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Abstract

A very general commentary on the program
camex, accompanied by an assortment of ex-
periments which can be performed using the
cam/pc board. These include the use of
one, two, and three dimensional automata,
although the primary utility of the board
lies with two dimensional automata evolv-
ing on a 256x256 screen. Binary Moore and
von Neumann neighborhoods are possible in
each of the two half-cam's, as well as four-
state von Neumann neighborhoods; many ad-
ditional mixtures are possible.
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1 lcau program set

Over the course of several years a collection of
cellular automaton programs has evolved for
use in a course at the Universidad Aut�onoma
de Puebla entitled fortran iii, dedicated to
graphical techniques. Besides a display of
automaton evolution, the programs feature
the calculation of de Bruijn diagrams (from
which the periodic aspects of the evolution
can be deduced), an analysis of equilibrium
probabilities, and calculating ancestors.

Because of the amount of computation in-
volved, the program set has emphasized one
dimensional automata in preference to two
or three dimensions. With the availability of
a video controller, such as the Automatrix
cam/pc, capable of updating a whole planar
array of cells while scanning the screen, more
ambitious studies of bidimensional automata
can be undertaken, toward which camex rep-
resents an initial step.

camex follows the layout of the lcau pro-
grams, without emphasizing any single neigh-
borhood or state set; whilst lcau22 was ded-
icated to binary one dimensional automata
with second neighbors, for example. After an
initial sign-on message (which actually ini-
tialized a random number generator), there
was a main menu which permitted excursions
into a variety of submenus; all the menus
were activated by single keystrokes. Some-
times additional symbols would follow the
initial key, but a numerical pre�x never gen-
erated multiple execution.

Uniformity between menus was sought, to
make the signi�cance of the keys easier to
remember; the symbols ? and ! often ex-
hibited a rather terse help panel. Only re-
cently have the programs begun to incor-
porate a systematic usage of function keys,
mouse movements, or even pop-up menus.
However, a recognition of the general layout

will assist the user in working through an oth-
erwise rather barren environment.
With respect to lcau, the collection

should be consulted for automata which lie
outside the range covered by camex, and
even to get a much more elaborate treatment
of those lying within a common range. The
reason for the �rst recomendation is fairly ob-
vious, because the range of states and lengths
of neighborhood to which camex is adapted
is a function of the cam hardware; the best
results are surely to be obtained when the
software is compatible with the hardware.
Within the common range, the di�culty

results from an historical anomaly which has
to do with other factors entirely; the change
of the design team between the Intel 8085 and
the Intel 8086. In the process, no provision
was made for detecting a carry originating
from the over
ow of segment addresses, lim-
iting the size of arrays that could be used
without a complicated addressing scheme.
The practical consequence is that camex's

data space has to be apportioned with care,
lest camex itself become more complicated
than presently convenient; therefore camex
lacks those portions of lcau which might
have been copied bodily. Instead, the space
has been devoted to a better treatment of the
same aspects of two dimensional automata,
the real province of the cams. Even with-
out the competition from one dimensional au-
tomata, the limitations of the architecture of
the Intel 8086 and its successors are acutely
apparent.
For example, de Bruijn diagrams for one

dimensional automata can be calculated for
three or four generations; for even as many as
a dozen in the case of the simpler automata.
The same limitations preclude even two gen-
erations in two dimensions and exclude three
altogether.
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2 camex main menu

camex works with the two principal two-
dimensional neighborhoods, Moore and von
Neumann, plus several of their variants, but
so far does not entertain Margolis neighbor-
hoods.
Since full neighborhoods are tedious to

describe, generators following such concise
rules as totalistic, semitotalistic, or even-odd-
center are provided. Each variant has a sub-
menu within which its own rule can be edited.

2.1 General layout

There are explicit generators for renowned
automata such as as Life,WireWorld, Bank's
rule, Fredkin's xor rule, or the Zhabotinsky
reaction.
Additionally, bitplanes for the Moore (2,1)

neighborhood and the (4,1) von Neumann
neighborhood can be edited. Much work re-
mains to be done to facilitate bitplane edit-
ing, especially with the help of a mouse. Up
to the present, the area of editing Margolus
planes has been completely untouched.
For many applications, simple patterns or

random �elds provide good initial con�gura-
tions. camex has instructions that will cre-
ate various patterns, with densities which are
parameters which the user can set to pre-
ferred values. No doubt as time passes and
experience accumulates, and especially as a
repertoire of basic techniques accumulates,
the generation of sample bitplanes will be-
come simultaneously more concrete and more
varied.
Naturally, constant �elds can be provided;

there are some other designs, such as checker-
boards, with their own parameters. Besides
that, shifting and permutation of the bit-
planes can be performed.
Some of the submenus contain provisions

for loading prepared bitplanes from disk �les,
and also to save them from time to time while
running camex. Insofar as these facilities ex-
ist, they are discussed separately, in the con-
text of their own submenus.
The layout of the main menu is shown in

the accompanying diagram, Figure 1.

time, date
?

f5 option
f1 option

parameters

copyright
notice
or

keyboard
options
or

function
keys

Figure 1: camex main menu

2.2 Copyright notice

The copyright notice, which is only visible on
startup, is displayed in a panel at the right
side of the screen, the same area which is also
used for the two help panels. One of them
contains a terse list of the keyboard options
available in the main menu, summoned by
typing ?; the other explains the use of the
function keys, summoned by !.
This style of describing all the options in

two groups via the same two keys, is followed
throughout all the submenus, mainly because
screen space is insu�cient to place them all
together.
The text of this program identi�er is shown
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in Figure 2, in which the current version num-
ber is visible; a number which consists of the
date of issue, rather than the composite of
version and revision which is often seen at-
tached to programs.

"---------------------------",

"--- CAMEX ---",

"--- (CAM Exerciser) ---",

"---------------------------",

"A collection of simple test",

" operations demonstrating ",

" some capabilities of the ",

" Automatrix CAM/PC board.",

"---------------------------",

" ",

" Harold V. McIntosh ",

" Apartado Postal 461, ",

" (72000) Puebla, Puebla ",

" MEXICO ",

" ",

" June 6, 1992 ",

" ",

" ! for function key menu ",

" ? for keyboard options ",

Figure 2: Copyright notice

In point of fact, issues of copyright and
possible patent issues have probably reached
extremes which they may not merit. Pro-
grams of proven commercial value invite con-

icts and abuses most likely to remain remote
from programs written for scienti�c purposes
or for individual entertainment; in any event
\intellectual property" is supposed to be born
with an inherent copyright which only needs
to be registered if and when the need arises.
The shrink-wrap contract which accompa-

nies Turbo-C compilers mentions that pass-
ing along a valid copyright notice is a condi-
tion for incorporating portions of the Turbo-

C library in ones own executable programs;
all in all, a fair request.
Most people who place programs in the

\public domain" are not really doing so;
it is one thing to condone limited copying
and sharing of a program, but quite another
to forsake the consequences of some future
popularity, or of some later version having
greater attractiveness and economic poten-
tial. Having adequate acknowledgement of
the source, and the retention of commercial
rights, are realistic expectations for an author
of modest programs; in any event that is the
case with camex.
The source code for camex contains more

explicit historical information, including the
dates of �rst creation of the modules and the
dates of major revisions to each. Attention
should be given to possible discrepancies aris-
ing from di�erences in the dates of a given
copy of the program and of the instruction
manual, since their revisions are likely to oc-
cur at di�erent times and independently of
one another.

2.3 Main keyboard menu

The main menu now contains the following
items (which are subject to change from time
to time):

S,s - Run on, single step,

q - return to dos,
z#,u# - clear,set bitplanes,

p#,R#,c#,w# - random points,
H#,h# - make checkerboard
(# = hex bitplane select'n),

y - random ellipse plane 0,
vx - permute the planes
(x=0,1,2,3,C,c,X,x,l),
d - de Bruijn diagram,
r - edit rule (see f1),

l - edit bitplane (see f1),

3



n# (#=nsew) shift plane 0,

N# (#=nsew) shift all pl,

f1 - selects rule type; rule
can be edited with r, plane
with l (if appropriate),

others | see source code.

Details of the options are provided in the
following paragraphs.

2.3.1 Run the cam

In general terms, s and S are used through-
out the program to run through a cycle of
evolution by the cam. Single step operation
results from typing s, whereas S will run on
and on until another key is pressed. Insofar as
possible, these letters are respected through-
out all the submenus.

2.3.2 Return to dos

Return to the dos operating results from typ-
ing q, whereas the return from subroutines at
all levels results from typing carriage re-
turn. This di�erence prevents one from ac-
cidentally exiting from the program through
an excess of enthusiasm when leaving a sub-
menu. It is probably not surprising to be told
that typing sequences of symbols frequently
becomes re
exive, resulting in exasperating
errors when the sequence has to be varied
slightly, or has been altered unexpectedly.

2.3.3 Bitplanes

Many of the options in the main menu re-
late to setting up standard bitplanes. Aside
from setting or clearing them individually or
collectively, they can be seeded with random
points according to four densities. These are
high, medium, low, and sparse; in each case
the actual number is a variable which can be
set by the parameter options.

Probabilities are all given in mils; n per
thousand, making 500 correspond to 50%
probability, or equal likelihood. Sparse refers
to a �xed number altogether, whose locations
are chosen at random.
Often it is desired that only a small portion

of a plane be occupied, allowing the expan-
sive properties of a rule to be judged. To
produce this contrast, the random points can
be con�ned to the interior of a slightly skew
ellipse, whose radius and density are also pa-
rameters.
Checkerboards with squares of di�erent

sizes represent another useful variant on stan-
dard initial con�gurations; provision also ex-
ists for setting them up.
The design of the cam hardware allows the

possibility of writing to multiple planes, but
con�nes reading to a single plane. Following
the hardware rigorously results in operations
on the plane having a hexadecimal parameter
ranging between 0 and f while writing, but
a decimal parameter lying between 0 and 3
for reading. The hexadecimal parameters are
microprogrammed in the obvious way.
It is possible to adjust the planes and to

permute them, but so far these options have
not been worked out with the full care which
they deserve, and are still likely to vary from
one version to another.

2.3.4 Shifting

Planes can be shifted by n (plane 0) or N (all
planes) with directional arguments, but that
just loads an appropriate rule table; s or S

have to be used to do the actual shifting.
There is an inconvenience that one loses the
current rule table in the process, making it
necessary to reload it. Sometimes one doesn't
know, or has forgotten; sometimes pressing
insert again su�ces.
Shifting the planes is most useful on
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startup, which typically loses the origin of
the bitplanes, making it desirable to center
a previously existing image once again. Im-
ages can be carried over, from one session of
camex to another, or even from a previous
usage of the automatrix forth program.
The principal requirement is that the com-
puter should not have been reset nor turned
o� during the interim.

2.3.5 Permuting

The option v will exchange planes, exchange
and complement, exchange half-cam's, and
so on. The exact list is:

0 - complement plane 0
1 - exchange planes 0, 1
2 - exchange planes 0, 2
3 - exchange planes 0, 3
c - cyclic permutation
C - anticyclic permutation
x - exchange evens, odds
X - exchange cam-a, cam-b
l - longer cycle: \Dabc"

As more and more demonstrations and spe-
cialized submenus have been added, the use
of this option has declined.

2.4 Function keys

The main use of the function keys is to ex-
pose additional menus; they are all described
more fully in their own section. Two, f9 and
f10, are used to manipulate the color palette
and to single out individual bitplanes. erase
is used throughout camex to clear the cam
planes, insert and f5 to initiate processes.
The process may be nothing more than to

load the cam's rule table; in any event there
are two lines in the upper left hand corner
of the screen which reveal the process. Nor-
mally the lines are inactive; returning from

the menu search which pertains to them will
activate them. So also will the page and para-
graph keys, showing one line at a time on the
console. The control options move them
to their respective extremes, in harmony with
similar usage in text editors and similar pro-
grams.
In a similar fashion, the horizontal arrow

keys will illuminate the parameter panel in
the lower left hand corner; the vertical arrows
raise and lower the parameter values. The ar-
rows are always active, even when no display
is showing; which may not have been a good
decision given the possibility of inadvertently
hitting the keys or moving the mouse.

2.5 Editing tables and planes

Originally the main menu was a center of op-
erations from which a variety of initial con-
ditions for a �xed rule could be set up and
their evolution watched. Alternatively, one
of a number of demonstrations could be cho-
sen and set in motion. This is still a sig-
ni�cant style of operation, but the number
of rule con�gurations has grown, often bring-
ing with them a specialized submenu of their
own.
This increase in versatility has given fun-

damental importance to the options r and
l, which permit editing the rules, or editing
the bitplanes, respectively. In turn, this has
created a tendency to repeat many of the op-
erations of the main menu over again within
each of the submenus. The increase in the
total length of camex is more than compen-
sated by the increase in user convenience.
The particular rule, or the particular view-

point toward the planes, is established via
one of the other menus, typically the one ac-
cessible under f1; Conway's Life is the de-
fault choice, as it is always an interesting au-
tomaton to work with.
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3 camex function keys

Besides the main menu, whose contents can
be displayed by typing ?, there is a function
key menu which responds to !, revealing sev-
eral prepared options which can be used as
demonstrations, or as the initial point in a
further investigation.

f1 - rule or bitplane menu,
f2 - rec demonstrations,
f3 - edit rec expression,
f4 - execute f3 expression,
f5 - execute f2 expression,
f7 - parameters & values,
f8 - alternate insert,
f9 - show bitplane,
f10 - change color palette,
^ X - go to extreme X value,
X - reverse X's direction,

insert - install f1 option,
erase - clear all planes,
up/down - f1 sequence (ins),
page u/d - f2 sequence (f5),
arrow l/r - parameter seq,
arrow u/d - incr/decr par,

? - keyboard options.

3.1 The automaton menu

One collection (f1) consists of some typical
rules and initial con�gurations, which can be
set up (but not executed) by using the insert
key (this allows browsing without making any
selection). The keys s and S put the board in
motion, S can be stopped by any subsequent
keypress.

1 Conway's Life,
2 reversible Life-based,
3 reverse of reversible,
4 Life on a checkerboard,
5 One dimensional (2,1),
6 One dimensional (4,1),
7 Points generate axes,

8 totalistic (2,1) Moore,
9 totalistic (4,1) von N,
10 cyclic eater (4,1) v.N,
11 Zhabotinsky (4,1) v.N,
12 Banks' rule (2,1) v.N,
13 scurrying bubbles (M),
14 Silverman (Moore&echo),
15 random (2,1) Moore,
16 random (4,1) von N,
17 semitotalistic Moore,
18 semitotalistic von N,
19 even-odd-center (Moore),
20 even-odd-center (von N),
21 ellipse in plane 0,
22 few points in plane 0,
23 sparse random plane 0,
24 (4,1/2) plane Quad (G),
25 symmetric (2,1) Hex,
26 (16,0) in all planes,
27 (2,1) von N in plane 0,
28 net tracer in plane 0,
29 Zhabotinsky-like rule,
30 One dimensional (3,1),
31 Totalistic (2,1) Hex,
32 s.Totalistic (2,1) Hex,
33 e-o-c (2,1) Hex,
34 (2,1/2) plane Quad,
35 3D (2,1) von Neumann t,
36 3D (2,1) von Neumann st,
37 edit CAM color map,
38 WireWorld.

3.2 The rec menu

A second collection (f2) consists of packaged
demonstrations, written in the programming
language rec, many of which run through a
series of steps. Their operation is launched by
the key f5; the programs can be edited with
the help of f3 and executed by f4 by a user
who knows or can deduce the rec language,
but this is not intended to be necessary to
enjoy the demonstrations.
On the other hand, the rec demonstration

menu consists of the following items:
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1 null program .
2 free running evolution .
3 keep clearing plane 1 .
4 reversible and reverse .
5 Life on a checkerboard .
6 Life with glider trace .
7 Life with simple trace .
8 diag re
ect pl 0, 1 .
9 adiag re
ect pl 0, 1 .
10 horiz re
ect pl 0, 1 .
11 vert re
ect pl 0, 1 .
12 rotate by shearing .
13 rotate backwards .
14 .
15 interesting eater cycle.
16 Silverman rule .
17 Life glider demo .
18 spiral with bubbles .
19 gridwork from points .
20 two-color Life .

3.3 The parameter menu

Another collection contains the parameter
options f7, which can be chosen by moving
the cursor. Single line extracts from these
three panels can be viewed by using the cur-
sor arrows or the page and paragraph keys,
just as though one were using one of the pop-
ular text editors. Finally, keys f9 and f10

govern the color palette; this allows individ-
ual bitplanes to be viewed and agreeable (or
even disagreeable) colors to be chosen.

1: atern - alternate rule
2: wfrno - Wolfram rule number
3: hdens - high density - mils
4: mdens - medium density - mils
5: ldens - low density - mils
6: wdens - scarce dots - number
7: elrad - radius random ellipse
8: nchek - ch. squares per row
9: tacol - table color
10: macol - marker color
11: cucol - cursor color

In greater detail, the signi�cance of each
parameter is the following.

1: atern - Chooses alternate lookup ta-
bles for the Moore neighborhoods when
they exist; range 0-4.

2: wfrno - A number in the range 0-255
which is the Wolfram rule number for
the one dimensional binary automaton
option.

3: hdens - The density (mils) of live cells
for the option c.

4: mdens - The density (mils) of live cells
for the option R.

5: ldens - The density (mils) of live cells
for the option p.

6: wdens - The actual number of dots
for the option w.

7: elrad - The radius (in units of about 6
pixels) of the ellipse for option y; range
0-54.

8: nchek - The number of checkerboard
squares for option k.

9: tacol - The number in the range 0-
255 used by videocattr to display ta-
ble entries; it combines foreground and
background.

10: macol - The number in the range
0-255 used by videocattr to mark ta-
ble entries; it combines foreground and
background.

11: cucol - The number in the range
0-255 used by videocattr as a cursor
when displaying tables; it combines fore-
ground and background.
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4 Future developments

Even as camex is under development, direc-
tions can be seen in which it could pro�tably
be extended.

4.1 Manual

In partial atonement for the lack of an oper-
ating manual, the c language source code for
camex is provided. Even persons unfamil-
iar with that language can scan the menus
in search of options, using the accompany-
ing comments as a guide to their meaning;
experimenting with the keys thereby discov-
ered cannot cause serious damage. Evidently
an actual manual is high on the list of prior-
ities.

