxi+1 + axi+2 = λxi

which would turn into recursion relations by writing

xi+2 = −αxi+1 + (λ− β)xi − αxi−1 − xi−2,

and finally an equation with a wave matrix



xi+2

xi+1

xi

xi−1


 =




−α (λ− β) −α −1
1 0 0 0
0 1 0 0
0 0 1 0







xi+1

xi

xi−1

xi−2


 .

The characteristic equation for the wave matrix reads

µ4 + αµ3 + (λ− β)µ2 + αµ + 1 = 0

which in turn is a quadratic equation for c = µ + 1/µ = 2 cosh(φ).

c2 + αc + (λ− β) = 0
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8 Block Matrices

Matrices sometimes have a structure in which some submatrix is repeated over and over, usually
reappearing in the form of different multiples. For example, the product of a column by a row
is a rectangular matrix, in which all the rows are proportional, just as the columns are likewise
proportional. When the repetition of one matrix is guided by another, the result is sometimes called
a Kronecker product of the two matrices, and at other times a tensor product. For example, given
matrices P and Q,

P =
[

a b
c d

]
, Q =

[
A B
C D

]
,

their Kronecker product P ⊗Q would be defined by

P ⊗Q =
[

aQ bQ
cQ dQ

]

=




a

[
A B
C D

]
b

[
A B
C D

]

c

[
A B
C D

]
d

[
A B
C D

]




=




aA aB bA bB
aC aD bC bD
cA cB dA dB
cC cD dC dD


 .

In complete generality, give P ⊗Q four indices in the form of two pairs, and set

[P ⊗Q]ij,kl = PikQjl

These indices are to be run out in lexicographic order, which means that P ⊗ Q is not the same
thing as Q⊗ P , although it is equivalent by a change of basis which permutes the indices.




aA aB bA bB
aC aD bC bD
cA cB dA dB
cC cD dC dD







0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0


 =




0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0







aA bA aB bB
cA dA cB dB
aC bC aD bD
cC dC cD dD




Calculation with Kronecker products is facilitated by verifying all the algebraic rules, such as
distributivity or associativity, which they obey, thereafter using them automatically. Let I stand
for a unit matrix, O zero matrices of the appropriate size and shape, P , Q and R generic matrices.
As needed, α and β could be scalar factors. Then

I ⊗ I = I

O ⊗ P = O

P ⊗O = O

(P + Q)⊗R = P ⊗R + Q⊗R

R⊗ (P + Q) = R⊗ P + R⊗Q

(αP )⊗ (βQ) = (αβ)(P ⊗Q)
(P1P2)⊗ (Q1Q2) = (P1Q1)⊗ (P2Q2)

(P ⊗Q)⊗R = P ⊗ (Q⊗R).
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Apparently a Kronecker product resembles a cartesian product, in the sense that the factors combine
fairly independently when it comes to mingling the Kronecker product with other operations such
as linear combination or matrix multiplication. Some further results are useful; if the factors are
invertible,

P−1 ⊗Q−1 = (P ⊗Q)−1,

wherein it should be noted that the order of the factors is preserved.
If there are eigenvectors PX = λX and QY = µY ,

(P ⊗Q)(X ⊗ Y ) = (λµ)(X ⊗ Y ),

This means that the Kronecker product has all possible products of eigenvalues associated with
all possible Kronecker products of eigenvectors, due regard being given to the possibility of Jor-
dan normal forms, and with similar results whenever they occur. Beyond that, under the same
assumptions,

(P ⊗ I + I ⊗Q)(X ⊗ Y ) = (λ + µ)(X ⊗ Y ),
(P ⊗ I − I ⊗Q)(X ⊗ Y ) = (λ− µ)(X ⊗ Y ),

which provides a matrix with all the possible sums, or all the possible differences, of the eigenvalues
of two given matrices as its own eigenvalues. Checking whether the second combination were
singular would tell immediately whether a pair of matrices had common eigenvalues.
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9 Symmetry

Symmetry arises when a system looks the same in different coordinate systems; for example, the
spherical symmetry of a central potential. Symmetry does not require that motion in a symmetrical
system has to be symmetric, only that similar motion follows out from similar initial conditions.
For example, the nodal patterns in the vibration of an isotropic square membrane do not have to
have square symmetry. But it is true that for every normal mode of a given frequencey, there is
another, rotated from the first, with that very same frequency; similarly for reflected modes.

The mathematical description of symmetry is that the dynamical matrix A has a change of basis
S for which SA = AS (an equivalence) which could of ourse also be written as

S−1AS = A.

9.1 Wave symmetry

9.1.1 2× 2 wave matrices

Consider the 2× 2 wave matrices
[

xi+1

xi

]
=

[
a b
1 0

] [
xi

xi−1

]
.

If the direction of indexing is reversed, that can be described by a matrix
[

xi+1

xi

]
=

[
0 1
1 0

] [
xi+1

xi

]
,

so the whole sequence could be reversed by writing
[

0 1
1 0

] [
xi+1

xi

]
=

[
0 1
1 0

] [
a b
1 0

] [
0 1
1 0

] [
0 1
1 0

] [
xi

xi−1

]
,

[
xi

xi−1

]
=

[
0 1
b a

] [
xi

xi−1

]

=
[

0 1
b a

] [
xi

xi−1

]

=
−1
b

[
0 1
b a

] [
xi

xi−1

]

In the case b = −1, which was true in the wave matrix for a uniform chain, the same wave
matrix serves for either direction. However, b = −1 makes the wave matrix unimodular, so that its
eigenvalues occur in reciprocal pairs, and their logarithms, the wave numbers, are negatives of one
another. In other words, similar waves propagate in opposite directions.