4.2 vga controller

The use of a cga video controller to accom-
pany the cam/pc board strongly a�ects the
possibilities for the probability plots; the next
level of controller would even double the ad-
missible text, allowing the full von Neumann
(4,1) table to be shown, as is done for the
Moore (2,1) table. If higher density con-
trollers could be assumed, better presenta-
tions would be possible.

4.3 Mouse

Convenient as a mouse may be, it is not re-
ally essential to most programs; but its im-
portance for editing plane areas cannot be
denied. More facilities can be expected in fu-
ture versions of the program.

4.4 Sample rules and bitplanes

There is a tremendous lore of automata, es-
pecially concerning Life, which will gradually
be worked into the program, especially with

the assistance of the rec compiler which is
already present.

4.5 Margolus neighborhood

Inasmuch as the Margolis neighborhood is an
important feature of the cam/pc board, fu-
ture options will doubtless allow its rule set
to be edited also.

4.6 Intel 8086 cpu

As work with camex has progressed, various
degrees of progress have been made toward
realizing the objectives outlined above, just
as some additional design considerations have
been exposed.
The existence of the 64K segment barrier

in Intel products has been especially aggra-
vating, although increasing cpu speed in the
more recent members of the series has tended
to conceal the consequences of this design de-
fect. It is no less annoying that exotic pointer
models would have to be used in c, a lan-
guage chosen for portability, to remedy a sit-
uation which never should have occurred.
This is not to say that the discipline of min-

imizing data space has not had some bene�-
cial side e�ects, but good programming dis-
cipline should have led to the same results
independently of pressure from this source.

4.7 Bitplane editing

As automata such as WireWorld, Life, or
even the Zhabotinsky reactions bave become
established in camex, they have called for
larger scale bitplane editing than is presently
available. Other automaton programs have
some excellent editing facilities, which should
eliminate any doubt that improvement is pos-
sible.
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5 The (16,0) automata

Because of the exceptional role given to cen-
tral cells in the cam boards, one way to
make all four planes interact with one an-
other is to assume a neighborhood of zero
radius. Although the resulting automata are
rather trivial (but a goodly number to choose
from), they provide an eminently practical
way of copying or permuting the bitplanes,
setting them to a constant value, and so on.
Consequently it is worthwhile to learn how to
create such rules.

5.1 Shannon forms

Their simplest description is through four
boolean functions, one for each plane, which
in turn are functions of four boolean vari-
ables, likewise the values of the cells in each
plane. Either of the Shannon canonical forms
would give a concise description of such a
function; for example

f(x0; x1; x2; x3)

=
X
0;1

f(i0; i1; i2; i3)x
i0
0
xi1
1
xi2
2
xi3
3
;

wherein the sum represents boolean or, the
boolean and is implicit, and superscripts dif-
ferentiate between complementation (0) or
not (1).
Some functions are considerably simpler

than their canonical form, which is neverthe-
less a good representation to use.
To describe the canonical form, each of the

sixteen coe�cients must be speci�ed for each
plane; strictly speaking, each one should be
binary, but hexadecimal coe�cients could be
used for economy of representation. The co-
e�cients of all four planes could be combined
to give a single sequence of sixteen hexadec-
imal numbers; alternatively, each individual

plane could get a four digit hexadecimal num-
ber, which would be more compatible with
de�ning separate rules for each of the bit-
planes.
The function inhx(f), whose argument

int f[4][16] is composed of the four coe�-
cient vectors, installs a (16; 0) automaton in
the cam (with a zero alternative), assisted by
the table generating function shancf which
has some additional arguments which are not
visible to the user of inhx.

5.2 Permutations

The simplest, but one of the most practi-
cally useful mappings of the bitplanes, is to
permute them; in slightly greater general-
ity some particular plane, its complement, or
a constant value might be assigned to each
plane. The camex function apzoc("pqrs")

serves this purpose. Each of its four argu-
ments can take one of the values

a - plane 0
b - plane 1
c - plane 2
d - plane 3
A - complement of plane 0
B - complement of plane 1
C - complement of plane 2
D - complement of plane 3
u - constant value 1
z - constant value 0,

assuming the bitplanes to follow the same or-
der as the arguments. Thus apzoc("badc")
would imply the exchange of the even
planes with the odd planes, apzoc("cdab")
the exchange of cam-a with cam-b,
apzoc("Dabc") a long cycle in which plane
3 is complemented as it is copied into plane
0.
The simpler mnemonics a�orded by these

letters is why apzoc has a character string
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argument rather than using plane numbers
directly. Otherwise it is hard to �nd a nice
symbol for the constants, or for the comple-
ments.

It is just as easy to create copies or to
�ll planes with apzoc; apzoc("abaz") would
place a copy of plane 0 in plane 2, while clear-
ing plane 3 and leaving the other two un-
touched. Clearly, permitting cam boards to
perform all the work is far preferable to ex-
tracting the contents of the bitplanes, then
modifying and replacing them.

5.3 Boolean combinations

Slightly more complicated than copying or
exchanging planes is adding what is in one
plane to another, or extracting a portion of
one plane and placing it in another. Sym-
metric boolean functions, such as or, and,
or xor between planes will do the work re-
quired; since the result always replaces one of
the arguments, only the second plane has to
be speci�ed in each case.

The result is three more functions in ad-
dition to apzoc, namely orple, anple, and
xorple, all of which have the same style of
argument. Thus orple("aacd") would move
all the live bits in plane 0 over to plane 1 while
preserving the live bits that plane 1 already
had; the other planes are preserved by self
oring, including plane 0 itself.

If the copying were repented before either
plane was modi�ed further, xorple("zazz")
would erase all the bits which were moved
over, including those which were already
there; of course, one cannot invert an or
completely. This time z's are needed to pre-
serve the remaining planes.

5.4 Counters

Since the center of each plane is available to
all the others, it is sometimes useful to con-
struct a counter from the spare cells in the
remaining planes, with intent to incorporate
it in the evolutionary rule. Automata mod-
elling the Zhabotinsky reaction frequently
use this technique to prolong the refractive
interval of cells in the base plane.

If the entire cam is dedicated to counting,
it becomes an assemblage of four bit counters
which can span the range from 0 to 15, some-
thing which can be accomplished in many
ways. The most obvious is to take the bits
in the order of the planes, incrementing the
four bit hexadecimal digit derived thereby in
the accustomed fashion. Apart from permut-
ing the bits, there are other sequences such
as the Gray code which are sometimes useful.
Any of these counters can be installed using
inhx with a suitable argument.

If a counter is to be combined with the evo-
lution of a Moore automaton in plane 0, only
three bits remain for a counter, restricting
its range to 8. A similar range is available to
a (2,1) von Neumann automaton in plane 0,
but only a two bit counter with a range of 4 is
available to a (4,1) von Neumann automaton
occupying planes 0 and 1.

The subroutine inzh() installs the Moore
neighborhood, 3-bit Zhabotinsky rule, call-
ing zhatobin(t,i,j,p2,p3) in the process.
This latter subroutine uses the global vari-
able zhtbl[a0][g][n] to construct a rule ta-
ble int *t suitable for use in plane j+2*i)

when the center cells in the opposite cam are
p2 and p3.

Meanwhile, a0 is the cell in plane 0, which
can be either infectious (a0 = 1) or not
(a0 = 1), in generation g when surrounded
by n infectious neighbors; editing zhtbl is an
option accessible through the menu f1.
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5.5 Half-cams

While it is rare that the housekeeping which
can be performed under the guise of a (16; 0)
automaton ever reaches the full generality of
the Shannon canonical form, neither does it
always have the permutational simplicity rep-
resented by apzoc; boolean combinations of
pairs of planes, especially within cam-a or
cam-b are especially common. The trace op-
tion, in which plane 1 records all the cells
in plane 0 which were ever active, is a good
example of the use of a plane or.

Because the table layout of the cam favors
half-cams, and because they involve fewer
variables, it is feasible to de�ne functions
such as booltab(r,f11,f10,f01,f00), whose
arguments fij are the coe�cients in the two-
variable Shannon canonical form:

f(x0; x1) =
X
0;1

f(i0; i1)x
i0
0
xi1
1
;

There are sixteen such functions f(x; y) al-
together; their common names (using capital
letters for complements) are:

0 0000 and 1000
nor 0001 xnor 1001
Xy 0010 y 1010
X 0011 X+y 1011
xY 0100 x 1100
Y 0101 x+Y 1101

xor 0110 or 1110
nand 0111 1 1111

If there were somehow uniformly short
names or abbreviations for all these func-
tions, especially single character abbrevia-
tions, mnemonic rather than numerical ar-
guments could have been used; as it is this
table or something similar will probably en-
joy frequent consultation by someone setting
up the functions.

5.6 Video display

Although it is not an automaton, the selec-
tion of a color map involves the creation of
four boolean functions of four variables to ob-
tain the signals driving red, green, blue,
and intensity. The Shannon canonical form
gives a direct representation wherein the co-
e�cients of a 4� 16 matrix describe the sig-
nal required by each combination of values
for the variables.
Psychologically, the job is slightly harder

because of negative logic; according to the
cam hardware, a boolean true suppresses
the color rather than enabling it, making the
other Shannon form,

f(x0; x1) =
Y
0;1

ff(i0; i1) +
X
j

x
ij
j g;

slightly more appropriate. Only those terms
for which f(i0; i1) 6= 1 need be included in
the product when writing the expression on
paper, but machine representations prefer to
deal uniformly with the full vector of coe�-
cients.

5.7 Margolus neighborhoods

Another context for the Shannon canonical
form lies in the de�nition of rules of evolution
for the Magolus neighborhoods; eight binary
variables now enter the picture instead of two
or four, increasing the number of coe�cients
that have to be de�ned.
In turn, many such functions are required,

according to the existence of two planes, four
coordinate parities, and the alternation of
rules between generations; their principle of
formation is still the same.
With so many coe�cients, it is hardly sur-

prising that procedures would be developed
for de�ning classes of Margolus automata de-
pending on relatively few parameters.
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6 The (4,1) automata

The cam board supports three kinds of
neighborhoods | the von Neumann neigh-
borhood in which only lateral neighbors are
considered but from two planes, the Moore
neighborhood with both lateral and diagonal
neighbors but from a single plane, and the
Margolis neighborhood. Consequently (4,1)
automata are of the von Neumann type; each
of the two plane pairs can have its own au-
tomaton if that is desired.
In fact, each of the four planes can even

have its own (2,1) von Neumann automaton,
if the evolution table for the odd planes ig-
nores the neighbors in the even planes, and
conversely. Although this represents some-
thing of a waste of table space, it is a good
way to work with the simpler automata, al-
beit within a more ambitious hardware envi-
ronment.

6.1 Shifting planes

Just as the zero-radius automata can be very
useful for housekeeping purposes without be-
ing of particular intrinsic interest, the simpler
von Neumann automata can also be exploited
to arrange the bitplanes. Shifting, necessar-
ily con�ned to the four principal directions,
but applied independently to each bitplane,
is a good example.
The function vnshift(t,l,m) creates a ta-

ble int *t for shifting one plane; it is just as
easy to copy the central cell as to complement
it, according to the parameter int l. One of
the planes of the pair must be ignored; the
parameter int m tells which.
In the four state von Neumann \plane,"

the states can undergo one of the 24 permu-
tations of a set of four objects, greatly enlarg-
ing the concept of a complement. In terms of
binary planes, this amounts to passing bits

from one plane to the other as well as from
one neighbor to another.
Since few housekeeping chores are that

elaborate, none of these rules has yet been
given a special function of its own within
camex. For simple shifts it matters little
whether the plane is quaternary or binary.

6.2 Shearing planes

Typically, one cam board consists of two
halves, within each of which there is an evo-
lution plane and a function plane for Moore
neighborhoods, and either one single evolu-
tion plane-pair or else two independent evolu-
tion planes, for von Neumann neighborhoods.
Inasmuch as the central cells of all the planes
are available to the cam update mechanism,
some of the planes can exert a binary in
u-
ence upon the choice of rules in the remain-
der.
If the selection plane is static, this means

that some cells evolve by one rule set, the
remainder by a second set. The selection
plane itself could evolve, resulting in a dy-
namic process. The extreme case would be
a formally de�ned composite automaton, but
oftentimes very simple relationships su�ce to
get quite practical results.

6.3 Rotation by shearing

Consider shifting part of one plane accord-
ing to speci�cations contained in another; to
shear a plane, lines should be shifted side-
ways, some more than others. Thus cells
in the sheared plane should �rst shift along
a line while the control line is being copied
alongside itself.
On the next pass, two lines will shift while

a third line is being added to the control re-
gion. The total shift will be equal to the
depth of each line in the control region, the
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base line having shifted a distance equal to its
full depth, the line at the top will have shifted
just one cell, while the remainder have yet to
move.
Planes are not commonly sheared as a vi-

sual exercise, but it turns out that the com-
posite of three shears produces a rotation;
consequently images can be rotated within
the cam memory without outside interven-
tion, via the evolution of appropriate au-
tomata. To see how this can happen, consider
the matrix representation of a shear parallel
to the x-axis:�

X
Y

�
=

�
1 a
0 1

� �
x
y

�
:

Equivalently, a y-shear has the form

�
X
Y

�
=

�
1 0
b 1

� �
x
y

�
:

Compounding the shears requires multi-
plying the coe�cient matrices; a product of
three shears gives

�
1 a
0 1

� �
1 0
b 1

� �
1 a
0 1

�

=

�
1 + ab a(2 + ab)

b 1 + ab

�
:

If a = 1, implying a unit shear to the left,
and b = �1, implying a unit shear down-
wards, the �nal coe�cient matrix is

�
0 1

�1 0

�
;

which is readily recognized as a clockwise ro-
tation by 900; this relation persists even with
the cam board's cyclic boundaries. Revers-
ing the signs of a and b reverses the sense
of the rotation; the center of the rotation is
the point of intersection of the original guide
lines.

Rotation is not an instantaneous process;
the procedure just described requires three
sweeps through the whole screen. The pro-
cess ought to be compared to reading the
contents of one or more bitplanes into an ex-
ternal memory, then restoring them, having
modi�ed their contents separately or else in
conjunction with the restoration. The acces-
sibility of the external memory has to bal-
anced against the restricted range of any in-
ternal modi�cation.

6.4 Cross shifting

If shifts and shears can be combined to pro-
duce rotations, maybe they could produce
re
ections as well; but this is not possible.
Shear matrices have determinant +1, but the
determinant of a re
ection is -1, and so can-
not have arisen from a product of shears.

However, cells can be moved back and forth
between two planes while reversing their lin-
ear sequence, which is the equivalent of a
re
ection. Suppose that plane 0 is shifting
north while plane 1 is shifting south. Along
the x-axis (or any other east-west line), swap
the cells from one plane to the other. North-
bound cells turn over and head south, and
conversely; after 256 steps each vertical col-
umn has turned around completely and the
re
ection has been performed. Strictly, the
full planes should be swapped one last time
to bring each cell back to its original plane.

Vertical re
ection is the consequence of
splitting vertical counter
ows along a hori-
zontal line; by symmetry, splitting horizontal

ows along a vertical line should result in a
horizontal re
ection. In both cases the mirror
coincides with the control line. Even further,
re
ection in a diagonal can be accomplished
by combining cross
ows rather than counter-

ows, split this time along diagonal lines.
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6.5 Symmetries of a square

Since the cam bitplanes have as many rows
as columns, the symmetry operations of a
square can be performed upon them, consist-
ing of both rotations and re
ections. To do so
requires rule tables corresponding to shifts,
shears, and cross shifts; of these the shifts
(whose table is generated by vnshift) have
already been described because they are also
responsible for translations.

Shears require a control plane containing
a sweeping curtain, whose rule table is gen-
erated by vscurtab(t,l,p). The argument
int *t is the array which will contain the
table, char l speci�es the direction of ex-
pansion of the curtain; int p identi�es which
plane is destined to hold the curtain, but only
its parity matters.

The function to generate the table for a
cross shift is vncshift(t,l,m) with the same
arguments as vnshift. Planes 0 and 1 are
either shifted or cross shifted, according to
the central cell taken from plane 2; plane 3
remains unaltered.

The subroutine inshth(c) is designed to
set up the rules which will execute all the
shifts required to generate a given re
ection.
The argument *char c is a character string
pqrs specifying the normal shift in planes 0
and 1 plus the cross shifts to be performed
when directed by the control plane. The let-
ters range over the same values found in the
function apzoc; by using complements addi-
tional e�ects can be achieved.

Values of c leading to the re
ective symme-
tries of the square are shown in the following
table.

re
ective symmetry c line

horizontal ref nssn y=0
vertical ref weew x=0
diagonal ref enne x=y

antidiagonal ref esse x=-y

6.6 General (4,1) automata

Although numerous specialized e�ects result
from mixing all the planes on a cam board,
studying the simplest classes of automata re-
mains one of the major applications of the
board; nor should it be forgotten that knowl-
edge of the elementary constituents facilitates
the analysis of composite automata.
With its present layout, the most com-

plicated elementary automata that can re-
side within a half-cam are those with a (2,1)
Moore neighborhood, requiring a table with
512 binary entries, and those with the (4,1)
von Neumann neighborhood, requiring 1024
quaternary entries. Of course, a (3,1) von
Neumann automaton with a 243 entry tri-
nary table could be accommodated as a spe-
cial case of the (4,1) automaton, but no space
would be saved thereby, either in the bit-
planes or in the tables.
The size of their tables makes it di�cult to

deal with general automata, leading to two
alternatives. Many simpli�cations (such as
totalistic rules) have fewer parameters, allow-
ing the full table to be generated without the
user's active participation. The other is to
look for forms of presentation which will of-
fer increased understanding of the process of
editing the rule set, or at least make it more
systematic.
Maybe there is a third alternative, which is

simply to accept a large table as a legitimate
object and to learn how to deal with it. As
required, facilities can be added to camex to
save rule tables on disk, as well as to recover
them.
One way for a table to arise is from a

camex editing session, wherein a rule is built
up neighborhood by neighborhood while ex-
perimenting with trial evolutions. But the
table could also be constructed by another
program, or copied from somewhere.
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7 The (4,1/2) automata

One of the specialties of the cam boards is
the Margolus neighborhood, often used for
lattice gas simulations. However, with adroit
programming and using large pixels, these
neighborhoods can be exploited to program
the evolution of a (4; 1=2) automaton. By
such a designation we mean an automaton
with four states using 2� 2 Moore neighbor-
hoods, for a radius of 1=2. The large pixels
are not such a disadvantage, given that the
evolved state can be centered so that it over-
laps each of the four neighbors; the presen-
tation is more attractive than it would be if
the new cell had to coincide with just one of
its ancestors.