9.1.2 4× 4 wave matrices

A similar result applies to the 4× 4 wave matrix of uniform second neighbor interactions,



xi+2

xi+1

xi

xi−1


 =




a b c d
1 0 0 0
0 1 0 0
0 0 1 0







xi+1

xi

xi−1

xi−2


 .
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The sequence of indices is reversed by the self-inverse

R =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 ,

so



0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0







a b c d
1 0 0 0
0 1 0 0
0 0 1 0







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 =




0 1 0 0
0 0 1 0
0 0 0 1
d c b a


 ,

while



a b c d
1 0 0 0
0 1 0 0
0 0 1 0




−1

=
1
d




0 1 0 0
0 0 1 0
0 0 0 1
1 −a −b −c


 .

This time it is d which should be −1, although d = 1 is also a possibility. Then it is also required
that a = c, so the recursion relation

xi+2 + axi+1 + bxi + cxi−1 + dxi−2 = λxi

has to be symmetric with respect to reversing the order of the indices.
The characteristic equation of a 4× 4 wave matrix reads

∣∣∣∣∣∣∣∣

a− µ b c d
1 −µ 0 0
0 1 −µ 0
0 0 1 −µ

∣∣∣∣∣∣∣∣
= 0

Laplace expansion by the first row gives

(a− µ)(−µ)3 − b(−µ)2 + c(−µ)− d = 0

Thus d is the determinant, the product of all the roots, and should be +1. Putting the other
symmetry condition, a = c,

(−µ)4 + a(−µ)3 − b(−µ)2 + a(−µ)− d = 0
µ4 − aµ3 − bµ2 − aµ + 1 = 0

(µ2 +
1
µ2

)− a(µ +
1
µ

)− b = 0

(µ +
1
µ

)2 − a(µ +
1
µ

)− (b + 2) = 0

As before, the roots occur in reciprocal pairs, as they should when a matrix is equivalent to its
inverse.
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9.2 Dynamical matrix symmetry

What we have worked out are the consequences for the wave matrix of a reflective symmetry. Rather
than leaving the wave matrices unchanged, it turns them into their inverses. It is the dynamical
matrix which should be unchanged. Let

R =




. . . . . . . . . . . .

. . . . . . . . 1 . . .

. . . . . . . 1 . . . .

. . . . . . 1 . . . . .

. . . . . 1 . . . . . .

. . . . 1 . . . . . . .

. . . 1 . . . . . . . .

. . . . . . . . . . . .




A =




. . . . . . . . . . . .

. . . −2 1 . . . . . . .

. . . 1 −2 1 . . . . . .

. . . . 1 −2 1 . . . . .

. . . . . 1 −2 1 . . . .

. . . . . . 1 −2 1 . . .

. . . . . . . 1 −2 . . .

. . . . . . . . . . . .




Then RA = AR, every element is reflected across the center of the matrix, and remains unchanged.
That means for all eigenvectors X,

AX = λX

A(RX) = R(AX)
= R(λX)
= λ(RX).

Thus either RX = θX and X is an eigenvector of R (when two matrices commute, they have
common eigenvectors) or else X and RX are two linearly independent eigenvectors belonging to
the same eigenvalue of A. Of course, it might also happen that RX = 0. Here, R2 = I, so RX 6= 0.
Neither is it possible to go on finding still more eigenvectors belonging to the common eigenvalue.

In other words symmetry

RA = AR

implies degeneracy

AX = λX ⇒ ARX = λRX.

Conversely, an appeal to Sylvester’s theorem shows that forming linear combinations of degenerate
eigenvectors should commute with A and so should induce a symmetry. Clearly the size and number
of degenerate subspaces depends on the action of R, and it is evidently a mutual relationship.

Continuing to think of the dynamical matrix for the vibrations of a string, the influence of
reflective symmetry is that for every normal mode, the reflection has to be another normal mode.
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That doesn’t actually produce nodes of different shape; because R2 = I, its eigenvalues are ±1,
making normal modes either even (and hence unchanged) or odd with respect to reflection. In
general, half the sum and half the difference of any mode and its reflection would be eigenvectors
of the reflection.

Cyclic chains have another symmetry, which is shifting from one particle to the next:

S =




. . . . . . . . . . . .

. . . 0 . . . . . . . .

. . . 1 0 . . . . . . .

. . . . 1 0 . . . . . .

. . . . . 1 0 . . . . .

. . . . . . 1 0 . . . .

. . . . . . . 1 0 . . .

. . . . . . . . . . . .




because SA = AS. In fact, A is a function of S, given that

A = S−1 − 2I + S

That means the cyclic shift of any normal mode has to be another normal mode of the same
frequency. The relationship is less obvious than the one resulting from reflection, because S has
complex eigenvalues and eigenvectors. Recall that when diagonizable matrices commute we have
to find a set of mutual eigenvectors so that both will be diagonal in the same coordinate system.
The symmetry shows up through the use of sines and cosines to describe the normal modes rather
than complex exponentials. As the situation is usually described, the normal modes are standing
waves rather than travelling waves.

Altogether the cyclic string has two symmetries, R and S, and they don’t commute with one
another: RS = S−1R. This lack of commutation obliges A to have multiple eigenvalues, because
of the difficulty in finding vectors which are sumultaneously eigenvectors of A, R, and S. The
condition of degeneracy is sufficient, but for particular combinations there could be still further
degeneracies which were not based on the shifting of the eigenvectors of one of the matrices by the
others.

9.3 Groups

A collection of symmetries has the important property of forming a group. That is, if AS = SA
and AT = TA, then

A(ST ) = (AS)T
= (SA)T
= S(AT )
= S(TA)
= (ST )A

This derivation is pretty detailled, but such meticulous attention to detail is usual when working
with the axiomatics of groups. Its conclusion is that the product of two matrices which commute
with a third also commutes with the third, which is the closure requirement in the definition of a
group.
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Altogether, the definition of a group requires a collection of objects and a binary operation,
called mutiplication for the sake of argument, which associates a third element with a given pair.
The postulates for group multiplication are

closure multiplication is defined for all pairs,

associativity multiplication is associative: a(bc) = (ab)c,

left identity there is an element e for which ea = a, whatever a,

left inverse for every a, there is a b satisfying ba = e.