7.1 Screen display

The screen is laid out so that the full rule of
the (4; 1=2) automaton is displayed, the cor-
responding totalistic rule, and the semitotal-
istic rule. This latter is obtained by summing
the diagonal cells to get one coordinate, the
antidiagonal cells to get the other. There is
little sense to separating a \central" cell from
the remainder with this kind of geometry. If
this is all done in text mode, enough space
remains to display the traditional help panel
on the right hand side of the screen.
There is enough space in the data segment

of the intel 8086 to accommodate a very
rudimentary de Bruijn diagram calculation
for (4; 1=2) automata along with the data
pertaining to the main program and to the
(4; 1=2) option itself. The strips of width 3
which can be computed barely su�ce to es-
tablish the existence of de Bruijn diagrams,
but there wouldn't be enough space for four
cell strips even if a separate submenu were
allocated for the purpose.
Nevertheless the de Bruijn option occupies

time, date

general rule

totalistic
rule

semi-
totalistic
rule

Figure 3: camex 2-D (4,1/2) menu

a separate graphics mode screen, whose char-
acteristics and operation follow the descrip-
tion given in the section on de Bruijn dia-
grams for (2; 1) Moore automata.

7.2 Option menu

As usual, the general list of options can be
grouped into categories; they are similar for
all the di�erent varieties of automata.

7.2.1 The full menu

Alphabetically, the options are the following:

0,1,2,3 - insert state
space, mor - cursor forward
back, mol - cursor back
mou - cursor up
mod - cursor down
insert - deposit rule in cam
delete - clear all planes
< - cursor to left margin
> - cursor to right margin
a - generate upper left shift
b - generate upper right shift
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c - generate lower left shift
d - generate lower right shift
A - generate upper left eater
B - generate upper right eater
C - generate lower left eater
D - generate lower right eater
e - generate majority rule
j - de Bruijn submenu
m - edit semitotalistic rule
p## - product rule
R - run (even number of steps)
s - single step
S - continuing evolution
t - edit totalistic rule
u - reversible rule
v - reversed reversible rule
w# - number of a (2,1/2) rule
y - generate random ellipse
Y - generate random plane pair
z - clear the rule table

The items for which an argument is marked
by a # require a number to be typed from
the keyboard; it is not echoed and if one feels
that a mistake has been made it should be
retyped.
Initially only the general table is accessi-

ble, and is the only one which is shown. The
options t (for totalistic) and m (for semitotal-
istic) manifest themselves by showing their
own specialized little menu. However, to
avoid constant switching between menus, the
general menu is always updatedwhenever one
of the specialized menus is changed; for the
same reason all of the commands for which it
makes reasonable sense to do so are repeated
in each menu.

7.2.2 De�ning the table

Each of the tables has a cursor, consisting
in illuminating its table entry with a distinct
color; to determine the value of the table at
that position, it is only necessary to type the
number of the state. The cursor will advance

automatically, except that it will not change
rows when there are more than one.
The cursor can be positioned without al-

tering any states by using the arrows; space
and backspace can also be used. If a mouse
is available and programmed to emit arrows,
that is another way to position the cursor.
Creating a table on the screen sets up a

data table in the program's data space, but
does not place it in the cam. The tables per-
sist throughout a camex session; changing
demonstrations always leaves the tables of
previous demonstrations intact, so that it is
always possible to return and continue with-
out interruption.
However, the bitplanes and the tables may

have changed during the interim; insert will
install the table at any time, either to con-
tinue a previous experiment, or to set up the
table which has just been edited.
Another special case, e, is one in which a

cell joins its neighbors whenever all three of
them agree. But the agreement, if any, is
transitory and keeps shifting.

7.2.3 Arranging bitplanes

Bitplanes are never saved, nor are they auto-
matically cleared, so their state is cumulative
from one operation to the next; an advantage
is that data may be passed from one demon-
stration to another. Nearly every demonstra-
tion, as well as the main menu, allows the
bitplanes to be cleared; also to generate one
or more varieties of random planes. Insofar
as possible, the keys delete, y, and Y are
reserved for this application.

7.2.4 Special rules

Several of the options generate especially
common or interesting rules. For example,
a, b, c, d generate shifts along the four di-
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agonal directions; the new cell simply copies
one of its neighbors.
An \eater" type of rule is one in which

a cell acquires the state of whichever of its
neighbors is poised to \eat" it; the food chain
is generally cyclic, so that 1 eats 0, 2 eats 1,
and so on until 0 eats 3. Lacking a central
cell, there are four candidates as to who will
be the meal, consequently four rules, A, B,

C, D.

7.2.5 General rules

Several general classes of rules, which might
otherwise all be treated separately, are in-
cluded as special cases of the (4; 1=2) rule;
these are totalistic rules whose submenu is
invoked by t, the even-odd rules (a variant
of semitotalism) accessible via m, and the re-
versible rules. The former have been en-
dowed with all the options of the general
menu which make sense (shifts are inappro-
priate, for example), so that trials can be per-
formed without shifting menus.

7.2.6 Reversible rules

The Fredkin style rules contained in the menu
require the Wolfram number of a (2; 1=2)
rule, a single number in the range 0, 65,535.
It is received, without echo and without cor-
rections, by the option w, to be displayed in
the upper right hand corner of the screen. If
it was entered incorrectly, it is easy enough
to try again.
The options u and v generate one or the

other of a pair of mutually reversible rules,
but they only create a rule table in the com-
puter's memory; insert is needed to transfer
the rule to the cam.
The option R should be used instead of s

or S to run the evolution; it guarantees the
even number of generations which must be re-
spected on account of the parity of the Mar-

golus neighborhood. Such being the case, the
undoing of an evolution can be observed eas-
ily.

7.2.7 Product rules

Two Wolfram numbers are needed to gener-
ate a product rule; they should be supplied
immediately following the option p. All num-
bers have to be terminated by typing any
non-digit; errors can only be corrected by re-
typing everything once again. After the table
is formed, insert gives it to the cam.

7.2.8 Evolution

The letters s and S are reserved through-
out camex to start the cam; the former for
one generation, the latter to run until inter-
rupted.

To use the Margolus neighborhood and to
accommodate the lack of a central cell, big
pixels are used for the (4; 1=2) automata.
However, random bitplanes are not created
with big pixels, which ordinarily would not
matter because the initial step ignores three
of the four pixels in a cell. Thereafter the
cells are all uniform, and there is no further
problem.

To get a reversible rule to function cor-
rectly, it is essential for the pixel to be uni-
form and in phase with the Margolus neigh-
borhood; this is most easily assured by run-
ning through an even number of generations
before installing the new rule, and is the rea-
son for the option R.

7.2.9 The de Bruijn diagram

The de Bruijn diagram, and the use of the
de Bruijn option, are both discussed in a gen-
eral section devoted to that topic.
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7.3 The automaton itself

The reason for working with automata of ra-
dius 1=2 is their simplicity; one has to main-
tain a balance between such small automata
they are trivial, or so large they are computa-
tionally impossible. Having four statesmeans
that the widest de Bruijn strip is only three
cells wide; yet automata of radius 1, the next
larger size, will not let even this small dia-
gram �t the available memory.

7.3.1 Cartesian product

In turn, four is the smallest number of states
allowing the exploration of a non-trivial state
space, namely the cartesian product of two
binary state spaces. Aside from the classical
cartesian product, in which the two factors
evolve independently, other combinations are
possible, including Fredkin's construction of
reversible automata.
Suppose that there is some one dimensional

(2; 1) automaton A whose evolution follows
the function �(x; y), and a second, B, whose
rule is �(x; y). Then their cartesian prod-
uct A�B is another (2; 1) automaton whose
states are cartesian products of the states of
A with those of B, having the rule of evolu-
tion

� ((a; b); (c; d)) = (�(a; c); �(b; d)) :

To provide a similar de�nition for two-
dimensional automata requires no more than
extending each function to four variables
rather than two, the same as needs to be
done for any other dimension or neighbor-
hood structure.
Every pair of binary rules leads to a dis-

tinct quaternary automaton, but even so, the
number of quaternary rules which are carte-
sian products is a very small fraction of the
total number of rules.

7.3.2 Reversible automata

Another construction in the cartesian prod-
uct of state spaces yields automata whose
evolution can be reversed; it is based on ideas
originating with Edward Fredkin. This time
we need just one rule, '(x; y), with which the
following composite rule of evolution can be
created:

� ((a; b); (c; d)) = (b ^ '(a; c); a) :

This de�nition has a leftward orientation,
with an entirely similar de�nition leaning to
the right. Likewise, the exclusive or could be
replaced by any other invertible function; for
binary automata the only alternative would
be the exclusive nor.

To undo the evolution, consider the evolu-
tion of three successive cells:

(a; b) (c; d) (e; f)

(b^ '(a; c); a) (d ^ '(c; e); c);

we would like to recover the state (a; b) from
the second line. Although a is readily avail-
able, it is necessary to liberate b from the
combination b ^ '(a; c). Given that both
a and c are available, '(a; c) can be calcu-
lated, then used to release b from the invert-
ible combination in which it is bound.

Altogether this is a process embodied in
the rule

	 ((a; b); (c; d)) = (b; a ^ '(b; d)) ;

which must be the rule which will reverse
the evolution resulting from the application
of the �rst.

To apply these ideas in two dimensions,
consider the following layout:
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(a; b) (c; d) (e; f)

(j ^ '(a; c; g; i); a) (l ^ '(c; e; i; k); c)

(g; h) (i; j) (k; l)

(p^ '(g; i;m; o); g) (r ^ '(i; k; o; q); i)

(m;n) (o; p) (q; r)

wherein the rule of evolution is evidently

� ((a; b); (c; d); (e; f); (g; h)) =

(h ^ '(a; c; e; g); a) :

As before, there is enough information in
the second generation cells surrounding the
�rst generation cell (i; j) to recover (a; b); the
appropriate rule is:

	 ((a; b); (c; d); (e; f); (g; h)) =

(h; a ^ '(b; d; f; h)) :

Again following the one dimensional case,
these de�nitions can be oriented toward dif-
ferent directions, just as the connective ^ can
be assigned di�erent meanings. Such variants
do not necessarily yield all possible invertible
rules; historically very few were known un-
til Fredkin proposed \second order" rules, of
which these are a variant.
Every binary rule leads to a distinct pair

of reversible quaternary rules (some of which
may be self-reversible, and some pairs of
which may have been generated by a pair of
binary rules), even when the binary rule itself
is not reversible; there are also cases in which
the binary rule was already reversible.

7.3.3 Universal emulation

Given enough states, and a willingness to in-
terpret the evolution | say by sampling ev-
ery second generation| any cellular automa-
ton can be emulated by a radius 1=2 automa-
ton of the same dimension.

Unfortunately four states, the number
available in a half-cam, is insu�cient; emu-
lation experiments cannot be performed with
equipment having its present con�guration.
Had it been possible, emulation of a Moore

automaton would have been accomplished
along the following lines. Any large neighbor-
hood can be decomposed into smaller tiles,
not forgetting to make allowance for overlap.
Arriving at 2 � 2 tiles, the size of neighbor-
hoods in a radius 1=2 automaton, and stop-
ping with individual cells, we �nd a large hi-
erarchy of subtitles.
The entire collection of subtitles is to be-

come the state set of the emulating automa-
ton, which still requires a rule of evolution.
That rule consists in promoting small tiles
into larger tiles until the size of the neigh-
borhood of the automaton to be emulated
is reached. At that point, the neighborhood
evolves into a single state of a single cell ac-
cording to the original rule; then the process
commences anew.
The scheme is simple enough, yet the num-

ber of intermediate states is quite large; in
one dimension it requires six states for a (2,1)
automaton | two are the original binary
states, four more are pairs. Pairs of pairs
overlap to form the original three cell neigh-
borhood, whose image can be incorporated
into the rule immediately.
A second rule, to accomplish the emula-

tion, requires that a con�guration of singlets
turns into a con�guration of pairs, which
evolves back into singlets. To see pure sin-
glets, only odd generations ought to be con-
sulted, but they will evolve into each other
following the �rst rule.
The evolution of mixed con�gurations, be-

ing irrelevant to the emulation, may be de-
�ned according to convenience.
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8 The (2,1) automata

When Moore neighborhoods are used in a
cam, there is only space enough in the tables
for a single bitplane, together with the cen-
ters of the three remaining planes. However,
there is an additional constraint, namely that
the tables always refer to just the even bit-
planes; the result has even planes evolving,
but odd planes displaying nothing more than
functional information about their partners.
Moreover, the arrangement is con�ned to bi-
nary automata.

8.1 Generalities

Echoes and traces are two common uses of
the odd bitplanes, although echoes may be
made to any of the other bitplanes. Indeed,
Zhabotinsky type rules incorporate the echo
into counters and thence into the rule of evo-
lution itself.
Simple echoes have artistic value, and are

even useful as indicators of the ages of cells.
Cumulative echoes are often employed in au-
tomata such as Life, to give an indication of
how far an initial con�guration expanded be-
fore it stabilized or died out.
But Life is also a good example of an au-

tomaton in which a trace may be used to ad-
vantage. As is well known, gliders have a
special signi�cance in Life, so one might ask
about where the gliders are. Fortunately, a
glider �ts quite snugly into a single Moore
neighborhood; a good rule for the odd plane
accompanying a Life plane would be to accu-
mulate those cells whose neighborhoods ever
contained a glider. Gliders have two phases,
move in four directions, and have mirror im-
ages; the rule can detect any or all of them.
The result of such a composite rule

looks somewhat like a nuclear emulsion.
Many neighborhoodswill contain gliders, sur-

rounded by live cells which interfere with the
glider; there ought to be quite a few marked
cells. Indeed, rough estimates of how many of
the 29 = 512 neighborhoods would be shaped
like a glider show that they are not at all un-
common, perhaps comprising 3% of all neigh-
borhoods. But whenever a glider breaks loose
or travels freely, it will leave a diagonal line
behind; those are the tracks to be counted.

8.2 Moore (2,1) automata

The binary 3 � 3 Moore neighborhood in a
plane contains nine cells, meaning that there
are 29 or 512 di�erent neighborhoods, yield-
ing an incredible 2256 di�erent automata. Af-
ter working with cellular automata for a while
one becomes accustomed to such large num-
bers, as well as to techniques to reduce them
to more manageable proportions. The vast
majority of automata are passed over in the
process; those which remain can be studied
more systematically.

8.2.1 Totalistic rules

By far the most symmetric restriction of a
rule table is to consider only the number of
neighbors of a cell, but not their spatial dis-
tribution. The result is called a totalistic

rule, because of its dependence on the sum.
For the (2; 1) Moore neighborhood, there are
nine neighbors, therefore ten di�erent sums.
Sums of 0 and 9 can occur in only one way,
but there are nine neighborhoods containing
but one cell, and nine more with eight neigh-
bors. In general, the binomial coe�cients
9!=k!(9 � k)! tell how many neighborhoods
contain k cells.
A menu display for de�ning a totalistic rule

will typically display the various sums along
a row, the value which the cell will acquire
in the new generation being shown in the
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matching position in the row below. The po-
sition of a movable cursor shows where new
values may be inserted, thereby changing the
rule.

8.2.2 Semitotalistic rules

A slightly more versatile way to de�ne a rule
table is to separate the central cell from its
neighbors, treating their sum according to
the state of the central cell. Life is a rule of
this kind, because live cells evolve di�erently
from the others, but in both cases the deci-
sion depends on how many of the remaining
eight neighbors are present. The adjective
describing these rules is semitotalistic.
The display for a semitotalistic rule would

consist of two rows, one for birth and one
for survival, with a common header showing
totals. The number of neighborhoods with
a common total and central cell would be
8!=k!(8� k)!, for Moore neighborhoods.

8.2.3 Even-odd-center rules

Most lattices can be partitioned into even and
odd sublattices, much as the squares on a
checkerboard can be colored red and black,
for example. Sums can be taken separately
in the two lattices, since the neighborhoods
will re
ect the same partitioning; but when
there is a central cell, it can be considered
separately, to preserve the balance between
the two classes. Rules re
ecting this parti-
tioning are called even-odd-center rules.
Considering the neighborhood in isolation

from the lattice, the concept of even and
odd can be interpreted fairly liberally; for in-
stance as the top of the neighborhood and
the bottom of the neighborhood. Sometimes
interesting variants on the rules result from
such creative partitioning.
Displaying an even-odd-center rule re-

quires two 5� 5 matrices for a Moore neigh-

borhood, because there are two classes with
an occupancy running between zero and four,
modi�ed by the two values of the central cell.

8.2.4 Symmetric rules

Whenever the lattice underlying a cellular
automaton is symmetric, there are plausible
reasons to work with rules which have the
same symmetry; (2; 1) Moore neighborhoods
have square symmetry on account of the lat-
tice, with additional symmetries due to com-
plementation which are sometimes taken into
account.
Although there are eight symmetry opera-

tions for a square, not all symmetry classes
have eight members; for example there is only
one member of the class containing the zero
neighborhood. The symmetries preserve dis-
tance, so that the central cell always stands
by itself; nor are diagonal neighbors ever
mixed with lateral neighbors. All told, there
are 102 symmetry classes, 51 each for the two
states of the center cell.
It would be an option to leave out re
ec-

tions, to consider only rotational symmetries
of the neighborhoods. This might split some
of the symmetry classes, but hardly all of
them; choosing this degree of specialization
assumes that the handedness of the rules have
importance.

8.2.5 General rules

Sometimes it is necessary to study the most
general rule possible, given the neighborhood
and state set, making it necessary to present
the full rule for editing; the most compact
way to do this is to show two 16�16 matrices,
again di�erentiating them by the central cell
to which they refer.
The circumstances under which a really

general rule has to be de�ned are often that
a given course of evolution is being sought.
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So the editor for such a rule ought to incor-
porate provisions for trial evolutions; also for
marking portions of the rule which have al-
ready been settled upon to distinguish them
from those yet to be decided. Finally, the
rule ought to be saved somehow, if tedious
manual transcription, or laborious repetition
at a later date, is to be avoided.

8.3 Hexagonal (2,1) automata

There are certain sublattices of the general
square lattice which can be provided for with
a special editor of their own, to conceal the
full generality which would only distract the
user. The hexagonal lattice is one of them,
the square lattice of radius 1/2 is another.

time, date

help panel

totalistic
rule

statistics
panel

mean
�eld
curve

Figure 4: Hexagonal (2,1) menu

As with automata operating with full
neighborhoods, it is convenient to introduce
the degrees of totalistic, semitotalistic, sym-
metric, and so on.
The menus for all these options are very

similar, as are the screen layouts, as illus-
trated in Figure 4.

The options are typical, namely:

- 0, 1 de�ne state
moa - toggle state
space, mor - advance cursor
back, mol - cursor backward
insert - load rule into cam
erase - clear cam bitplanes
s - single step of evolution
S - generations of evolution
t - graph mean-�eld probability
u - graph Bernstein monomial
x - choose a random rule
y - random ellipse
Y - random full plane
z - clear graph area
! - function key menu
? - show keyboard menu

The probability panel shows the percent of
live cells in each generation, supposing that a
compatible color scheme has been chosen for
the cam; if the results appear unreasonable,
try adjusting the colors to activate the event
counter correctly.
The graph panel shows the mean �eld the-

ory curve for the rule; since the diagonal is
also displayed, the �xed points and their sta-
bility can be determined visually, to be com-
pared with the density bar chart in the prob-
ability panel.

8.4 Moore (2,1/2) automata

By working with a corner of the radius 1
Moore automaton, radius 1/2 may be accom-
modated. There are relatively few of these
automata and their properties are not very
complicated; nevertheless it is useful to have
access to them for comparison and for com-
pleteness.
De�ning specialized rules is hardly worth

the trouble, but is done to a slight extent for
purposes of comparison.
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9 One dimension

Although cam boards are primarily de-
signed for two-dimensional automata, one-
dimensional rules are easily established; it is
only required that all but the one dimensional
neighbors be ignored. Discarding vertical
neighbors makes each row of the display a
one-dimensional automaton; if columns were
preferred, the horizontal neighbors should
have been discarded.

9.1 Generalities

An unimproved display tends to be confusing,
the screen being composed of a large number
of automata functioning in parallel. Some
slight preparation will create the illusion of
successive generations of evolution.
First, a single line has to be copied

throughout the screen, perhaps by loading
an evolutionary rule which will create the
copy. Simply loading one single line through-
out the bitplane, which can be done by
svuline(c,p), would probably be faster.
Next, use a sweeping curtain to age succes-

sive lines, leaving the remainder untouched.
Once the full screen has been swept out, uni-
form evolution will produce a moving display
in which successive lines are a single genera-
tion apart.
One-dimensional (4; 1) automata result

from using von Neumann neighborhoods in
cam-a, but (3; 1) or even (2; 1) automata
would be the result of introducing rules which
ignored some of the states.
Whereas only (2; 1) automata can be based

on Moore neighborhoods, the possibility of
taking neighbors from an adjacent line allows
a static display with a moving line of evo-
lution, rather than the display moving away
from a static line which is the only possibility
with von Neumann neighborhoods.

9.2 Programming niceties

The subroutine inod(w), whose argument w
is the Wolfram rule number of a one dimen-
sional (2; 1) automaton, will install the cor-
responding table in cam-a. No other record
of the rule is left behind, since it is so easy to
regenerate from the rule number.

Installation of one-dimensional rules is ac-
tually a two step process; the �rst part is to
create the rule table, the second is to create
the uni�ed screen image. The two are com-
bined in inod.

For a (3; 1) automaton, oned31(r0,r1,t)
transforms char t[27] into two tables, char
*r0 for plane 0 and char *r1 for plane 1. It
is usually called by inod31(r0,r1,t), t hav-
ing previously been prepared, say by choice
of the option o�ered by f1.

Members of the pair oned41(r0,r1,t) and
inod41(r0,r1,t) together render the same
services for (4; 1) automata; this time char

t[64] would be generated by another f1 op-
tion.

In both cases suitable global variables are
provided, char *tbl31 and char *tbl41 re-
spectively, so that the rules will always be
retained between consultations of the editor,
and for the use of other subroutines.

Several other one-dimensional automata
can be emulated by a cam, but the tech-
niques involved do not produce such attrac-
tive visual images as the ones mentioned.
Although the rules for one dimensional au-
tomata make a pleasant adjunct to camex,
the analysis is nowhere as detailed as that
provided by the program set lcau; proba-
bilistic surveys, de Bruijn diagrams, and the
calculation of ancestors are all missing.

23



9.3 The collection lcau

Although there is a certain overlap between
the domains of lcau and camex, it is not ex-
tensive. camex is primarily two-dimensional
with some interesting extensions to three
dimensions, whereas lcau is entirely one-
dimensional. The cam's speed of operation
is essential for interactive studies in two di-
mensions, but one dimensional automata al-
ready operate at nearly the same speed be-
cause of the redundancy of the plane image;
there would be an advantage to a special con-
nection converting the plane into one long
line if someone required such a con�guration.
Because the calculations are simpler, one

dimensional automata can be explored in
considerably more detail than higher dimen-
sional automata. Likewise, the cells can have
many more states than is convenient for the
cam hardware. A review of the proper-
ties which are calculable shows some of the
things which could be added to camex in
the course of further development, especially
as the speed and memory capacity of com-
puters continues to grow.

9.3.1 Evolution

The one area in which the performance of
camex, lcau, and various other programs
is comparable is the graphical display of the
evolution of automata. Of course there are
di�erences in speed, surface area, number of
cells, and the like; but all programs o�er this
facility in some form or another.

9.3.2 Probability

The statistical properties of automata, both
theoretical and empirical, are of the utmost
importance. The cam event counter, accom-
panied by suitable programming, can be used
to collect di�erent kinds of data; naturally

the programming increases in complexity as
the quantity of data to be extracted increases.
The probabilistic section is not only a ma-

jor constituent of all the lcau programs; they
incorporate a fair diversity of analysis. The
calculation of a \mean �eld curve," which
describes the change of probability from one
generation to the next, assumes that the state
probabilities are not correlated among neigh-
boring cells. The assumption has varying de-
grees of validity from one automaton to an-
other, but it always provides a valuable frame
of reference. More elaborate calculations, in
terms of \block probabilities," are also in-
cluded in lcau.

9.3.3 De Bruijn diagrams

With time, the evolution of �nite automata
becomes periodic; automata whose lattice is
a ring or a torus already �t this description,
although the length of the period may be ex-
tremely long, as well as the time required to
pass through the transients and arrive at the
�nal cycle.
The systematic way to decide upon the

periodic behavior of a cellular automaton is
to use de Bruijn diagrams, which are simply
maps showing the relation of neighborhoods
to one another, annotated with details con-
cerning interesting aspects of their evolution.
All the lcau programs contain a submenu
devoted to the calculation of de Bruijn dia-
grams.
For neighborhoods of large radii or au-

tomata of numerous states, the quantity of
information obtainable (or rather, the range
of parameters over which it is available, the
quantity actually remaining fairly constant)
diminishes. Therefore the coverage is more
complete for the smaller automata.
For two dimensions and beyond, the

quantity of computation required is truly
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formidable.

9.3.4 Ancestors

If evolution is important, the reverse must
also be interesting. Substantially the same
techniques that are embodied in the de Bruijn
diagrams can be used to determine the num-
ber of ancestors, and indeed, their actual
composition. The computations are more ar-
duous, resulting in just a few of the lcau
programs having an ancestor submenu; the
prospect has not even been considered in two
dimensions in camex, although the theory is
just as applicable.
Two aspects of the calculation of ancestors

are often given special attention. One is to
determine which con�gurations have no an-
cestors at all, the so-called Garden of Eden
con�gurations. The other is to �nd automata
for which evolution is reversible, in the sense
that every con�guration should have just one
ancestor.

9.3.5 Designing rules

Another useful facility, which is easier to pro-
vide for one dimensional automata than for
others, is the ability to edit the rule table
while performing trial evolutions. By a pro-
cess of de�nition and adjustment, rules can
be built up which conform to a prescribed
evolution, such as exhibiting solitons and al-
lowing them to pass each other, to mention
an example.

9.4 (2,1) automata

One dimensional binary automata are given
rather cursory treatment in camex, in con-
trast to the fairly elaborate analyses which
lcau21 can preform. They are included, like
many others, in the list which can be viewed
by using the option f1 in the man menu; the

subsequent use of insert initiates the ritual
of loading cam's lookup table and creating a
suitable image on the screen, to simulate a
space-time evolution diagram.
Once the initialization step has been per-

formed, using the subroutine inod, it can be
repeated to generate another random con-
�guration following the space-time format.
However, any of the many other screen-�lling
options can be used to create con�gurations
for which each line will evolve according to its
own destiny. Placing a checkerboard in plane
0 (using h1 or H1) can often be instructive.
For the moment, neither of the options r

or l responds while the binary automatonhas
been selected; the only variation possible is to
change the rule number, which is a parameter
that has to be adjusted from the main menu.
Its value can be checked by using option f7,
or changing parameters via the cursor arrows.
The vertical arrows increment or decre-

ment the rule number; to get a di�erent value
quickly, say 150, type =150. Rule 22, whose
behavior is as diverse as any, is the default
value. Other interesting rules are 18, 30, 90,
but there are many more.

9.5 (3,1) automata

The layout of the menu for one dimensional
(3,1) automata is shown in Figure 5, which
is typical of the remaining one dimensional
menus. Little more is shown that the rule
de�nition, with an additional panel for the
totalistic rule, if that option is chosen.

9.5.1 Options

Either of the two rules can be edited by typ-
ing the state which should be situated at
the location of the cursor, which can also be
moved by using the arrows, the mouse if it
is connected and programmed to deliver ar-
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time, date
?

general rule

totalistic
rule

Figure 5: camex 1-D (3,1) menu

rows, or such mundane keys as space and
backspace. The new table can be inserted
in the cam's lookup table, evolution set in
motion, random tables and screens selected
and so on, according to the complete menu
belonging to the option.
If they have been provided in a separate

�le located in the current directory called
lcau31.rul, demonstration rules may be se-
lected by using the key f1, then loaded and
executed.

9.5.2 The option menu

The complete collection of options is:

0,1,2 - de�ne state under cursor
tab - next quad
f1 - view sample rules
space, mor - cursor right
back, mol - cursor left
mou - unmark neighborhood
mod - mark neighborhood
insert - activate rule
delete - clear all planes

s - single step of evolution
S - ongoing of evolution
t - edit totalistic rule
x - random protected rule table
X - fully random rule table
y - random planes 0,1

Between automata, the only substantial
variation in this menu lies in the range of
states admitted, and the appropriate number
of neighborhoods or state sums.

9.5.3 Sample rules of evolution

If a �le of rules has been given the name
lcau31.rul and resides in the currently ac-
tive directory, the function key f1 will load
and display it. In order for the process to
work, the �le must have been prepared in
strict accordance with the speci�cation, that
each line contains one rule plus a comment.
The entire line consists of ascii characters,

which means that any editor can be used to
prepare it; likewise that rules can be added,
removed, or rearranged at will by the user.
The rule itself consists of exactly 27 char-

acters chosen from the set f0; 1; 2g, followed
by a space. The rule will not be shown on
the screen, but it will be copied into char
*tbl31, which is the appropriate camex rule
array, on request.
The comment following the rule will be dis-

played, and should be chosen carefully to give
a good description of the rule. Due to certain
in
exibilities of the loading format and dis-
play program, it should consist of exactly 32
characters, the �rst of which is not a blank.
There is also a limit of 40 on the number of
rules which the �le should contain.

9.6 Totalistic (3,1) rules

Once the number of states, or the radius of
the neighborhoods, in an automaton becomes
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large, it becomes increasingly di�cult to de-
scribe the rule; the only e�ective description
is a listing of the transition table. Specialized
automata are usually easier to describe; one
of the most common special cases is that of a
totalistic automaton, for which the transition
depends only on the number of cells in various
states, not their speci�c arrangement.
Accordingly, an option within the general

rule is to show the totalistic variant within a
submenu; it is convenient to reproduce most
of the options within the submenu that were
encountered in the principal menu to avoid
the continual swapping of menus.
However the f1 option is not active for to-

talistic rules, which can nevertheless be in-
cluded rather easily in the general �le when
they are desired.
To assist copying down an interesting rule

on paper for eventual inclusion in the �le, ad-
vantage can be taken of the fact that each
change in the totalistic rule is immediately
re
ected in a rede�nition of the general rule,
which is still shown on the screen.

9.7 (4,1) automata

There is very little di�erence between the way
(4; 1) and (3; 1) one dimensional automata
work in camex, most of those di�erences be-
ing natural consequences of the di�erence in
the number of states and correspondingly, the
number of neighborhoods, between the two
classes. The description of the trinary pro-
grams is equally applicable to the quaternary
programs.
Amongst the demonstrations, there are in-

teresting aspects of quaternary automata to
be discerned, which cannot be realized with
fewer states. For example, the factorization
4 = 2 � 2 means that quaternary automata
can be the direct product of binary automata.
Besides all those automata which are sim-

ple direct products, there are reversible au-
tomata constructed by applying Fredkin's
technique to the direct product.
Other possibilities include the construction

of binary counters, for some of which the
carry bit acts as a \glider." Other gliders
exist, some of which act like solitons. Alto-
gether, the rule set is large enough for quite
a bit of experimentation.
Both the (3; 1) and (4; 1) automata

have disk �les, called lcau31.rul and
lcau41.rul respectively, which contain a
couple dozen or so rules that can be loaded
into their rule tables on demand. The �les
can be altered outside of camex with the
help of any text editor, either to remove items
or to include additional ones.
The format of the tables is almost self ex-

planatory; the rule is typed using ascii dig-
its as in any text �le, with an identifying
comment following. The table in the the
�le lcau41.rul occupies 64 columns whose
entries are the digits 0; 1; 2; 3. The style of
the existing �le, especially the �eld lengths,
should be followed in making alterations.
Within each submenu, the function key f1

will search the current directory for the ap-
propriate rule �le and display its contents.

9.8 Prospects

So far, a minimal amount of lcau has been
incorporated into camex. In part this has
been for reasons of space, which is scarce
within the memory model which has been
employed; in part is is because the programs
already work satisfactorily in their own envi-
ronment and do not require the cam in an es-
sential way. It would surely be more produc-
tive to concentrate on two-dimensional ver-
sions of the features discussed, for the further
development of camex.
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10 Three dimensions

Some three dimensional automata, namely
(2; 1) automata using von Neumann neigh-
borhoods, are accessible to cam boards,
given a willingness to work with them plane
by plane. Since four planes altogether can
be used, plane 0 could be regarded as sand-
wiched between planes 2 and 3, to create
a plane each of whose cells has a complete
three dimensional neighborhood of unit ra-
dius. Rather than having plane 0 evolve, the
new generation could be recorded in plane 1
instead, freeing the cam board to shift layers
internally.

10.1 Logical arrangement

The evolution of a whole stack of planes could
be obtained by �rst loading three consecu-
tive planes from supplementary storage, such
as from arrays in the computer's own mem-
ory, or �les stored on disk. From then on,
a composite cycle of evolution would record
the evolved plane 0 in plane 1, simultaneously
shifting planes 0 to 2 and 3 to 0. Once done,
plane 1 would be saved as the new generation,
whilst loading plane 3 from the next layer of
the old generation, completing the cycle at
last.
Backup storage could maintain the two

generations as separate, but unless that
were necessary for purposes of comparison or
something similar; really it is only necessary
to save just one single plane to be sure of
closing the cycle at the end.
For the moment, allocating a single �le of

ramdisk memory to each 256x256 plane pro-
duces an 8K byte image for each of them.
Considerations of the Intel 8086 CPU family,
the MS/DOS operating system, and a C lan-
guage compiler enforce a practical limit of 12
planes. The result is a very \thin" automa-

ton, nevertheless fat enough to obtain useful
information; experience will doubtless lead to
the necessary programming for more versatile
combinations.
Even so, extremely thin automata are in-

teresting as limiting cases, so variants have
been programmed whereby automata of 1, 2,
3, or 4 planes can be retained internally and
followed at the same rate of normal evolution
as any other automaton.
Otherwise evolution requires about ten sec-

onds per plane, with a very 
ickering per-
formance. This is because evolution oc-
curs in a 
ash, data movement taking much
longer, under a blank screen. Including a
programmed delay in the cycle will hold the
image longer, at the price of a still further
slowdown.
For many automata and for many pur-

poses this style conveys a feeling for the struc-
ture and texture of the automaton; some lee-
way is also provided by the choice of a color
map. Evolution can be suspended at the end
of each sweep through the planes, allowing
static views, or visual planewise inspection.
There is a clear opportunity to experiment
with alternative visual presentations.

10.2 The module cametd

One entire source module, cametd, is ded-
icated to three dimensional (2; 1) von Neu-
mann automata; seven binary cells per neigh-
borhood yield 128 di�erent neighborhoods,
and accordingly 2128 di�erent rules. This
great number can be diminished by requir-
ing symmetrically related neighborhoods to
undergo the same transitions; and even more
by stipulating that the rules be totalistic or
semitotalistic. At present only these latter
two alternatives are recognized by camex.
The way to work with a three dimensional

automaton in camex is to locate one or the
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other of these alternatives in the master au-
tomaton menu, which can be called up from
the main programby the function key f1. Af-
ter making the selection, the option r (edit
rule) will display a submenu in the graphic
mode.

time, date

�
rule panel

help (fun)

help (kbd)

graph panel

histogram panel

Figure 6: cametd console panels

Now the screen will show the usual com-
mentary, together with a panel in which the
rule speci�cation may be entered, a graphics
panel and a bar chart panel. At the graph-
ics panel the rule's Bernstein polynomial, or
mean �eld curve, can be shown (option t);
during evolution points of the returnmap will
appear in the same panel.

The bar chart shows the running percent-
age of live cells, provided that the color map
chosen for the cam/pc only assigns the in-
tensity bit to one plane. If the frequency
displays do not seem credible, the color as-
signment may be at fault.