As usual with concise mathematical statements, some reassurance often improves understanding.
For example, insisting on one identity does not of itself preclude there being others; however that
is the one which should be used in applying the fourth postulate.

If the statement of the postulates appears a little strange, that is because they are usually given
in both a strong form and a weak form. The advantage of the weak form, with left identities, left
inverses (the handedness does have to be the same), and no mention of uniqueness, is that there
is less to verify while recognizing a group. But there is sufficient information present to show that
uniqueness holds, that the identity and inverses work from both sides, useful relationships such as
(ab)−1 = b−1a−1 or (a−1)−1 = a, and that equations are always solvable.

This latter property, that ax = b has the unique solution x = a−1b, is probably the one most
responsible for the importance of the group concept.

Groups are excellent objects to which to apply the mathematical theory of structures, so it is
convenient to recognize subgroups, factor groups, and product groups.

9.4 Subgroups

A subgroup is simply a subset of a gropup which is also a group. Since a subgroup necessarily
contains the identity and its own inverses, and the associative law is already known for all possible
triple products including those which might come from a prospective subgroup, the only doubt
of consequence in verifying a subgroup lies in checking closure. That would be the normal se-
quence, locating the identity, finding inverses and examining products; but sometimes a proof can
be shortened by simply applying the criterion that a subset is a subgroup if it contains all quotients.

The reasoning is that if x = y in xy−1, it will turn up xx−1 = e, giving a check for the identity.
Once e is there, putting e and x in the test runs through the inverses because ex−1 = x−1. Finally
pairing x and y−1 locates all the products due to x(y−1)−1 = xy, which was what was intended
from the beginning. So this tricky wording allows a three-stage procedure to be described by one
single algorithm. Note that it is not very practical when applied to a group table because it won’t
work without knowing what the inverses are. But later on, when complicated groups have been
constructed with the help of algebraic formulas, including an extra inverse in a calculation could
be preferable to checking all the special cases.

Subgroups are ordered by inclusion, so that the full group is the maximum subgroup, the unit
class of the identity the minimum subgroup. The intersection of two subgroups is their lower bound,
but the least upper bound is a more complicated matter; it is usually larger than their union. It
also has to contain all their finite products, but that is actually sufficient; the resulting assemblage
is called a hull, and can even be formed for subsets which are not subgroups. The smallest subgroup
containing a given element, or specified set of elements, is often useful, and contains at least their
powers and inverses.
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9.5 Mappings and equivalence

Mappings between groups which conserve their group products are called homomorphisms, with a
full range of adjectives to distinguish self-maps, surjective and injective maps. Each mapping defines
an equivalence relation, compatible to a greater or lesser extent with the group multiplication.
Sometimes the equivalence classes themselves are groups, multiplication having been defined setwise
rather than pointwise.

Finally there are different kinds of multiplication which can be defined for cartesian products,
still satisfying the requirement that projections are homomorphisms. The study of their existence
and properties would complete the structure theory.

Not all equivalence relations in a group correspond to homomorphisms. Those which do are
called congruence relations. The two basic equivalence relations, whose equivalence classes are the
cosets, are defined with respect to a subgroup, H say.

x ≡ y ⇔ xy−1εH [left coset]
x ≡ y ⇔ x−1yεH [right coset]

In words, two elements are equivalent whenever they are common multiples of elements taken from
a subgroup. The idea is that a subgroup should be seen as the identity element by a mapping which
is unwilling to distinguish between its members. What we want is that ax ≡ ay whenever x ≡ y,
say. To get rid of whastever a we should test (ay)−1(ax).

For what should we test? We want x ≡ x, so e should be one of the quotients. We need
x ≡ y ⇔ y ≡ x, so we should always have xy−1 along with yx−1, so quotients should always be
paired with their inverses. Finally, the transitive law requires products, so all the requirements for
a subgroup have been specified without saying which subgroup. Any will do, so there are cosets for
all subgroups, left or right according to the handedness of the group multiplication required.

To get a congruence relation, and equivalence irrespective of the factor being replaced, a sub-
group is required whose left cosets are the same as its right cosets; such a subgroup is called a
normal subgroup. Its cosets are then congruence classes, the subgroup itself is the counterimage of
the identity subgroup with respect to a homomorphism.

Homomorphic images of subgroups are subgroups. So are homomorphic counterimages.
Equivalence relations can be ordered by inclusion of their equivalence classes. Upper and lower

bounds of cosets of the same handedness follow from the ordering of their defining subgroups;
between handednesses the structures are called double cosets.

There is still another important equivalence relation, whose equivalence classes are simply called
classes.

x ≡ y ⇔ ∃a 3 ax = ya.

It is the same relationship. applied internally to a group and its own group multiplication that
characterizes equivalence in terms of mappings and commutative diagrams.

Because group multiplication is always invertible, multiplication by a fixed factor permutes the
group elements; that is to say, if ax = ay it follows that x = y. For that reason, any group can be
regarded as a group of permutations. If the permutations were written as matrices, that would also
exhibit the group as a collection of matrices, with matrix multiplication as the group operation.
But there is another approach which is capable of characterizing all the possible sets of matrices
homomorphic to a given group.
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9.6 Convolution algebra

Consider a collection of mappings from a group, regarded as a point set, to the complex numbers.
Actually, any field would do, but choosing the complex numbers gives results of wide and common
applicability. Such a collection of mappings is reminiscent of the dual space for a vector space and
it will be seen that the theories follow quite similar lines. It always seems to be advantageous to
work with the functions of a point set in place of the set itself.

Characteristic functions of subsets follow the definition:

δ(S; x) =
{

1 xεS
0 otherwise

Amongst the characteristic functions, those of the unit classes constitute a basis because any func-
tion f(x) can be written

f(x) =
∑

gεG

f(g)δ(g; x).

Linear combinations and products of functions are to be defined as usual,

(αf + βg)(x) = αf(x) + βg(x),
(fg)(x) = f(x)g(x).