10.3 Menu options

In alphabetic order, the submenu which cur-
rently exists is the following:

0,1 - insert state in rule
C - special color scheme
g - single step \thin" version
G - run \thin" version inde�nitely
h - single-plane version
H - random �eld for h
i - two-plane version
I - random �eld for i
j - three-plane version
J - random �eld for j
k - four-plane version
K - random �eld for k
s - run cam one step
S - run cam inde�nitely
p - next rule
t - mox - mean �eld curve
u - mob - Bernstein monomial
x - rand rule selection
y - random ellipse in plane 0
Y - put random �elds in disk�les
z - clear graph area
! - show function key menu
? - show the option menu

This menu is not unlike those for any other
automaton; but the di�erence between the
pair S, s and the pair G, g should be noted.
Both run the cam through cycles of evolu-
tion, but the cycle is much more complex
than normal, and varies according to the
depth of the automaton.

10.3.1 Thick

When more than four planes are in use, jug-
gling supplementary memory is required; at
present this is done from the ram disk for a
number of planes limited by dos's bu�er al-
location. Both the number of disks and the
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disk assignment are embedded in the source
program; they are set for twelve planes on
unit D. Changes require recompilation, which
is not a fully satisfactory arrangement.

The regular pair of run commands, S and
s, are assigned to this combination; evolu-
tion will be slower and blinker than usual.
It is necessary to wait out the full sequence
of planes in each generation before proceed-
ing to the next generation, but suppressing
part of the presentation would not improve
the speed given that the display is an inher-
ent part of the cam's operation.

Whatever rule is visible in the rule panel
will be placed in the lookup table by insert.

All the planes can be randomized to 50%
initial density by typing Y, even those in disk
�les.

10.3.2 Thin

Each of the four shallow depths is given sep-
arate treatment with respect to creating the
lookup table, initializing the planes, and run-
ning the cam. The rule is still taken from the
rule panel, but the connectivity of the planes
in the cam changes with the depth; likewise
the preparation of the planes is di�erent.

Thus h loads the table, H the single bit-
plane for the degenerate case of uniformity
through the entire depth. In turn i makes
the table, I the two planes, for an automaton
whose planes alternate through the depths.
A cycle of 3 is governed by j and J, and 4 by
k and K.

The special circumstances of evolution
have been assigned to the run pair G and g be-
cause no swapping of planes is required. Ac-
cordingly the evolution will run much more
quickly, and also more smoothly because
the planes are not shown individually. The
merged image is not truly three dimensional.

10.4 Function keys

In turn, the function keys which are active
within cametd are the following:

f1 - bitplane image subsubmenu
f8 - show next plane
F8 - show �rst plane
ctl f8 - show plane 0 only
alt f8 - show previous plane
f9 - show next plane
F9 - primary plane colors
ctl f9 - show plane 0 only
alt f9 - show previous plane
f10 - next color scheme
ctl f10 - �rst color scheme
alt f10 - previous colors
moa - toggle state
space - mor - advance cursor
bak - mol - move cursor backward
insert - activate rule
delete - clear all planes

The keys governing the color selection have
been included because the color combination
a�ects the quality of the image perception.

10.5 Experiments

A typical three dimensional automaton ex-
periment, after having arrived at the sub-
menu, would be to enter the rule number us-
ing arrows, space, backspace, and the num-
bers 0 and 1 to designate states. For purposes
of initialization, a random number generator
always provides one, but it may not be inter-
esting. Once set, it remains until reset, even
though one leaves the submenu and later re-
turns.
If a two buttonmouse is available, it should

be set to generate arrows for its movements,
designated mou, mol, mor, mod in the menu
above. In addition, the buttons should gen-
erate the two \control arrows," moa, mob. Fi-
nally, the double button should generate esc.
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This allows setting the rule by mouse move-
ments, sometimes a convenience.
Selecting a rule does not enter it into the

cam/pc's lookup tables: this must be done
by pressing the insert button; not doing so
allows browsing through submenus without
making a commitment. To a certain extent,
it also allows the transportation of rules be-
tween environments. The cam/pc screenwill
blink as the table is deposited, which may be
taken as a con�rmation of the operation.
It remains to initialize the automaton's bit-

planes, done by pressing Y; there is no obvi-
ous acknowledgement, but close observation
will reveal a time-change when the opera-
tion is complete, and until then no further
operation will be accepted. At present the
only initialization is to 50% random density,
but this could change if there were future de-
mand. It is also possible to continue using a
previously existing set of �les, or to employ
a previously prepared set provided that the
names f01.pat ... f12.pat were used.
Typing t will show a mean �eld curve for

the density of live cells in the second gener-
ation as a function of that in the �rst. For
most rules, it can be expected that the equi-
librium density of the automaton will be the
�xed point of this curve, but strong excep-
tions exist among totalistic and semitotalistic
automata. The monomial probability gotten
from u can be of assistance in choosing a rule
whose curve has a desired form.
The use of t is usually reassuring; if too

many trials have been made and the screen
becomes cluttered, z will clear it. This is dis-
tinct from the action of delete, which clears
the cam/pc's screen by setting all bitplanes
to zero.
At this point, the only thing to do is to

type S to obtain an ongoing evolution, or s to
single-step the development. S can be halted
by pressing any key.

10.6 Variations

Inasmuch as the limiting cases in which a
higher dimensional automaton approaches
one of lower dimension through very short
periodicities in one or more directions are
important, provision has been made for a
\cube" of few planes.
The options h, i, j, and k create lookup ta-

bles in the cam/pc appropriate for a cyclic
automaton of spatial period 1, 2, 3, or 4,
respectively. These tables are distinct from
each other and from the one generated by
insert, but nevertheless displace it and per-
sist until they themselves are displaced.
Since the run cycle of the full automaton

involves shu�ing disk �les, in the exceptional
case of cametd there are two ways to initi-
ate an evolution; S and s refer to the full
automaton as is the norm in camex, but G
and g refer to the four thin cubes which are
entirely self contained within the cam/pc.
The re
exes which one tends to establish

while using camex will cause much anguish
and vexation if the two activators are con-
fused (pressing S without thinking tends to
become habitual). Also, the possibilities in-
herent in starting an evolution from the main
menu after having left the submenu can be ei-
ther a curse or a blessing, accordingly as the
di�erences in their operation are understood.
Because subtleties of color are such an

asset in visualizing the three dimensional
automaton, especially given the absence of
other clues, the keys f9 and f10, which ad-
just color and allow cam-plane viewing, have
been brought over into the submenu.
An additional key, f8, has been endowed

with similar properties relative to the planes
stored in the disk�les, so that they can ve
viewed while the automaton is halted.
Of course, one single plane can always be

emphasized, to the exclusion of the rest.
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11 The Margolus neigh-
borhood

One of the design objectives of the cam hard-
ware seems to have been to implement a par-
ticular structure amongst two dimensional
automata known as the Margolus neighbor-
hood. This neighborhood is of theoretical in-
terest because it lends itself to the construc-
tion of reversible automata, and is often used
for the simulation of lattice gasses.

11.1 The neighborhood

The Margolus neighborhood partitions both
space and time into even and odd compo-
nents. First, a mapping is de�ned for a 2� 2
neighborhood into itself; in the cam context,
each cell has four states, producing 256 neigh-
borhoods for each cell. The mapping is there-
fore de�ned by a 4� 256 matrix.

Next, non overlapping neighborhoods are
used to tile the plane. It is convenient to lo-
cate the lower left hand corners of the neigh-
borhoods at lattice points both of whose co-
ordinates are even, leaving the mutually odd
coordinates to occupy neighborhood centers.

Since the neighborhoods do not overlap,
there is no interaction between them; to cre-
ate an interaction, time is also partitioned
into even and odd moments. As time pro-
gresses, neighborhoods are alternately se-
lected from even and odd coordinates, so that
the neighbors which a given cell sees vary ac-
cording the parity of the moment.

In principle, larger neighborhoods with
longer timing cycles could be constructed;
however such complexity lies beyond what
cam hardware permits. Furthermore, the
hardware switching arrangements permit ig-
noring either the horizontal or the vertical
parity, but this should probably be consid-

ered as a pathology which would not nor-
mally arise.

11.2 Rule of evolution

The fundamental construction is a mapping
of a square, consisting of four cells, into
itself; in each halfcam the cells have four
states, gotten by combining the two binary
bitplanes. Each cell therefore requires a func-
tion of four four-state variables to describe its
evolution. One way to represent the situation
would be to use four 16� 16 tables. The re-
sult is more manageable than using a single
4� 256 matrix, but still requires the manip-
ulation of quite a bit of data.
As with other automata, selections can be

simpli�ed by introducing totalistic rules or
other specialized combinations. However, the
Margolus neighborhood seems to have been
designed with the speci�c intention of emu-
lating a lattice gas, and moreover, reversibly
so.
Therefore, when the cam is operating in

Margolus mode, the lookup table in the cam
as well as the circuitry required to implement
it, has been arranged to favor this particu-
lar application. To the user, it appears that
the same rule by which one single cell evolves
from four neighbors has been applied di�er-
ently according to the parity of the coordi-
nates, albeit in a very symmetric way | by
rotating the neighborhood.
Just for that reason it is recommended that

the neighbors not be thought of as lying to
the north, south, east, or west; rather they
are situated clockwise, counterclockwise or
diagonally opposite, all relative to the cell
itself which occupies the corner required by
parity.
If this were all there were to the matter,

rules could be de�ned with great ease. In-
deed, it is a good arrangement for creating
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(4; 1=2) Moore automata, giving each corner
a rotated version of the same rule. The rule
need not always be the same, of course.
However, as originally conceived, the cam

lookup table had twelve address lines, whose
meanings could be varied somewhat by both
software and hardware switches. With-
out worrying about variants, for von Neu-
mann neighborhoods, �ve neighbors with
four states (two bits each) in one half-cam
plus the center cells in the other half-cam�lls
the quota. For Moore neighborhoods, nine
cells in one plane together with three more
center cells gives the pertinent dispensation
of twelve bits.
Margolus neighborhoods require only eight

bits to achieve four states in each of four cells,
leaving four bits free. These free bits can be
assigned to two parity bits (four parity com-
binations) and two phase bits, giving four dis-
tinct tables (phase bit combinations) each of
which distinguishes the parity of the coordi-
nates in the square sublattice. The tables can
be completely separate, rotated versions of a
single table, or a combination of the two.
But the additional addresses could also

have been given over completely to the phase
bits, leaving sixteen di�erent tables to be ap-
plied uniformly to all the cells.
Finally, custom con�gurations can be

brought in by invoking the user options and
hardware jumpers.

11.3 Four tables for four pari-
ties

The table in Figure 7 shows how the bits in
the Margolus neighborhood are used to index
the lookup tables that will de�ne the rule of
evolution.
Following the general custom by which rule

tables are de�ned, the states of the cells are
regarded as digits to be arranged in some

(a0; a1) (a2; a5)

(a3; a6) (a4; a7)

(a3; a6) (a0; a1)

(a4; a7) (a2; a5)

(a2; a5) (a4; a7)

(a0; a1) (a3; a6)

(a4; a7) (a3; a6)

(a2; a5) (a0; a1)

Figure 7: Margolus neighborhoods by parity

standard order; Figure 7 establishes that or-
der for the Margolus neighborhood. The
states have internal structure, so plane 0 is
taken as providing the low order bit, plane
1 the high order bit for a cell of four states;
this is acknowledged by �lling the table with
pairs.
Each di�erent number corresponds to some

distribution of the states around the neigh-
borhood; to form the lookup table that is the
number indexing the array in which the new
value of the state for that particular neigh-
borhood is recorded.
The \central" cell occupies a di�erent cor-

ner of its neighborhood according to the par-
ity of its coordinate, which is the reason that
the table contains four versions of the ar-
rangement of the neighborhood.
With a view toward constructing rules for

reversible evolution, one of the restrictions
could be that the new states be a permuta-
tion of the old ones, given the understanding
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CW

OPP

CCW

CCW

OPP

CW(cell)

Figure 8: Parity can be reversed between gen-
erations

that permutations themselves are reversible;
there are 120 permutations of four objects.
The layout of the screen panel is fairly typ-

ical, but so far has not been subject to the
pressures and accommodations of prolonged
usage.

time, date
?

general rule

totalistic
rule

Figure 9: Margolus submenu
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12 rec programming

First, rec stands for regular expression com-

piler, a rather fanciful term concocted one
day when the program had to be given a
name. Anyway the idea was to make pro-
grams follow the style of regular expressions,
using elements of concatenation, selection of
alternatives, and iteration. It was created for
the purpose of completing an acceptance test
for a pdp-8 (and consequently had to be very
compact) on the basis of earlier work with
\operator predicates" in lisp.

12.1 The language

The essence of rec is the use of four sym-
bols of control (the two parentheses, colon,
and semicolon) together with operators and
predicates. Operators are just subroutines;
predicates have a truth value in addition.
As usual, a pair of balanced parentheses

is used for delimiting groups of symbols, but
the group is also to be regarded as a predicate
whose truth value depends on how its exe-
cution was terminated. Execution proceeds
from left to right in the normal manner of
reading English text, although the sequence
can be interrupted by predicates, colons, and
semicolons; all rec programs must be paren-
thesized.
A colon signi�es repetition from the open-

ing left parenthesis of any given level, being
the embodiment of iteration in rec. On the
other hand a semicolon implies proceeding at
once to the closing right parenthesis, while
assigning the value \true" to the process just
completed. In point of fact one does not in-
clude the right parenthesis as part of the de-
parture, but continues from the symbol just
beyond it; meeting a right parenthesis as a
normal part of a sequence also terminates
the subexpression, but assigns it the value

\false."
This leaves the role of predicates in a

rec expression to be explained. Regular ex-
pressions themselves are indeterminate, since
they describe the whole class of strings ob-
tained through arbitrary choices of alterna-
tives and iterates; a computer program re-
quires a concrete choice at each juncture.
Predicates provide the decision; when true
the sequence of symbols continues without
interruption, but falsity implies skipping to
a new program segment.
The new segment is the one which imme-

diately follows the nearest colon, semicolon
or right parenthesis at the same parenthe-
sis level. In the case of the parenthesis, the
value \true" is assigned; this is the mecha-
nism through the boolean complement of a
truth value may be achieved. In other words,
if p is a predicate, (p) is its logical nega-
tive. Likewise, when p and q are predicates,
(p;q;) corresponds to p or q and (pq;) to
p and q.
Arbitrary boolean combinations are possi-

ble; for example exclusive or corresponds
to (p(q);q;), but one must beware that q

could get executed twice without being re-
producible (for example, by reading the key-
board twice). Such dilemmas are not fre-
quent, but they do occur and lead to schemes
for preserving information, de�ning variables,
and what not; none of these are dealt with at
the level of skeletal rec programming.

12.2 De�ning programs

Within the basic skeleton the programmer
must provide for the individual operators and
predicates, generally through a symbol table
indexed by ascii characters. rec is not re-
quired to work with single character symbols,
but the complexity of parsing a program in
the compiler is increased by a whole order of
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magnitude if anything but the simplest vari-
ants on this restriction are allowed.
Over the years extensions to rec have oc-

curred, and specialized applications have de-
veloped. The most important extension pro-
vides for creating new subroutines. They are
designated by a composite symbol such as
@s; \at sign" joins the list of reserved let-
ters. Subroutines are de�ned by enclosing a
list of de�nitions (followed by a main pro-
gram) within braces:
f(...) s (... @s ...)g;

in fact such a braced list may be included
anywhere in a rec expression that operators,
predicates, or subexpressions can occur. The
scope of the de�nitions lies exclusively within
the braces; the same symbols can be reused
elsewhere or even recursively.
Certain additional features have proved

convenient, but are common to most pro-
gramming languages. One is to ignore space,
tabs, and so on unless they are an actual part
of quoted data; the other is to permit com-
ments. In rec, comments are enclosed recur-
sively within square brackets, which permits
disabling debugging or trial segments with-
out removing them completely.
It is hard to work with programs which

are incapable of providing data to themselves;
some form of quotation usually has to be pro-
vided. In some contexts, recognizing num-
bers as such and transforming them into a
binary representation is essential; in others
quoted character strings su�ce.
A counter, written !n!, is a useful predi-

cate, true n times and then false; (!12!x:;)
would perform the operation x a dozen times.
The two most important levels of special-

ization that we have worked with include, 1st

introducing a pushdown list and, 2nd intro-
ducing a workspace.
The whole mechanism of numerical pro-

cessing goes well with the �rst; one prede-

�nes arithmetic operations, comparisons, in-
put and output conversion, and so on, as
appropriate operators and predicates. Fixed
subroutines attend to such things as square
roots or trigonometric functions, just as is
done in other programming languages. When
speci�c calculations are required, they are
performed by writing programs.
Dealing with arbitrary arrays requires fur-

ther machinery; consequently an arithmetic
rec has a closer a�nity to apl than to for-
tran. Nevertheless �xed arrays are conve-
nient, from which a matrix version of rec
can be devised.
The second extension really produces an

exotic structure, suitable for editors, compil-
ers, and the like. However, both of these ver-
sions of rec are much more ambitious than
what is included in camex.

12.3 Operators and predicates

When it comes to choosing operators and
predicates for camex, a week's experience
has hardly produced a de�nitive list; more-
over there is a certain expectation that in-
dividual users of camex will generate their
own. This, of course, will lead to a prolifera-
tion of nonstandard variants, but so far that
hasn't happened, even for the c programs.
Part of the need for something like rec

comes from the proliferation of options in a
program, and in �nding some way to deal
with them. Considering only lcau's main
screen, there is the full 64-neighborhood rule
to be dealt with, then totalistic rules, prod-
uct rules, and several kinds of reversible rules.
Besides that, there is a collection of demon-
stration rules intended to show the user some-
thing of the variety which is possible, not to
mention having selected them in advance for
their attractiveness.
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13 Edit a Moore plane

For many experiments with automata, it is
su�cient to generate random bitplanes, or
to �ll the bitplanes with such simple designs
as lines or squares. Chaotic evolution deter-
mines which automata are the most suited
for this treatment, but the Zhabotinsky re-
actions, for example, evolve around a deter-
ministic nucleus which occasionally needs to
be explicitly inserted into the bitplanes.
Beyond that, there are automata such as

Life and WireWorld, whose initial con�gu-
rations need to be laid out very carefully
and explicitly. These requirements are met,
for (2,1) Moore automata, by the module
cameml, composed of facilities for editing
bitplanes, with emphasis on plane 0.