So far nothing remarkable has been produced, but the influence of group nultiplication has not yet
been felt. That results from defining the convolution of two functions,

f ∗ g(x) =
∑

ab=x

f(a)g(b).

It results that f ∗ g is not necessarily commutative, but that it is bilinearly distributive and asso-
ciative.

9.7 Matrix representation

There are now two ways to get a matrix representation of a the group multiplication, according to
whether the characteristic functions are used as left factors or as right factors for a convolution. In
each case, the other factor is expanded in a basis as though it were a vector. For the left regular
representation,

(δg ∗ f)(x) =
∑

ab=x

δ(g; a)f(b),

=
∑

a

δ(g; a)f(a−1x),

= f(g−1x).

So far, this is just a representation by permutations, as would be seen by specializing to characteristic
functions.
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Consider that a representation is given, a set of matrices Γ = {D(e), D(a), . . .} for which
D(a)D(b) = D(ab), and look at the matrix elements dij(a). These are complex valued functions of
the group elements and thereby subject to the preceding formula:

(δa ∗ dij)(x) = dij(a−1x),

=
∑

k

dik(a−1)dkj(x).

for fixed a and function argument x.
We need to know whether the matrices of Γ are diagonal or not and if not, to what extent.

Recall that matrices commute when they have common eigenvectors, and hence can be chosen to
be diagonal, all of them at once. If any matrix but a multiple of the identity commutes with all the
matrices of Γ, and that multiple can be diagonalized with two different eigenvalues, all the matrices
of Γ must follow suit.

Therefore, if all of Γ cannot be placed in the form of diagonal blocks by some choice of coor-
dinates, the matrix which commutes with all of them must be a multiple of the identity, a result
which is known as Schur’s first lemma. His second lemma relates to the possibility of forming an
equivalence between two different matrix representations Γ1 and Γ2. Give the matrices identifying
superscripts and suppose a matrix V for which, whatever group element,

V D1(x) = D2(x)V.

If the dimensions are discrepant, V will be rectangular; suppose there are more columns than
rows, reversing the indices in the contrary case. There must be some columns which are linear
combinations of others, and therefore a column X expressing this dependence via V X = 0.

On the other hand, if V is not zero, there will be a row such that TT V is non-zero; it just needs
a 1 in a strategic place to take advantage of one of V ’s non-sero elements.

Finally, consider that neither D1(a) nor D2(a) are singular (we really wouldn’t want to consider
a set of zero matrices a representation) because D(a)−1 = D(a−1) and every group element has an
inverse.

Therefore D1 cannot map a non-zero vector into zero, so TT V D1(a) is nonzero, contradicting
the vanishing of D2(a)V X. So V would have to vanish in its entirety, which is the statement of
Schur’s second lemma.

There is a little more to be said because V could be square, leaving the existence of X in
question. If there were such an X, V would still be singular and would need to vanish, leading to
the same conclusion. If, on the contrary, V were invertible, the representations Γ1 and Γ2 would
have to be equivalent so the only possibility for inequivalent representations, even of the same
dimension, would be V = 0.

In summary, a representation is irreducible when there is no choice of basis where all its matrices
are simultaneously partitioned into diagonal nonzero blocks. Of course, some of of the individual
matrices, such as the identity matrix representing the identity element, may well be reduced; but not
all of them in the same way at once. If only the zero equivalence can connect two representations,
they are inequivalent, and if they are both the same representation, only a multiple of the identity
can connect them.

Averaging over a group yields a plentiful supply of equivalences, depending upon what is aver-
aged. Define V , for any matrix Q compatible with the two dimensions,

V (Q) =
1
|G|

∑

gεG

D2(g−1)QD1(g),
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and follow out the following derivation, step by step:

V (Q) D1(a) =


 1
|G|

∑

gεG

D2(g−1)QD1(g)


 D1(a),

=
1
|G|

∑

gεG

D2(g−1) Q
(
D1(g)D1(a)

)
,

=
1
|G|

∑

gεG

D2(g−1) QD1(ga),

=
1
|G|

∑

gaεG

D2(a(ga)−1) QD1(ga),

=
1
|G|

∑

gaεG

(
D2(a)D2((ga)−1)

)
QD1(ga),

= D2(a)


 1
|G|

∑

gaεG

D2((ga)−1)QD1(ga)


 ,

= D2(a) V (Q),

Dividing the sum by the order of the group was really unnecessary, but it will be convenient
later on. For example, if Q = I and the same representation is used both times, the result will be
V (I) = I. Accordng to Schur’s lemma, after adorning V with superscripts to trace its definition
and inventing a sort of generic Kronecker delta for matrices,

V αβ(I) = ∆(α, β).

Expressed in terms of matrix elements (δ(k, `) is the matrix element of I),

1
|G|

∑

gεG

dα
ik(g−1dβ

`j(g) = δ(α, β)δ(i, k)δ(`, j),

which expresses the biorthonormality of two vector sets, possibly bases, for the group’s function
space, or convolution algebra. The sets have dim(Γα)2 elements for each irreducible representation,
placing an upper limit on the number of irreducible representations (which can never exceed |G|)
and their dimensions (which can never exceed

√|G|). Evidently high dimensional representations
come at the price of finding fewer of them.

9.8 Characters

The basis relations for group functions can be rearranged by taking traces of the matrix elements,
and noticing that traces are invariant under change of basis. On the one hand, traces are invariants
of equivalences so the result will not depend on changing to an equivalenmt representation. On the
other, the same is true for internal equivalences of the group, making traces functions of classes, not
merely of individual group elements. The trace is a function for which the classes are equivalence
classes.
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The trace-valued group function is called a character for its representation, defined by

χα(g) =
dim(Γ)∑

i=1

dα
ii(g).

Especially note that χα(e) = dim(Γα). On taking the appropriate sums in the biorthogonality
relations,

1
|G|

∑

gεG

χα(g−1)χβ(g) = δ(α, β).