13.1 Outline

There are three aspects to editing the �eld
of a cellular automaton. The most obvious
consists of inserting, removing, and modify-
ing the cells; actually the number of cells has
to remain the same, so that these activities
refer to live cells in the context of a binary
automaton.
As to the second aspect, for a �xed rule,

editing will most likely be used to obtain con-
�gurations following a desired course of evo-
lution. This makes it convenient to be able
to save and restore con�gurations, as well as
to conduct trial evolutions, all in addition to
setting up the con�gurations themselves.
Finally, although it might seem to be

strictly a question of editing the rule table,
one often wishes to create a rule causing a
given course of evolution. This involves an
interaction between observing trial evolution
in the �eld of the automaton and the de�ni-
tion of the transitions in the table. A dis-
play of the full rule table is not necessarily

required, but there must be su�cient access
to be able to modify it.

13.2 Keyboard options

The complete alphabetical list of options
needs then to be broken down into related
groups for further explanation. In doing so,
the console monitor should be distinguished
from the cam/pc monitor. The console
will show an 11x11 patch taken from one of
the bitplanes, accompanied to its right by a
smaller 9x9 patch in which the second gener-
ation of an evolution can be shown. At the
far right is a large panel which can show ei-
ther help information or the full rule table,
according to some of the options.

time, date
?

1st
gen

2nd
gen

! f-keys
? k-options
t table

Figure 10: cameml console panels

If the recommended color combination is
followed, and plane 0 is selected, the cam/pc
monitor will show plane zero in terms of
white dots on a black background. Plane 1
can be used for a cyan echo, if the rule under
investigation calls for one. Plane 3 carries a
cursor, an 11x11 blue square with the same

37



dimension as left console panel, to which in-
formation can be passed back and forth.
Each panel carries a cursor, which can be

moved by the mouse, keyboard arrows and
symbols, or some of the function keys. The
lack of a mouse will not result in the loss of
any options; equivalent keys always exist.

13.2.1 Alphabetical listing

The full alphabetical list of the keyboard op-
tions, with a brief descriptor for each follows:

0,1,. - enter state for 1st generation
a,b - enter state for 2nd generation
& - and the patch to selected plane
f - fetch demonstration
g - one cycle in console panel
G - back copy from 2nd gen to 1st

h - patch cycle (combine g, G)
H - repeating patch cycle
i - insert beneath cursor
I - insert whole patch
L - install Life w/echo
m - mark neighborhood
M - mark over whole patch
n - unmark neighborhood
o - or the patch to plane epl
p - random plane
Q - square symmetry op
r - read patch
R - reset screen from disk
s - single step on CAM-A
S - execute on CAM-A
t - show rule table
u - �ll panel patch with ones
v - mark neighborhood
w - put patch in CAM-A
x - uncommitted transitions
X - random table
y - random plane
Y - random plane 0 (50%)
z - clear panel patch
Z - clear rule table
? - operator help menu
! - function help menu

13.2.2 cam/pc evolution

In keeping with the uniform practice for all
camex demonstrations, the letters s and S

are reserved for cycles of the cam/pc; by
the same tradition, s advances just one single
generation per keypress. In turn, S initiates
free-running evolution which can be stopped
by pressing any key.
However, care must be taken as to which

rule governs the evolution. To permit brows-
ing, and the transport of a rule from one
demonstration to another, all of them require
an explicit act | usually depressing insert
| to install the cam/pc's lookup table. Ac-
tivating insert fromwithin cameml (or gen-
erally by using insert in the main menu after
having selected the random (2,1) Moore op-
tion) will install the rule currently resident in
mogrul in plane 0, an echo for plane 1, leav-
ing the possibility for a von Neumann shift
rule to be installed in cam-b.
From time to time speci�c automata are

assigned to options (such as L for Life) which
will install a particular rule. Beware setting
the cam in motion without having chosen the
correct rule somewhere; no physical damage
will result, but a carefully prepared pattern in
the bitplanes may inadvertently be disrupted.

13.2.3 Console panel evolution

The consequences of evolution can be viewed
in the console panel; the option g causes
the second generation to appear in the small
panel. It is small just because the console
panel is not assumed to be cyclic, and so
one cannot know the descendants of the edge
cells. The table mogrul de�nes the evolution,
but there are no further side e�ects such as
occur in the cam, there being no additional
planes.
The contents of the small panel can be re-

turned to the large panel by the option G
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(which is not a repeating g), for yet another
generation of evolution. The option h com-
bines g and G, repeating inde�nitely when H

is used. The process makes the most sense
when the pattern in the panel is isolated from
its surroundings, or a still life is under inves-
tigation, or some similar circumstance.

13.2.4 Console panel symmetry

The console panel is square, consequently
susceptible to the performance of symmetry
operations. The ascii arguments of the op-
tion Q result in the following operations; in
all cases the symmetry axis passes through
the central cell, which is likewise the center
for rotations:

H - horizontal re
ection

V - vertical re
ection

D - diagonal re
ection

A - antidiagonal re
ection

L - rotate counterclockwise

R - rotate clockwise

I - inversion

N,S,E,W - cyclic directional shift

13.2.5 Data exchange

Information can be exchanged between the
cam area in the bitplane marked by the
cursor and the console panel. Reading the
bitplane is accomplished by r, whose coun-
terpart is w. Using w replaces the entire
patch, but when additional live cells are to
be added without removing those already
present, the option o (boolean or) should
be used. Boolean and to the plane & is less
useful, nor are there presently boolean oper-
ations running in the opposite direction.
Bitplanes can be built up by gradually

introducing patterns into the console patch

which are then transferred to a bitplane. The
numerals 0 and 1 deposit their values at the
cursor location, which then advances cycli-
cally to the right; a dot has the same e�ect
as a 1. For purposes of generating a forced
evolution, the keys a and b will insert zeroes
and ones, respectively, in the second genera-
tion panel, at the location of a matching cur-
sor which does not advance.
The console patch can be cleared by the

option z, or set (to all 1's) by the option u.
To clear all planes in the cam, use erase.
Keyboard arrows, which should be as-

signed to the corresponding mouse move-
ments, can be used to move any of the cur-
sors; more details are presented in the section
on mouse movements.

13.2.6 Rule table

Among the many motives for editing a rule
table one �nds the desire to enforce a desired
course of evolution, transferring the prob-
lem to the domain of plane editing. This is
the reason for two separate generation panels
in cameml, together with several associated
options.
Option t displays the rule table in the

area of the help panel, together with a cursor
re
ecting the neighborhood surrounding the
cursor in the �rst generation panel. Since we
are editing a plane, not the table, this cur-
sor cannot be moved on its own account; it
always follows the neighborhoods. Nine cells
imply 512 distinct neighborhoods, which are
shown in two groups, according to the central
cell; that implies two 16x16 tables, which are
shown side by side.
Once the �rst and second generation

patches have been edited for a desired ef-
fect, the option i will record the transition
at the site of the cursor in mogrul. Similarly,
I will record the transitions implied by the
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full panel; the order in which it is scanned
determines the resolution of con
icts should
there be inconsistencies.
To facilitate the handling of possible con-


icts, it is possible to mark certain transi-
tions, so that they will not be rede�ned. This
is the purpose of the table mogaux, whose ex-
istence is invisible to the user. Option m will
mark a single neighborhood, M causes whole-
sale marking for the whole panel, and n can
remove any single mark. All of them can be
removed, to start over again by selecting x.
(This use of x is consistent with line edit-
ing in lcau, but not with its use to generate
random rule tables, another important con-
vention).
If a rule table becomes hopelessly befud-

dled, clearing it by Z gives a fresh start. The
option v is similar to m, but marks the whole
Golay class of the neighborhood (that is, the
neighborhood and all its symmetry images).
Colors have been chosen for the tables,

cursors, and markers with the intention
that they should be pleasant and distinc-
tive. However, their assignments can all be
changed from the main menu; a combination
of cursor options and function key f7 su�ces.

13.3 Mouse movements

There is great convenience in being able to
manipulate a program by running a mouse
back and forth along a table (or mouse pad),
although the mouse can easily become lost in
a screen full of icons. Moving cursors around,
and tracing designs on the screen, are among
the less controversial applications of a mouse.

13.3.1 camex mouse

camex uses what may be called an \external
mouse," in contrast to an \internal mouse"
whose control program would form an inte-

gral part of camex. This means that the
mouse program is a tsr (terminate and stay
resident, in the language of operating sys-
tems), inserting its signals into the keyboard
bu�er just as though the user had typed
them.
For compatibility with camex, the follow-

ing assignments should be made:

mou - mouse up - up arrow

mod - mouse down - down arrow

mol - mouse left - left arrow

mor - mouse right - right arrow

moa - left button - ctl left arrow

mob - right button - ctl right arrow

mox - both mouse buttons - esc

In recognition of the fact that many users
of camex may not have a mouse, some of
the function keys have also been assigned
to mouse movements. They have �xed re-
sponses, whereas the mouse itself has three
di�erent classes of movements.

13.3.2 With or without a mouse

Initially, the mouse guides the cursor in the
console panel, butmox will replace the cursor
by the illuminated patch on the cam screen.
Initially it moves by its own width, but a sec-
ond use of mox reduces the displacement to
a single pixel. The cycle is of length three,
returning to the console cursor.
Likewise the response of the buttons varies

with the class. They toggle the pixel in re-
spectively the �rst generation panel or the
second when in console phase; in cam phase,
they read or write the cursor patch, respec-
tively.
A handful of positioning options are re-

lated to the mouse movements, but only
available as keyboard options for the console
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Figure 11: Movements of the illuminated
patch on the cam screen. They can be gen-
erated by mouse or by the keyboard.

panel. They position the cursor at the mar-
gins, but they are not much used.

13.3.3 The mouse menu

The following list, which is rather redundant,
is also illustrated in Figure 11.

mod - downward

patch - cursors south

long - full patch south

short - patch 1 pixel south

mou - upward

patch - cursors north

long - full patch north

short - patch 1 pixel north

mor, space - forward

patch - cursors east

long - full patch east

short - patch 1 pixel east

mol, backspace - backward

patch - cursors west

long - full patch west

short - patch 1 pixel west

moa, ctl left arrow -

patch - toggle 1st gen cursor cell

long - read patch from cam screen

short - read patch from cam screen

mob, ctl right arrow -

patch - toggle 2nd gen cursor cell

long - read patch from cam screen

short - read patch from cam screen

mox, escape - advance mode phase
< - cursor to left margin
> - cursor to right margin
^ - cursor to top margin
- cursor to bottom margin

* - cursor to center of �eld

13.4 Function keys

The function keys are used to execute a rec
program, move the cursor patch, or manip-
ulate the colors of the planes. Some of the
items repeat information given in Figure 11.

13.4.1 Full list

In its entirety, the list is:

f1 = load bitplane(s)

f3 = edit rec program

f4 = execute rec program

f5 = patch west

f6 = patch north

f7 = patch south

f8 = patch east

F5 = patch long west
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F6 = patch long north

F7 = patch long south

F8 = patch long east

f9 - show next plane

F9 - primary plane colors

CTL f9 - show plane 0 only

ALT f9 - show previous plane

INS - center cursor

DEL - clear all planes

f10 - xor patch

F10 - erase patch

13.4.2 Load bitplanes

Random bitplanes of various densities and
designs su�ce for experiments with the ma-
jority of automata; there are a few, such
as Life and WireWorld, which often require
elaborately prepared bitplanes for their orig-
inal con�gurations. One way to obtain them
is to include generators for speci�c patterns
in the submenu for that automaton, or to
creat the pattern by using the editor.
Once created, it is preferable to save the

pattern, rather than having to generate it
anew in a future session; conversely, it is de-
sirable to load bitplanes which have been pre-
pared previously, whatever their source.
The option f1 scans the current directory

for any �les with the extension pat, listing
them on a newly cleared screen. Since the
symbol y is used elsewhere in camexto cre-
ate bitplanes, it can be used here with a hex-
adecimal argument to load the �le marked by
the cursor into that combination of bitplanes.
Where there is no uncertainty, insert will

load plane 0. To load multiple planes, usually
from separate �les, they should have names
which embed the argument for y. Such a con-
vention seems better than creating a plethora
of extensions.

13.4.3 rec program

The easiest way to move information back
and forth from the cam/pc to the disk units
is to write a small rec program, given that
a full path name can be inserted as a string
constant via rec, but is less convenient to do
otherwise. Therefore the main menu's keys,
f3 for editing a rule, and f4 for executing it,
are included in the camemt menu.
This is the procedure to be followed to save

a plane or to load it from another directory;
the option f1 simpli�es loading from the cur-
rent directory.

13.4.4 Patch movement

Given that the arrows are attached to a
mouse in a three phase cycle, some function
keys have been assigned the task of moving
the patch around the bitplane independently
of the cycle. Not only is their assignment un-
ambiguous, it is always available, even when
the mouse is not. The key sequence is some-
what mnemonic, westmoves getting the left-
most key and so on.
Some keys toggle the patch (f10), or ini-

tialize it to the center of the screen; other-
wise it retains its position from one usage to
another, even when cameml is abandoned
and reentered. It is a general characteristic
of camex menus that the position of their
cursors is retained through an entire session.

13.4.5 Color, plane

The keys f9 and f10 have been reserved
throughout most menus to permit visualiz-
ing the planes one by one, choosing a stan-
dard color assignment, or stepping through
a sequence of color assignments. Likewise,
erase almost always erases the full comple-
ment of cam bitplanes.
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14 Conway's Life

One of the most famous of all two dimen-
sional automata is the game of Life, in-
vented in the late sixties by John H. Conway,
and publicized in Martin Gardner's monthly
\Mathematical Recreations" column in Sci-

enti�c American. Several of the demonstra-
tions in camex are based on Life; along with
the program some data �les are provided to
load the bitplanes with interesting initial con-
�gurations.

14.1 Description of Life

Life requires a two-dimensional binary Moore
neighborhood; therefore neighborhoods con-
taining a central cell with eight additional
neighbors. The rule is semitotalistic, mean-
ing that the state of the central cell together
with the number of remaining live cells deter-
mines the evolution. In these terms a live cell
(binary state 1) lives in the next generation
whenever it has two or three live neighbors.
The quiescent state (0, also called dead) be-
comes live (a new cell is born) whenever it
has exactly three live neighbors. All other
cells die (or remain quiescent).
This automaton is remarkable for the fact

that an initial population of randomly chosen
live cells eventually settles down into a col-
lection of visibly separated objects which run
through short cycles of evolution. The most
common cycle, of period 1, is called a \still
life" but there are \oscillators" and \alterna-
tors," mostly of period 2. Period 3 objects
are quite rare; occasionally others are found
with longer periods.
One especially striking �ve-cell object,

called a glider, translates itself diagonally by
a single cell every four generations. Its phases
comprise two pairs of mirror symmetric �g-
ures; the name is therefore a pun on the crys-

tallographic concept of a glide plane.
After a long evolution, small residual ob-

jects are the most common; a graph of fre-
quency versus size is instructive. Automata
other than Life tend to evolve into uniform
chaotic �elds of a �xed density, or to dwindle
away altogether. Life-like rules are merely
uncommon, not unknown; hard it is, how-
ever, to �nd another rule exhibiting the or-
ganized behavior discovered within Life |
certainly none governed by a rule of equal
simplicity.

14.2 Life artifacts

The earliest analyses of Life involved follow-
ing out the evolution of fairly simple clusters
of live cells manually, but computer simula-
tions of random �elds as well as deliberately
chosen patterns also revealed many charac-
teristics of Life.

14.2.1 Small objects

It was quickly observed that some con�gura-
tions are quite stable, others highly volatile,
and naturally a considerable range in be-
tween. No persistent objects formed from one
or two cells exist. Three cells either horizon-
tally or vertically aligned, called blinkers, al-
ternate from one form to the other; they form
the class of permanent object with the tini-
est member; nevertheless they are among the
most numerous.
Among four-cell objects, small rings and

especially squares are both numerous and
stable. Squares are often overcome by ex-
panding clouds of cells from a nearby region
and yet survive when the activity has sub-
sided. As a result they are often deliber-
ately placed within a construction to estab-
lish boundaries or reference points. Another
seven-cell object, called an \eater," has been
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found useful for similar purposes.

Figure 12: Some small stable Life objects

Besides static objects, or still lifes, there
are some small oscillators which are fre-
quently observed after a random initial �eld
�nally settles down. Blinkers are ubiquitous,
but from time to time others may be ob-
served.

�
�
�
�

Figure 13: Commonly seen period 2 objects.

14.2.2 Gliders

Their small size makes gliders a frequent
intermediary in evolving con�gurations; it
is also understandable that glider collisions
were among the �rst Life processes to be
studied. It was found that glider collisions of
varying complexity could produce all kinds of
stable objects as an end product.

Figure 14: A glider advances one square di-
agonally in four generations.

14.2.3 Volatile objects

In the realm of volatile objects, several small
con�gurations were found which were capa-
ble of expanding hundreds or even thousands
of generations before settling down into a
stable ending. One of these, of seven cells,
resembling the greek letter �, occurs fre-
quently in general evolutions; its second gen-
eration, sometimes called a \thunderbird," is
also common. Not only are they of frequent
occurrence; their expansion is quite aggres-
sive, although the region of evolution usually
collides with other regions in the �eld and
soon loses its identity.

Figure 15: First and second generations of a
very volatile object.

14.2.4 Oscillators

By mixing stable and volatile artifacts, many
investigators produced a huge variety of long
period oscillators; some of them were capable
of creating gliders when placed in close prox-
imity so that non-essential debris in their cy-
cles could interact. The culmination of this
e�ort was a remarkable series of constructions
and constructors.

� � � � � � � � � � � � � � � �

Figure 16: An oscillator of period 30.
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14.2.5 Glider guns

Glider guns were the most straightforward;
they were oscillating con�gurations which
continually generated gliders, solving one of
Conway's questions: Is there a Life con�gu-
ration for which the number of live cells can
be demonstrated to increase without limit?
They also make good Life demonstrations. A
glider gun is a little larger than is convenient
to illustrate here, but the principle behind it
is not too hard to describe.
In addition to the period 30 oscillator

shown in Figure 16, there is another of period
46 which has been discovered, both of which
involve a central seed which expands into a
cloud which just happens to leave behind a
copy of the original seed facing in the oppo-
site direction. Naturally this tends to repeat
the cycle except for the interference caused
by the remaining products of the evolution.
It is at this point that placing stable el-

ements nearby helps to create an oscillator;
but if two oscillators are placed side to side,
for the period 30 oscillator, or at right angles,
for the period 46 oscillator, the debris may in-
teract to produce a glider. For all this to work
it is evidently important that the glider be
small, and that small objects be of frequent
occurrence. Even so, careful adjustment is
required, and at that only one or two relative
positions results in gliders which can break
free.

14.2.6 Pu�er trains

There are two classes of artifacts which grow
without limit, in the sense that it can be
demonstrated that the number of live cells in
the �eld will always continue to increase. The
�rst to be discovered consisted of the glider
guns, for which a continuous stream of gliders
emerged from a stationary region; the read-
ily apparent periodicity of the process consti-

tuted the element of proof required.

An alternative would be for a moving
source to leave behind a trail of stationary
objects. Gliders are too small and fragile
to serve the purpose, but other artifacts are
suitable. Space ships, as they are called, are
seen, albeit infrequently, in the residue evolv-
ing from random initial con�gurations; they
di�er from gliders by moving along the coor-
dinate axes instead of diagonally. Neverthe-
less, they involve a re
ective stage, managing
to advance by two cells every four genera-
tions.

Figure 17: A space ship that moves two cells
to the right in four generations, shown in two
of its four phases.

In common with complex oscillators, there
are some sparks associated with the move-
ment of a space ship which are capable of in-
teracting with other objects without imped-
ing the motion of the space ship. Quite a
large variety of followers can be constructed,
many of which leave an orderly assemblage of
residues in their wake; this is the combination
which is called a pu�er train.

There are even assemblages which leave no
residue | smokeless pu�er trains | which
are really space ships themselves; the major-
ity leave an untidy mess which may even take
a life of its own, advance rapidly, and destroy
the engine.
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14.2.7 Other constructions

The description of all this goes considerably
beyond the present discussion; however by
using the bitplane editor and an appropriate
reference (or even ones own imagination) it
is possible to make some very interesting dis-
coveries about Life; it is still not beyond the
realm of possibility for them to be new and
original.
Still, some of the really advanced concepts,

such as discrete logic elements, a universal
computer, or a universal constructor, require
far more space and time than available in a
simulator such as the cam/pc(or any other
system of modest size); even so many of their
essential constituents can be tried out.

14.3 Life experiments

The main menu, displayed by the f1 button,
begins with four Life demonstrations. The
�rst is a regular Life, executed in plane 0 with
a glider trace in plane 1; this is possible be-
cause the �ve-cell gliders all �t within a sin-
gle Moore neighborhood, to be detectable by
a suitable rule for plane 1. As the alternate
rule in plane 1, all the cells that were ever
alive can be marked, visible as a halo around
the evolving �eld.
Two demonstrations are not really Life

demonstrations at all, but a pair of reversible
rules derived from Life.
The fourth demonstration employs plane 1

to inhibit evolution in plane 0; among other
things, this allows life to evolve within �xed
boundaries. Choosing a checkerboard for the
other plane gives nice results.
The rec menu o�ers much the same se-

lection, with one addition - two-color Life.
In this variant, live cells are colored, red and
blue, say. The usual rule of evolution applies,
without regard to color, but newly born cells

take on the minority color of their parents
whenever there is a choice.

14.4 Loading a Life plane

File management operators have been added
to rec, through which the cam/pc's lookup
tables and/or bitplanes can be loaded. It is
�rst necessary to de�ne the �le name, which
should be stated as a string constant: for ex-
ample, "LIFE.PLA ". The �nal space, termi-
nating the string, is essential; any directory
path acceptable toms/dos is also acceptable.
Once a �le has been speci�ed, the de�ni-

tion remains valid until another string con-
stant appears in the program; this feature
should be used cautiously. One of the fol-
lowing four operators may then be used:

x - load the lookup table from the disk
X - save the lookup table on the disk
y - yp loads hexadecimal bitplane com-
bination p from the disk
Y - Yp saves bitplane p on the disk

These mnemonics have been chosen for
compatibility with the menus, wherein y's re-
fer to bitplanes and x's to rules. The same
conventions regarding p also hold: for y, p
can specify multiple planes (or none) by run-
ning through the range 0, ..., f. Only sin-
gle planes can be stored, so the range is 0,

1, 2, 3 in Yp.
With respect to rec, no �le naming con-

vention exists. However, some menus contain
the function keys F1 and F2 which employ
the cam/pc conventions of TAB amd PAT as
extensions for tables and planes. The �les
are interchangeable, with the exception that
camex has �les of one single size (4K for
TAB and 8K for PAT) whereas cam/pc has a
greater variability. To load four distinct bit-
planes in camex, four �les are necessary.
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15 Zhabotinsky reactions

One of the most successful applications of
two-dimensional cellular automata has been
to the so-called Zhabotinsky-type reactions;
their mathematical model has been exten-
sively studied by J. M. Greenberg, S. P. Hast-
ings, and others.

15.1 Theory

It is generally fruitless to model a di�erential
equation by a cellular automaton with few
states, but nonlinear di�erential equations
exist which exhibit well-de�ned states with
de�nite rules of transition between them.

15.2 General framework

Typically, a system will have three-state cells
| resting, active, and exhausted. A certain
number of active cells can activate a rest-
ing cell, which thereupon enters into the ex-
hausted state for several generations. Once
the recovery time has elapsed, a cell rests un-
til activated anew.
Activity has many interpretations: initi-

ation of a chemical reaction, infection with
a disease, enthusiasm over hearing a rumor.
Exhaustion runs a similar gamut: overheat-
ing or depletion of the reactants, incubation
of the disease, boredom.

15.2.1 Spread of epidemics

The terminology of epidemics - infection, in-
cubation, recovery - is convenient to describe
the rules of this class. The models all follow
the same general outline; there is always a
healthy population which is nevertheless sub-
ject to infection at any time.
Infection through a single contact is the

most plausible model, but one way to account
for a disease which is hard to transmit would

be to require a higher intensity of infection,
exempli�ed perhaps by requiring multiple si-
multaneous contacts before infection occurs.
Once infection has occurred, nature must

take its course. The model followed in this
submenu supposes that a cell, once infected,
itself becomes infectious through the dura-
tion of its recovery. Eventually recovery oc-
curs, this model supposes no immunity, leav-
ing the cycle free to repeat at any moment.

15.2.2 Neural conduction

Neurons, although one dimensional, are ob-
served to follow the same three stages of ac-
tivity. Basically, the neuron is inactive, but
a stimulus can trigger a depolarization wave
along the long tubular cell membrane. Slowly
acting chemical processes restore the electri-
cal potential across the cell wall, ready for
another discharge.
Contact between neurons occurs at the far

ends of the tubes - the synapses, various
conditions governing whether a polarization
wave crosses the bridge. The structure is nei-
ther as regular nor as local as a cellular au-
tomaton.

15.2.3 Chemical reactions

The Belousov-Zhabotinsky reaction takes
place in a fairly exotic environment, since cer-
tain chemicals have to be chosen; one of them
is an indicator, whose color changes permit
the reaction to be visualized. The ingredi-
ents are the same as for the other examples;
a system occupies a fairly precarious equilib-
rium in which an exothermic reaction can be
triggered.
Once underway, the production of heat and

exhaustion of the reactants eventually stops
the reaction, which has to wait for a new
supply of reagent to di�use into the region
and for the mixture to cool before starting
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up again. The reaction occasionally becomes
self-sustaining, with spiral waves radiating
out from permanent foci.

15.2.4 Computer simulation

Several parameters are visible in the formu-
lation of the automaton| the kind of neigh-
borhood, the conditions for activation, the
length of enforced inactivity. Neighborhoods
for the cam/pc are pretty well �xed; the
Moore neighborhood in a single plane is con-
venient. The remaining planes are available
as counters, giving up to eight generations of
suspense; the rule for starting the count de-
termines the activation criterion.

15.3 Zhabotinsky submenu

The menu for Zhabotinsky-like automata
consists of two tables, di�erentiating between
the treatment of active and inactive cells.
The �rst de�nes the recovery of the cell, the
second its activation. Each table is a ma-
trix; rows are indexed by age or generation,
(running from 0 to 7) while the columns are
indexed by the number of active neighbors
(running from 0 to 8). The possible rules are
therefore semitotalistic, further modi�ed by
the counter.
Because there is more interest than the

ordinary in varying the parameters in a
Zhabotinsky rule, a large part of the main
menu has been repeatedwithin this submenu,
together with help panels summarizing both
the keyboard options and and function key
options. The relevant keyboard options are
those loading the bitplanes with designs or
random numbers; the pertinent function keys
are those governing the selection of colors
and the examination of individual planes. Of
course, evolution can be started and stopped
in the usual way.

time, date

�
rule panel

help (fun)

help (kbd)

keyboard
options
or

function
keys

Figure 18: Zhabotinsky console panels

15.3.1 Keyboard options

In detail, the keyboard options are:

0,1 - de�ne state
moa - toggle state
space, mor - cursor right
back, mol - cursor left
mou - cursor up
mod - cursor down
tab - change center cell
ins - activate rule
del - clear all planes
c# - dense random plane
h# - 8x8 checkerboard
H# - 2x2 checkerboard
i - initial table
k# - checkerboard cell, age con�g
K# - checkerboard cell, age con�g
m - mark rule
M - unmark rule
p# - sparsely �lled plane
R# - random plane
s - single step of evolution
S - generations of evolution
u# - �ll plane with ones
w# - a few random points
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x - random protected selection
X - random free selection
y - random plane
Y# - random plane 0
z# - �ll plane with zeroes
! - help panel - function keys
? - help panel - keyboard

For keys requiring a numerical argument,
this fact is shown by the notation #; the cam
plane identi�cation scheme applies to the pa-
rameter.
The k options generate an age struc-

ture taken from their argument, placed in
a checkerboard of the indicated size, the
complement occupying the complementary
squares.

15.3.2 Function keys

As with the keyboard options, the assignment
of the function keys is summarized here for
convenience.

f7 - de�ne parameters
f9 - show next plane
F9 - default plane colors
ctl f9 - show plane 0
alt f9 - show previous plane
f10 - next color scheme
F10 = natural color seq
ctl f10 - �rst color scheme
alt f10 - previous colors

Often a change of colors will enhance the
appearance of the reaction, while the exami-
nation of individual planes can give some idea
of the age distribution.

15.4 Suggestions

The parameters is a Zhabotinsky type reac-
tion include the number of neighbors required
to excite a cell, and the length of time it
remains excited. The following suggestions
help choose the parameters, thereby �xing
the rule.

15.4.1 State 0

State 0 is normally quiescent, so that the en-
try for the zero state with eight zero neigh-
bors should be zero. Zero states do not age,
but there is a period of transition in which a
cell that has just recovered still has the ap-
parent age at which the recovery took place.
That is because the counter in planes 1, 2,
and 3 is reset by a zero in plane 0, or incre-
mented by a 1. But the reset cannot take
place until the cell has actually become zero,
which is one generation later.
Otherwise the lines describing aged zero

cells would be meaningless; to adhere strictly
to the Zhabotinsky model, all such lines
should be �lled with zeroes. But they can
also be used for other purposes if one wishes
to think that a cell just recovered may re-
lapse, starting to age anew, according to the
condition of its neighbors.

15.4.2 Degree of contagion

The line for state 0, age 0, contemplates up
to eight neighbors, various combinations of
which can cause activation or infection. Hav-
ing a single neighbor initiate the reactionmay
bemore realistic epidemiologically, but it also
leads to a high level of overall excitation.
Requiring a pair of neighbors to initiate an

infection, it is harder generate activity with
low densities of concentration, since the oc-
currence of pairs is much rarer than the oc-
currence of singlets. Once activation occurs,
enough neighbors are usually excited all at
once to become self sustaining.
Note that there is a di�erence between

having an exact number of neighbors which
will initiate an infection, and a threshold by
which any larger number will also su�ce.
Epidemiologically the latter would probably
be more realistic; the rule may be chosen to
suit either alternative.
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15.4.3 Initial density

When the reaction depends on the presence of
a very small number of activated neighbors,
the density of the initial con�guration is fairly
critical in determining the subsequent course
of evolution.

This is the reason that the density param-
eter is made relatively accessible to the sub-
menu, because its variation will produce the
most instructive results. Therefore it is not
nice to have to jump back and forth to the
main menu all the time to adjust this param-
eter.

Either option w (few points) or option p

(low density) can be adjusted to the thresh-
old, in either case it ought to be rather low.

15.4.4 Length of dormancy

The right hand side of the rule table, the
one that corresponds to state 1 in plane 0,
can be �lled out in many ways; all the en-
tries determine whether a cell will continue
to age, retaining its infectious property, or
recover. As with the left hand side, the recov-
ery can be made to depend upon the number
of activated neighbors. Note that this par-
ticular programming of the cam does not al-
low cells to be non-infectious and simultane-
ously non-infecting; a zero cell always resets
the counter, leaving no way to determine its
age.
In the classical rule there are three states:

quiescent, infectious, passive, whose sequence
is followed cyclically. The process is initiated
once an infectious cell stands next to a qui-
escent neighbor.

Another interesting variant is to �ll the ta-
bles with 1's; then place a zero in the 0 live-
neighbor, 0 age position of the activation ta-
ble, and a diagonal of zeroes in the recovery
table. Option i performs the �rst part.

15.4.5 Speed of evolution

The speed of the cam/pc is great enough
that the evolution often appears as a blur; of-
ten single stepping is more informative. Also,
the choice of coloring for the planes can vary
one's perception of the evolution quite con-
siderably.
In the worst case, plane 0 can be displayed

all by itself, without any of the aging informa-
tion. There is opportunity to do some further
work with cam's color map.

15.4.6 rec demonstrations

Several demonstrations, as well as rec pro-
grams, involve Zhabotinsky-like automata.
The classical Zhabotinsky reaction goes
through a three step cycle, usually produc-
ing concentric rings of epidemiologically ex-
citation; two di�erent frequencies arise under
slightly di�erent circumstances.
The key to a continuing excitation, man-

ifested by spiral waves, and discovered by
Greenberg and Hastings, is a central nucleus
consisting of a closed ring of successive states.
That allows a neverending sequence of activa-
tion and recovery, which propagates outward
from the nucleus.
Several nuclei will produce interacting spi-

rals. Very short loops, often just a collection
of three cells, form the most common nuclei.
The rec demonstration must be inter-

rupted twice, by a keypress, in each case
preferably after the waves have stabilized; it
is called \an interesting eater cycle" in the
menu. Sometimes a \clean" demonstration
results, in a way resembling the peeling of an
onion. On other occasions some wild evolu-
tion sets in, quickly overpowering the orderly
regime that was intended for the demonstra-
tion.
But that, in itself, could be considered as

a demonstration.
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16 \Eater" rules

There is a close a�nity between Zhabotinsky
type rules and the class of \eaters," de�ned as
those for which the central cell takes on the
identity of one of its neighbors. The usual
arrangement is to rank the states in some or-
der, then close the list to form a cycle. In
a traditional form, \scissors cut paper, pa-
per covers stone, stone breaks scissors." An
automaton results when each cell su�ers the
ravages of any neighbor in a position to af-
fect it. A stone cell becomes paper if there is
a paper cell roundabout; meanwhile the pa-
per cell su�ers a fate dependent upon its own
neighbors.

In the cam/pc, the greatest variety comes
from the von Neumann neighborhood, whose
cells can have as many as four states; however
this limits the number of neighbors to four.
A much greater number of states produces a
more interesting automaton, but four is still
su�cient for many interesting studies.

camex still does not have a submenu en-
titled \eaters," but the rule can be incorpo-
rated into just about any type of automa-
ton which has a su�cient number of states;
generally, the more the better. Consequently
several of the submenus, for which this au-
tomaton makes sense, include options to gen-
erate the eater rule without having to edit the
rule table.

The evolution of an eater rule progresses
through stages.

Given a large number of states, there is a
small probability that a cell will be a�ected
by one of its neighbors. Initially the evolution
consists of the formation of small droplets;
whenever a cell actually changes its state,
there is a chance that it can feed on neighbors
which were previously unattractive. Simi-
larly, the growth of any region consisting of
a single state increases the number of addi-

tional cells which it might devour.
Once the droplets have begun to coalesce,

two new things begin to happen; uniform
regions start to collide, chains of cells close
into cycles. The chain may even have been
present initially; if the number of states is
small, there may be nuclei where the states
are clumped together.
Whenever chains become established, they

generate spirals which sweep out larger and
larger areas, because cells in the spiral having
the appropriate phase will eventually pass by
any cell sitting on the edge of the spiral and
capture it.
In the end, regions which do not interact

further will establish themselves, unless there
are spirals present. A single spiral will go on
spinning; with two or more, they can steal
cells from each other, provoking a duel which
will only end with the eventual dominance of
one or the other.
On the other hand, they may just continue

to coexist, circling around each other forever.
Introducing eater rules into cellular au-

tomata is more successful than trying to do
such things as discretize Laplace's equation.
In the latter case, the value (that is, state) of
a cell should be the average of its neighbors.
Programming such a rule leads to an evo-

lution which quickly settles down to an aver-
age value; if the number of states is small, it
is impossible to get interesting evolutions in
which boundary conditions are maintained.
The reason is simply that few states cannot
maintain a gradual variation between appre-
ciably di�ering values on the boundary.
Applications to nonlinear di�erential equa-

tions, such as those that describe Zhabotin-
sky reactions, can be more successful when-
ever the solutions cluster around well de�ned
values with de�nite criteria for the solution
to jump between them.
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17 WireWorld

WireWorld is an automaton which can be
used for modelling digital logic in a plane.
Three bitplanes are required, one of which
bears a circuit diagram (the wires) and never
changes. The other two are used to describe
\electrons:" two in order to polarize the elec-
tron, forcing it to move along the wire.

17.1 De�nition

WireWorld is equivalent to a four-state au-
tomaton with Moore neighborhoods, wherein
the four states have the following signi�cance:

0 - background cell
1 - wire cell

2 - electron head
3 - electron tail

The rules of evolution are:

- a wire cell becomes a head whenever
one or two Moore neighbors (besides it-
self) are heads; otherwise it remains a
wire cell.

- a head always becomes a tail
- a tail always reverts to a wire cell
- the background never changes

In a way, the rules resemble a Zhabotin-
sky reaction; an electron head is the acti-
vated state, the tail the refractive state, the
wire itself constituting the inactive medium.
The background con�nes the activity to the
wires. Of course there is no requirement that
the wires must be lines; something other than
digital logic would result though, if they were
not.
Constituting the electron as a pair, head

and tail, polarizes the combination, forcing it
to move in the direction of the head. Other
mixtures would be possible, but are generally

avoided as irrelevant to the task of simulat-
ing digital logic; likewise two electrons are
not supposed to travel in opposite directions
on the same wire. Nevertheless, arranging
junctions where electrons can meet; that is,
forming logic elements, is one of the design
problems to be solved in WireWorld.
Normally the cam/pc does not allow a

four state Moore neighborhood, but the a�n-
ity between WireWorld and the Zhabotinsky
reaction and its implied counter lets the rule
be implemented. Plane 1 holds the circuit
diagram, plane 0 the electron's head, plane 3
the tail. To enter the head state is the only
decision which requires any neighborhood be-
yond the cell itself; assigning it to a Moore-
neighborhood plane 0 �ts just nicely into the
cam/pc's capabilities.