Because of the constancy over classes, the result is also a biorthogonality relation for class space.
Call a typical class Ci, observe that the set of inverses of class members is another class (maybe
the same one), and average within classes (where the number of elements in class Ciis|Ci|)to get

1
|G|

∑

Ci

|Ci|χα(C−1
i )χβ(Ci) = δ(α, β).

There is now a new function space, mapping classes to complex numbers, for which the characters
of the irreducible representations form a biorthonormal set, which would mean that the number of
inequivalent irreducible representations cannot exceed the number of classes.

As remarked, characters are not only insensitive to equivalences arising within the group, but to
external influences as well. That all equivalent representations have the same character allows their
characterization, which was undoubtedly the origin of the term. Beyond that, if a representation is
reducible, the biorthonormality of characters permits finding out which irreducible representations
are in the blocks. For a representation Γ = {D(g)},

χ(g) =
∑

χα(g)

=
∑′

nαχα(g),

the prime implying a sum over inequivalent representations and nα counting the multiplicity of
each irreducible representation.

1
|G|

∑

G

χ(g−1)χ(g) =
∑

n2
α

For the sum to be exactly 1 would be indicative that the representation was irreducible. As a
further result, note that the trace of an element in a permutation representation is the number of
fixed points for that particular element. The regular representation is a permutation representation
for which only the identity fixes any points - all of them. Therefore

χregular(g) =
{ |G| g = e

0 otherwise

For whatever representation, the trace of the identity is its dimension, so χα(e) = dim(Γα) = dα;
in comparison with the regular representation, for which all traces except the identity vanish, the
other traces do not mattter. So

1
|G|

∑

G

χregular(g−1)χα(g) = dα
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and each irreducible representation present is repeated its own dimensionality number of times. The
important thing here is that it doesn’t matter how an irreducible representation was manufactured,
working with the space of complex valued group functions guarantees its place in the regular
representation, and the sum of the squares of all their dimensions adds up to the order of the
group.

At the same time, because the regular representation contains an equivalent of any irreducible
representation at all, their characters have to be present among the complex valued class functions.
The only obstacle to knowing that the number of irreducible representations is equal to the number
of classes would be to show that the characteristic function of a class was a linear combination of
characters. Pretty much by definition, the reverse is true, characters are linear combinations of
characteristic functions of classes.

We already know that the characteristic functions of points are linear combinations of matrix
elements; if

f(g) =
∑

αij

cαijd
α
ij(g),

taking inner products with dual basis elements gives

(f(g), dα
ij(z)) = cα

ij ,

f(g) =
∑

αij

(f(g), dα
ij(z))dα

ij(z)

δ(g; z) =
∑

α i j

dα
ij(z

−1)dα
ij(g)

The sum of products of matrix elements is either zero or one; but that was the conclusion from
Schur’s lemmas.

Next, consider that a class arises from finding conjugates from within the group: elements for
which xs = sy for all s. So sums over a class just average these conjugacies: s(x + y + z + . . .) =
(x+y+z+. . .)s. Representationwise here is a matrix commuting with an irreducible representation,
so

∑

class

dα
ij(g) = λαδ(j; k),

λα being the multiplier of the identity in the αth irreducible representation.

δ(class; z) =
∑

αij

∑

class

λαδ(j; k),

=
∑
α

λαχα(z)

which makes the characteristic function of a class a linear combination of characters, and the
characters indeed form a basis for all complex valued class functions. So we now know that the
number of irreducible representations equals the number of classes, and is not just limiter by their
number.
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Figure 23: Reflections fall into one or two classes according to the parity of the n-gon.

9.9 Symmetry of a regular polygon

Having introduced the study of symmetry by using the example of a cyclic chain, which has both
shift and reflection symmetry, we could finish by examining the symmetry group, its irreducible
representations, and their effect on the dynamical matrix. If the particles were located at the
vertices of a regular polygon, the symmetry group could be interpreted as the set of rotations and
reflections of that geometric figure.

Symmetry of an n-gon has two generators, a rotation S for which Sn = I, and a reflection R
for which R2 = I, for which RS = S−1R. Groups are often defined by listing a set of generators
and a set of relations, three in this case. The full group table is supposed to be deduced from
this information, but that is not always possible, for reasons which lead deeply into the theory
of recursive functions. Fortunately the table for the symmetry of polygons is easily calculated,
resulting there are only 2n symmetries, of the form SiRj , 0 ≤ i < n, 0 ≤ j < 2 with the rule of
multiplication

(SiRj)(SkR`) = S(i−k) (mod n)R(j+`) (mod 2).

The symmetry group of a plane n-gon is called a dihedral group of order n, Dn, in contrast to a
cyclic group of order n, Cn. The latter contains only the powers of a single generator, whereas a
dihedral group incorporates a reflection besides.

If n has divisors, both cyclic and dihedral groups contain subgroups whose orders are the divisors,
generated by the powers of S complementary to the divisor. Thus both D2 generated by R and S3,
and D3, generated by R and S2 are subgroups of D6.

In addition, any of the products SkR generate subgroups of order 2, since SkRSkR = Sk−kR2 =
I. The generators of these subgroups are reflections, and come in two forms. If n is even, reflections
in lines passing through opposite vertices are not the same as reflections in perpendicular bisectors
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of opposite edges. In fact, the vertex splitting reflections constitute a class, the edge-splitting
reflections another.

On the other hand, when n is odd, reflections bisect one vertex angle and one opposite edge
each, so there is no distinction and all the reflections make up one single class.

The subgroups mentioned are all there are. Each defines a family of cosets, but only the cyclic
subgroups are normal.

SR S-1RS2R R

S-1SS2 I

Figure 24: the symmetry group of a 4-gon (square) has five classes

In enumerating the classes, we have just seen that the reflections form either one single class or
two distinct classes, according to the parity of the n-gon. Since all the rotations commute, the size
of one of their classes depends on the reflections, which map rotations into their inverses. Therefore,
again according to parity, there are (n + 2)/2 or (n + 1)/2 classes of rotations. When n is even,
Sn/2 = (Sn/2)−1, so it and I each sit in a single class, for a total of 2. The other n − 2 rotations
pair up in n/2− 1 classes, for the total stated. When n is odd, only the identity is self-conjugate,
so the prospective number of classes is reduced by 1.

If the n-gon is a plane figure, we already have a matrix representation with 2× 2 matrices:

D(S) =
[

cos θ − sin θ
sin θ cos θ

]
,

D(R) =
[

0 1
1 0

]
,

Irreducible representations for the symmetry of a square can be read off from the following table

I S S2 S3 R SR S2R S3R

1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1[

1 0
0 1

] [
0 −1
1 0

] [ −1 0
0 −1

] [
0 1
−1 0

] [
0 1
1 0

] [ −1 0
0 1

] [
0 −1
−1 0

] [
1 0
0 −1

]
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and characters from a similar table

I S S2 SR S2R
1 1 1 1 1
1 1 1 −1 −1
1 −1 1 −1 1
1 1 1 1 −1
2 0 −2 0 0
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10 Affine and Projective Algebra

Formalizing geometry by introducing coordinate systems and using linear algebra captures only a
part of the material traditionally regarded as geometry. The missing part has much to do with
matters of scale; beyond that, the selection of an origin as a point of reference runs contrary to all
the independence of position and orientation which characterizes geometrical reasoning.

Two different, but nevertheless related, concepts recapture geometry within a framework of
linear algebra. Including translations along with the linear transformations, and expecially rota-
tions, leads to the concept of an affine space, at the price of working in a nonlinear environment.
Projections not only eliminate the nonlinearity; they offer the additional advantages of scaling and
inversion - reflections in spheres.

10.1 Affine space

The semidirect product of groups was known to crystallographers and others as the way to describe
the symmetry group of a lattice, long before the idea was taken up by mathematicians in the 1950’s.
The concept arises from combining lattice symmetry expressed by the addition of translation vectors
with point symmetry implemented using matrices rotating or reflecting the vectors displacing unit
cells.

Written in terms of components, a typical formula X ′ = MX + P would read
[

x′

y′

]
=

[
a b
c d

] [
x
y

]
+

[
p
q

]

=
[

ax + by + p
cx + dy + q

]
.

Such a mapping of a vector space is called an affine transformation, to distinguish it from a linear
transformation; note that

M(αX + βY ) + P = MαX + MβY + P

6= α(MX + P ) + β(MY + P ),

so that P appears only once in the result and it isn’t scaled at all. Although the mapping isn’t
linear, it is certainly useful, which invites the study of its properties.

One of them is the rule of composition. Suppose that we regard the pair (M, P ) as the cartesian
product of two functions, and apply two such pairs in succession to a vector X, and take due note
of the confusion arising from using parentheses to define a compound function on the one hand,
and their normal use to group terms within an algebraic expression. Then

((M, P )(M ′, P ′))(X) = (M, P )((M ′P ′)(X))
= (M, P )(M ′X + P ′)
= MM ′X + MP ′ + P

= (MM ′, MP ′ + P )(X),

which is the rule of composition for the two mappings.
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10.2 Projective space

The projective viewpoint would regard the defining equation X ′ = MX + P as a fragment of a
partitioned matrix equation:




ξ′

η′

ζ ′


 =




a b p
c d q
0 0 1







ξ
η
ζ


 .

The componentwise equations,

ξ′ = aξ + bη + pζ

η′ = cξ + dη + qζ

ζ ′ = 0ξ + 0η + 1ζ

could be reconciled with the earlier equations by introducing the mapping

x =
ξ

ζ

y =
η

ζ

Projective geometry is more comprehensive than affine geometry because there is no reason to
restrict the transformation matrix to be upper triangular. If the more elaborate matrix




a b p
c d q
r s w




were used, the projective transformation would read

x′ =
ax + by + p

rx + sy + w

y′ =
cx + dy + q

rx + sy + w
.

A special case would include uniform dilation

x′ = λx

y′ = λy.

Generally speaking, a linear transformation of n coordinates can be mapped into a projective
transformation of (n− 1) coordinates, and conversely a nonlinear transformation of n coordinates
having the projective form can be mapped into a linear transformation of n+1 coordinates. In nei-
ther case is the transformation one-to-one, since all multiples of a vector have a common projective
image, just as the counterimage of a projection has to include all multiples of any one of its points.
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10.3 Mappings of a line

Related to the question of discovering and describing linear and projective mappings is the related
question of whether mappings are invertible or not. That depends to a certain extent on how
the function is described - that is, whether it is a polynomial, rational fraction, or specified in
some much more general context. In general calculus, if a set of functions yi(x1, x2, . . . , xn) have
derivatives, the differential relationships

dy1 =
∂y1

∂x1
dx1 +

∂y1

∂x2
dx2 + . . . +

∂y1

∂xn
dxn

dy2 =
∂y2

∂x1
dx1 +

∂y2

∂x2
dx2 + . . . +

∂y2

∂xn
dxn

. . .

dyn =
∂yn

∂x1
dx1 +

∂yn

∂x2
dx2 + . . . +

∂yn

∂xn
dxn

have a matrix formulation



dy1

dy2

. . .
dyn


 =




∂y1
∂x1

∂y1
∂x2

. . . ∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

. . . ∂y2
∂xn

. . .
∂yn

∂x1

∂yn

∂x2
. . . ∂yn

∂xn







dx1

dx2

. . .
dxn




in which the matrix could be called a Jacobian matrix in analogy to the well-known Jacobian
determinant. Actually there is a similar set of equations, using the transposed Jacobian matrix,
relating partial derivatives with respect to one set of variables to those with respect to another. In
either event, the nonvanishing of the Jacobian determinant is the criterion for local invertibility of
the set of mappings. Less commonly discussed is whether the Jacobian matrix has eigenvalues and
eigenvectors, although it would seem that they could surely provide further information concerning
the local nature of the mapping.

Such general criteria provide only local information, although conclusions could be drawn from
the nonsingularity of the Jacobian determinant over entire regions. Suppose, however, that the
variables are related in a more implicit form, by the vanishing of a series of polynomial equations,
and that to confine the discussion to the simplest case, that just the variables x and y are so related.
Then the coefficients of powers of y could be gathered together to make up a polynomial in y whose
roots would imply that several combinations of x and constant coefficients producing the same value
for y. To avoid that eventuality, no powers of y should occur - just y itself and terms independent
of y.

By symmetry, the same could be said of x. Only the meagre possibility

axy + bx + cy + d = 0 (2)

remains, which could be rendered explicit in either one of the two forms

x = −cy + d

ay + b

y = −bx + d

ax + c
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Both of these expressions look like one-dimensional projective transformations of an affine plane; if
they were written in matrix form there would result

[
x
1

]
=

[ −c −d
a b

] [
y
1

]

[
y
1

]
=

[ −b −d
a c

] [
x
1

]

This matrix form, while not unique, reveals the convenience of a nonvanishing determinant ad− bc;
otherwise x would have a value independent of y and conversely. Neither would yield the single
valued mapping we are looking for.

The matrices, except for the determinantal factor and the placement of some signs, are inverses,
forerunning the observation that functional composites follow the rules of matrix multiplication.
Since a quotient is involved, or otherwise stated, the original equation is homogeneous with respect
to the coefficients, multiplying the matrices by a factor could give them a unit determinant, so the
transformation can always be represented by unimodular matrices. To ensure the validity of matrix
multiplication for their representation, the coefficients should always be arranged as shown, not
reversed. In fact, it is worth looking at the substitution in detail, paying attention to the direction
of the mapping, the direction of composition, and the placement of the coefficients in the matrix.
If it were given, following the representation of x as a function of y, a sequence of two mappings,

x =
−cy − d

ay + b

w =
−Cx−D

Ax + B

then substitution would say

w =
−C

(
−cy−d
ay+b

)
−D

A
(
−cy−d
ay+b

)
+ B

=
−C(−cy − d)−D(ay + b)
A(−cy − d) + B(ay + b)

=
(Cc−Da)y − (cD −Db)
(−Ac + Ba)y + (Ad + Bb)

which would correspond to a matrix product
[ −C −D

A B

] [ −c −d
a b

]
=

[
Cc−Da −(Cd−Db)
−AC + Ba Ab + Bb

]

The conclusion of this line of analysis is that under very general conditions — namely implicit
representation by coefficients of a vanishing polynomial — the only invertible mapping of a line into
itself is a projective transformation. Note that projective transformations are slightly more general
than affine transformations (but only slightly) because projection from a linear space envisions not
just one affine transformation, but even a quotient of two of them.
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10.4 The cross ratio

There is a rather complicated quotient of quotients, called the cross ratio, which is an an invariant
of projective transformations, whose discovery apparently dates back to Pappus during the last
stages of greek antiquity. One way to obtain his result is the following:

10.4.1 matrix interpretation

Consider the projective line as an image of a two-dimensional linear algebra plane, and observe that
determinants are multiplicative for linear transformations. Take a 2 × 2 matrix P containing the
two columns of a basis and a transformation M . Then |MP | = |M ||P |, so |P | is not an invariant.
But take another basis matrix Q for which |MQ| = |M ||Q|. Then the quotient |P |/|Q| is invariant,
although its terms are not.

Pappus’ cross ratio

x
y

z
w

X
Y

Z
W

Figure 25: Pappus’ construction for the invariance of the cross ratio. It would take a more cartesian
form if the projection point were moved to the origin and one of the lines were y = 1. As a scheme
for mapping lines, this is not a projection of a plane to a line; however it is a 1:1 mapping of one
line to another.

Carrying the result over to the projective line, write the matrices in projective form

P =
[

xs yt
s t

]
, Q =

[
wu zv
u v

]
,

and calculate the determinants. Note that w, x, y, z are the values of points on the projective line,
whereas s, t, v, u are the multipliers lost by the projection. We have

|P |
|Q| =

(x− y)st
(w − z)uv
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Although this quotient is invariant enough, the multipliers would normally be unknown. Choos-
ing more vectors and dividing once again would only create more multipliers, but the same mul-
tipliers can be kept by just rearranging the four vectors in the two bases. There are twenty four
possibilities, the permutations of four objects, but only some of them produce the cancellation
which would free the points from the multipliers.

The nice symmetry of the formula shows how to get the cancellation; note that each difference
is multiplied by the product of its two multipliers. Making up a product of four multipliers in two
different ways would allow cancelling the unknown factors while retaining the differences in the
points themselves.

So make up two new matrices,

R =
[

xs zv
s v

]
, S =

[
wu yt
u t

]
.

The combination which we actually want is

|PQ|
|RS| =

(x− y)st (w − z)uv

(x− z)sv (w − y)ut

=
(x− y)(w − z)
(x− z)(w − y)

=
(

x− y

x− z

)
/

(
w − y

w − z

)
,

which is the quotient of quotients of distances from the customary formula to be found in all
textbooks.

10.4.2 relative distance interpretation

The derivation of the cross ratio given in the last subsection was based on determinants in the
plane, according to which it is really a result about areas, likewise in the plane. The drawing
for Pappus’s construction also uses a plane, although only as a device to illustrate a one-to-one
reversible mapping between two lines gotten by drawing lines out from a focus, to see where they
intersect a couple of lines.

Confined to the interior of a line, the invariance of the cross ratio tells something about trying
to locate a point by specifying its relative distance from a pair of reference points. Under an affine
transformation, which would be a combination of dilation and translation, that ought to suffice.
By projective transformation, where the dilation is not uniform, it is the ratio of ratios which is
invariant. In other words, if it is ρ times as far from w to x as it is from w to y, and it is σ times
as far from z to x as it is from z to y (all of this being taken with due regard for sign), then the
ratio of σ to ρ will always be the same, even when ρ and σ are not.

To give this a still more concrete interpretation, suppose that w is the midpoint between x and
y. It probably isn’t still the midpoint after projection, although if two points were halfway between,
they would have to move together. Trisectors of an interval, w and z with ratios of 2 : 1 and 1 : 2
probably won’t map into trisectors either, but the quotient 4 would have to be respected. And so
on.

To summarize a long series of special cases, observe that although a cross ratio is unaffected by
whatever projective transformation, its particular value still depends on the four points chosen. It
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is a reasonable question, given the cross ratio and three of the points, to ask for the fourth. Put

σ =
w − z

w − y

to get, for cross ratio φ,

φ =
(x− y)(w − z)
(x− z)(w − y)

x =
φz − yσ

φ− σ

The invariance of the cross ratio can be used much less explicitly. Suppose that it is desired to
map points x1, x2, x3 into points y1, y2, y3, and to find the consequences for other points. Note that
for whatever value of φ arising from x, x1, x2, x3, there is always a y determined by the same φ and
further values y1, y2, y3. Using that common value of the cross ratio and unknown points x and y,
we get

φ =
(x− x1)(x3 − x2)
(x− x2)(x3 − x1)

φ =
(y − y1)(y3 − y2)
(y − y2)(y3 − x1)

,

so the equation for the mapping would be

(x− x1)(x3 − x2)
(x− x2)(x3 − x1)

=
(y − y1)(y3 − y2)
(y − y2)(y3 − y1)

. (3)

It can be checked by substitution and, if necessary, the use of l’Hopital’s rule.
Since Eq. 3 has the form prescribed in Eq. 2, it should be possible to obtain it directly by

using Lagrange interpolation polynomials on Eq. 2, bearing in mind that a cartesian product of the
polynomial bases

10.4.3 the six values of the permuted cross ratio

It should be realized that any number at all, including infinity and negative numbers, could be a
cross ratio, similar to the observation that any positive number could be the radius of a circle. It is
just that a cross ratio is the invariant for projections, whereas radius is the invariant for rotations
in another kind of space.

It is of combinatorial interest to recognize that the ordering of the points in the definition of the
cross ratio is likely to change its value, although any of the 4! = 24 orderings is just as useful as any
other. As it works out, the simultaneous exchange of both members of two pairs (the permutation
(ij)(kl)) fixes the cross ratio. As they generate a normal subgroup of order four of the tetrahedral
group, there are six equivalence classes of alternative values for the cross ratio itself.

coset alternativevalue
fourgroup φ
fourgroup 1− φ
fourgroup 1/φ
fourgroup 1/(1− φ)
fourgroup (φ− 1)/φ
fourgroup φ/(φ− 1)
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x

1/(1-x)

1/x

1-x

(x-1)/x

x/(x-1)

Figure 26: Six regions in the complex plane intermapped by permuting the arguments of a cross
ratio.

These mappings should constitute, as a group of mappings, the symmetry group of a triangle,
generated by the reflections 1−φ and 1/φ. The triangle group has subgroups, from which particular
values of φ might be fixed; for example, if φ = 1/φ, then φ = 1 would only be associated with 0, 1,
and ∞, three rather than six alternatives. The other choice, φ = −1 has the orbit −1, 2, 1/2, also
containing three points.

Another reduced set of values results from 1/(1 − φ) = φ, which leads to φ2 − φ + 1 = 0, or
φ = (1± i

√
3)/2, complex cube roots of unity, two of which comprise the orbit of this symmetry.

10.4.4 points of high cross-ratio symmetry

As compositions of mappings go, the cross ratio commutes with simultaneous projective transforma-
tions on each of its arguments. Additionally it commutes with the normal subgroup of simultaneous
pair permutation (plus the identity). In the distance interpretation, comparing ratios of distances
between one pair of points to another, it is insensitive to exchanging the from points for the to
points.

The additional symmetries get special names:
name symmetry ratios
harmonic ratio 1
anharmonic ratio -1
equianharmonic ratio ω
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elliptic and hyperbolic orbits

Figure 27: Elliptic trajectories run around circles surrounding one of the fixed points. Hyperbolic
tranectories run along circular arcs connecting the two fixed points, away from one towards the
other. Parabolic trajectories arise when the two fixed points coalesce, in which case the two families
of orbits look the same, just rotated 90o.

10.5 Fixed points for projective mappings

A fixed point should satisfy the equation (assuming ad− bc = 1)

x =
ax + b

cx + d

=
(a− d)±√((d + a)2 − 1)

2c
.

These fixed points are not the eigenvalues of the matrix of the mapping, but rather its eigenvectors.
Although the eigenvalues are not directly evident, they still enter into the dynamics of the mapping.

Given their representation as unimodular matrices, the transformations follow an Euler formula
with a unit vector and angle of hyperbolic rotation. If the angle is real, the fixed points are real,
describing motion from one real fixed point toward the other; if it is imaginary there is no real fixed
point. Which of the two cases depends on the size of a + d.

Of course, for a complex line, there are always fixed points. If the fixed points were zero
and infinity, the hyperbolic mappings would be contractions or dilations. If the eigenvalue were
imaginary, the elliptic mappings would be rotations about the origin. In either case they could be
raised to integer, or even rational or real powers, sweeping out either radial arcs or curcular arcs,
which could be considered as trajectories of the mapping.
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For other pairs of fixed points, the trajectories would be the images of circles (radii, and straight
lines in general, are circles through infinity), and so themselves circles positioned with respect to
the fixed points. Elliptical orbits encircle the fixed points, hyperbolic orbits ooze from the vicinity
of one fixed point toward the vicinity of the other, again along circular arcs.
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[3] Åke Björck and Victor Pereyra, “Solution of Vandermonde Systems of Equations,” Mathemat-
ics of Computation 24 893-903 (1970).
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