17.2 Digital logic

It is evident that the simulation of digital
logic by a cellular automaton cannot proceed
on the basis of voltage levels, because changes
could only propagate from one place to an-
other at a �nite velocity. Something akin to
pulses, which can propagate, is required; this
supposes, in its own turn, the ability to dis-
tinguish between a pulse and its absence.
A traditional solution to the problem has

been to maintain two lines, one for the sig-
nal and one for its complement. Additional
states on a single line can accomplish much
the same purpose.
Yet another solution has been to clock the

signals; the complement of a signal is simply
one which does not appear at the place and
time that the signal itself should have done
so.
In turn this can create the problem, either

of synchronizing several local clocks initially,
or distributing clock pulses emanating from a
central source throughout the network. The
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central clock would still have to be started,
and allowed to run long enough to reach each
region before the circuit as a whole would
have to start operation.

Practically speaking, it is better to have
local clocks, and to prepare the initial Wire-

World con�guration meticulously, with at-
tention to the phase and period of each clock.
Another detail which must be watched, is

to be sure that any two successive pulses are
su�ciently well separated that they do not
interfere with one another | especially when
entering or leaving a logic element.

17.2.1 Barriers

The most fundamental object in WireWorld

is probably a barrier | a circuit element
which blocks pulses arriving from either di-
rection. In and of itself, it does not amount to
much; however it occurs frequently in the fol-
lowing constructions, sometimes participat-
ing in schemes circumventing it, sometimes
for its ability to block interference.

Figure 19: WireWorld barrier

17.2.2 Diodes

Another fundamental object in WireWorld

the diode | a circuit element which will en-
force the correct direction of travel on pulses
| which often prevents spurious signals from
leaking into a region. The diode shown in the
illustration will pass signals from left to right,
but not in the opposite direction. Its relation
to a barrier is evident upon inspection.

�

Figure 20: WireWorld diode

17.2.3 or gate

A \t" can be used as an or gate for a pair of
signals; the main concern is that one signal
should not encroach upon the territory of the
other when the second is absent. The signals
arrive along the arms of the \t," the com-
posite departs along the stem. It is essential
that the stem rise one cell above the cross-
bar, thereby isolating the incoming signals; a
barrier lurks beneath it all.

a

a or b

b

Figure 21: or gate

17.2.4 exclusive or gate

A structure somewhat more complicated
than an or gate will produce an exclusive
or. As a circuit element it is not much used
in design, but it has a theoretical importance
with respect to minimal collections of gates
from which all others can be derived. For ex-
ample, nands by themselves are su�cient for
the purpose.

17.2.5 one-and-not-the-other gate

Half of an exclusive or would be a gate of
the form a�b. Theoretically it is useful because
of the identity ab = a�b � a; fortunately the
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a

a� b

� b

Figure 22: exclusive or gate

latter composite has an equivalent realization
that is much less complex than following the
formula literally.
Signals enter from the left and the right,

the result appears at the bottom.

a

�

a�b

�

�
b

Figure 23: one-and-not-the-other gate

17.2.6 and gate

A little ingenuity produces the following and
gate; the signals enter at the top corners,
their and exits at the bottom right hand cor-
ner:

a b

�

�
�

�

�

�

�
�

a and b

Figure 24: and gate

This literal construction shows too many

cells; the circuit can be rearranged into other
forms.

17.2.7 Clocks

To establish a clock it is only necessary to
set up a ring whose circumference has the
desired period, draw the signal o� at some
point, and insert an electron. Diodes can be
used to protect the clock, and to ensure a par-
ticular direction of circulation. More elabo-
rate clocks can be constructed by spacing out
several electrons within the same circumfer-
ence.
WireWorld inherits the basic three-cell

loop from the Zhabotinsky reactions, yielding
all kinds of period-3 clocks. That is also the
closest spacing that two electrons can have,
but it is entirely too fast and dense for most
applications.
A ring of four cells gives one of the smallest

manageable clocks:

�
} period 3

}
�
� period 4

}
�
� � period 6

Figure 25: WireWorld clocks

However, loops yielding period six or even
longer lead to more conservative construc-
tions. Period six allows the inclusion of ul-
trafast period three subassemblies.
A clock seems to be the only way to cre-

ate the boolean constant true; once again it
is worth emphasizing that the constant only
appears at intervals and propagates with a
�nite velocity.
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17.2.8 An inverter

The a�b gate becomes an inverter when the
a signal is always true; this has to be ar-
ranged with a clock, simultaneously creating
a timing which has to be respected. In par-
ticular, the period of the clock establishes the
minimum interval between pulses.

notb

�

�
}

�

�

�

b

Figure 26: complement

17.2.9 A crossover

Having exhibited the boolean operations, all
the necessary material is present to con-
struct a combinatorial circuit; by adding a
unit delay, sequential circuits are also possi-
ble. Leading the signal along a zigzag is all
that would be required, so there is no di�-
culty. To realize circuitry in a plane, however,
crossovers are required.
One technique would be to multiplex a

signal along a single wire, then demultiplex
it with the help of a clock. Nevertheless
clockless alternatives are available; one ex-
travagant procedure is to use the identity
b = a�(a�b) to release b from an exclusive
or in which a was the left member, and its
counterpart to release a on the right.

17.3 Digital circuits

Once it is clear that all the components for
digital circuitry are present in WireWorld,
the only thing lacking to produce a design
is to assemble them. Presumably the same

a

b

�

�

�

�

�

�

�

�

�

�

�

�

�

�

b

a

Figure 27: crossover

course that would be followed with real com-
ponents should be recommended. In other
words, the next step is to create the tradi-
tional small components, such as the 7400
series of ttl integrated circuits. Not neces-
sarily starting with the historical package of
four nand gates; but rather with such items
as 
ip 
ops, shift registers, adders, memories.
At the same time, one should seek simpli-

�cations to the elementary components, and
compact forms of advanced components.

17.3.1 Bistable element

The most fundamental bistable element, the
raw material from wuhich all 
ip 
ops are
constructed, is a pair of inverters connected
to each other. No matter whether the input
to one of them is true or false, the cir-
cuit is always self consistent; yet the design
is completely symmetric between the two al-
ternatives.

17.3.2 Flip 
op

To make an operable circuit, a bistable el-
ement must be provided with output leads
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Figure 28: bistable element

so that its state can be exploited by the re-
mainder of the circuit. Additionally, there
must be some mechanism to force it into a
known state, which includes inducing it to
change states. Rather than making the de-
signer keep track of the state of the 
ip 
op,
the most elegant versions do this internally,
automatically exchanging states upon the re-
ceipt of a triggering signal.

The following design incorporates a nor
gate; a single electron (arriving in the cor-
rect phase of the six phase clock), acting as a
true pulse, will force one or the other state,
according to its entry point. The 
ip 
op ac-
tually requires the true signal for two cycles,
which is arranged internally by pulse dou-
blers.

An additional detail, not shown, would be
to restrict the output stream to a single pulse.
In that form the units could be cascaded to
form a counter, the style of the output then
being consistent with the input.

Starting from the indications shown here,
any standard textbook on circuit design can
be used to build up much more elaborate cir-
cuits.

Q

�Q

Figure 29: nor gated flip flop

17.4 Advanced projects

Whether or not there is any point in using
WireWorld to build up operating circuitry,
there is no denying that it is very instruc-
tional, nor that the same expertise can be
shared with the design of circuits in other me-
dia. Some di�erences exist, of course. Wire-

World prefers nor gates, whereas integrated
circuit design is based upon nand gates, for
example.

17.4.1 Binary counter

The next step beyond a 
ip
op would seem to
be a binary counter, obtained by connecting
a string of 
ip
ops, each element emitting a
single signal as output for every two which it
receives as input.

In order to function as a true counter, not
simply a divider, the state of each stage al-
ways has to be available, as an output signal.
But that is not a di�cult detail.
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17.4.2 Incrementer

Another basic digital circuit is the binary
adder. Two input streams correspond to the
summands; one wants an output stream rep-
resenting their binary sum. Strictly, that is
a serial adder; but a parallel adder would be
mostly combinatorial.
An incrementer is a simpler variant; the

output stream consists of an input stream to
which a binary 1 has been added; connected
to a loop, the circuit could count inde�nitely.

17.4.3 Automaton

As an ultimate element of whimsey, one
might emulate the cam/pc, whose model is
supposedly a long feedback loop with combi-
natorial logic for regenerating the loop using
to the rule of evolution of the automaton.

17.5 Editing WireWorld

Unlike automata for which random �elds suf-
�ce as initial conditions, and in common
with Life, WireWorld requires a very care-
fully planned initial con�guration. Loading
previously prepared bitplane �les is one so-
lution to the problem, which merely places
the responsibility for preparing the bitplane
elsewhere.
With some ingenuity the Moore plane ed-

itor can be used to create a WireWorld con-
�guration, modifying the planes one by one;
but even better, by using the option l (edit
planes) in camex's main menu after the
WireWorld option has been selected leads to
a variant adapted to the needs ofWireWorld.
The adaptation consists in allowing the

symbols 2 and 3 to deposit electron states,
and the suppression of all the options con-
cerned with marking, modifying or display-
ing the rule table. Trial evolution, con�ned

to the console screen, is still possible, as are
the symmetry operations.
The generation of both random �elds and

random tables has also been omitted, just as
the loading of alternative rules. However,
insert must be used to load WireWorld;
although a source of many accidents, that
choice is consistent with universal browsing.
Occasionally, the editing facilities may be de-
sired for another rule, which ought not to be
lost just because of temporarily entering the
editor.
Since WireWorld requires three planes

(two of them mostly empty), the WireWorld

option l has its own private rec program,
accessible via the usual f3, to store all three
planes on disk. Standard names have been
chosen for these �les, but the rec editor can
change them. It is recommended that the nu-
merals 1, 2, and 4 always be incorporated in
their names to facilitate remembering which
arguments of y will be needed to load them
again.
Option f1 within the plane editor will ex-

hibit a list of up to twenty �les on the cur-
rent disk with the extension .PAT, but in-
sert will not work properly. Rather, the
three planes must be loaded separately using
option y; since yp can load multiple planes,
correct arguments would be p = 1; 2; 4. As
stated above, the number could be part of
the �le name, as in WW4.PAT.
The disk space required by most simple

WireWorld demonstrations can be reduced
by saving only the wire plane. Electrons can
be inserted with the editor; if it is not obvi-
ous where they should go, pointers can be in-
serted among the wires as reminders. Good
practice includes placing just enough extra
lead at the inputs and outputs of sample com-
ponents so that occurrence of electron heads
and tails at their tips will coincide with tran-
sit times and internal clocks.
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18 De Bruijn diagrams

The statistical properties of a cellular au-
tomaton can be predicted by drawing a
\mean �eld curve" based on randomly dis-
tributing the cells throughout a con�gura-
tion. Using the rules for compound probabili-
ties in the evolutionary function predicts the
distribution of the second generation, from
which properties of the automaton, such as
�xed points, can be inferred.
This approach must be corrected for the

correlations which build up from generation
to generation, creating a need for calculations
which reveal the periodic con�gurations ex-
actly; but then it is just as easy to include
shifts along with the periodicity.

18.1 Neighborhood dominoes

Suppose that the neighborhoods of an au-
tomaton were split into several parts (typi-
cally, overlapping) which were used to con-
struct tiles - dominoes if the sequence were
linear. The fundamental problem is tiling the
con�guration space, ensuring that the states
of the cells always coincide wherever the tiles
overlap; a triviality in one dimension, but not
always soluble for higher dimensions.
Suppose further that some of the tiles

were withdrawn from the game; for instance
those forming neighborhoods whose evolu-
tion did not proceed as desired, maybe tiles
whose central cell changed between genera-
tions. Can large designs be constructed from
the remaining tiles? And if so, how can they
be described?
Evidently this procedure reveals con�gura-

tions having periodic evolution, or consisting
in periodic displacement. The longer the pe-
riod, the larger the neighborhood required;
each one requires enough internal informa-
tion to guide its own evolution the necessary

number of steps.

To avoid the possibility of an undecidable
tiling in two or more dimensions, the search
can be con�ned to con�gurations of a �xed
spatial periodicity in all but the last dimen-
sion. The �rst step is to catalogue the tiles
which can be strung out along a single direc-
tion, noting all the pairs which can be joined
together.

18.2 De Bruijn matrix

There are (directed) graphs, usually called de
Bruijn diagrams (for k symbols and n stages),
whose nodes correspond to all the kn�1 pos-
sible sequences of length n � 1 composed of
the given symbols. Their links are sequences
of length n, joining any pair of nodes where
the tail comprises the �rst n�1 symbols, the
head the last n � 1 symbols.

In other words, 1101 would link node 110
to node 101 in a four stage binary diagram.

For two-dimensional binary automata with
Moore neighborhoods, it is convenient to split
the 3x3 neighborhood into two 3x2 rectan-
gles, overlapping in a central column contain-
ing three cells. Accordingly its three stage,
eight symbol de Bruin diagram would have
sixty four nodes, each with eight links. Tak-
ing a full column as one single eight state cell
makes the structure one dimensional.

Graphs are conveniently represented by
matrices, whose rows and columns are la-
belled by the nodes. The elements of the ma-
trix are to be ones and zeroes, according to
whether the node indexing the row is linked
to the node indexing the column; in symbolic
form:

Mij = link(i; j):

Written with the link predicate, the rule of
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matrix multiplication,

M2

ij =
X
k

link(i; k)link(k; j);

implies that powers of such a matrix describe
paths through the graph; the kth power yields
paths of length k, the sum of the �rst k pow-
ers paths of length k or less. Such matrix
elements will be integers; those greater than
1 indicate a multiple path.
To make the general de Bruijn diagram

correspond to a particular type of evolution,
retain only those links whose neighborhoods
behave properly. In the connection matrix,
zeroes replace the missing links.
Powers of the de Bruijn matrix, the con-

nectivity matrix of the diagram, reveal se-
quences of neighborhoods - rectangular re-
gions - whose evolution proceeds correctly.
In order to close the sequence into a ring
of length k, the kth power of the de Bruijn
matrix should be calculated, from which
paths corresponding to the diagonal should
be culled.

18.3 Second level diagrams

Once acceptable strips extending along one
dimension have been found, they can be
stacked in some orthogonal direction - along
a second dimension. The same procedure ap-
plies as before; each ring is split into two over-
lapping subrings, following which a diagram
(or its connectivity matrix) is prepared show-
ing how to combine them into longer entities.
Here there is an overt problem which

is only implicit in the �rst level diagram,
namely that links ought to be eliminated
which terminate in dead ends; since they can-
not participate in arbitrarily large con�gu-
rations. Although dead ends occur at the
�rst level, they get discarded whenever closed
loops are extracted from the diagram.

At the second, or �nal level, it is likely
that only a �nite representative of the in�-
nite plane will be exhibited, so it is necessary
to know in advance if some path will eventu-
ally be blocked. The solution is to program
a recursive scan of the proposed second level
diagram, in which all nodes are eliminated
which have no incoming arrows, as well as
those which have no outgoing arrows.
The �nal product will contain only loops

joined to each other. There is no guaran-
tee that there will be global loops; in Life

this lack produces the phenomenon known as
\fuses." It is possible to circulate in one part
of a graph for an arbitrarily long time, later
crossing over to another part, from which
there is no return; but where there are new
loops in which to continue circulating.
Of course this can happen several times,

producing composite fuses. In the terminol-
ogy of matrix theory, such connectivity ma-
trices have block triangular form.

18.4 Third level diagrams

For automata with more than two dimen-
sions, higher dimensional slabs can be built
up dimension by dimension by repeating the
process already described. The volume of
the Moore neighborhoods involved increases
rapidly with dimension, limiting the practical
feasibility of going beyond two dimensions for
most automata.

18.5 The de Bruijn option

The main camex menu contains an option d

for generating de Bruijn diagrams for Moore
automata. The rule table has to bave been
selected previously; option d uses whatever
table is currently resident in the array mogrul
(which has not necessarily yet been loaded
into the cam lookup table).
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Within the option, a graphics mode screen
is shown, containing three main panels and
space for several headers and items of data.

time, date
d?

header

connection
matrices

options
or

tables

Figure 30: de Bruijn panels

The submenuwhich is displayed admits the
following options; all but the obvious ones are
later explained individually:

- abcdef - shifts,

- ABCDEF - strips,

- MNOPQR - 0, 0's,

- 123456 - sample,

- SsGg - cam, console,

- = - type matrix,

- i - matrix grid,

- Kk - disk output,

- mno - graph matrix,

- t - matrix power,

- 8 - survey 1-9,

- /, z - clear screen,

- Z - clear all,

- <cr> - exit,

18.5.1 Shifts

There are several directions in which a shift
can take place, not to mention the possibility
of none at all. Evolution into a constant state
is also envisioned.

a - still life; no shift.
b - transversal; shift one cell across the
strip.

c - diagonal; shift one cell along, one across
the strip.

d - longitudinal; shift one cell along the
strip.

e - vanishing; every cell enters state 0.
f - setting; every cell enters state 1.

The shift option clears the matrix panel,
then displays a 64x64 matrix of 1x1 pixels
showing which of the partial neighborhoods
overlap consistently. The outline of a three
stage, eight symbol de Bruijn matrix is al-
ways in evidence.

18.5.2 Periodic strips

The width of the strip chosen for the �rst
level de Bruijn diagram varies from 1 to 6
according to the options A to F. Wider strips
are not available simply because of memory
limitations, but execution time would also be
a consideration if the strips were much wider.

A 1 B 2 C 3

D 4 E 5 F 6

The strip option calculates the second level
de Bruijn diagram, which describes the se-
quencing of the partial strips (actually, it has
been edited so that only loops remain). The
number of nodes can be very large - up to
n = 22w for a strip of width w - , so the �nal
display is adjusted accordingly. If m � 64,
the connectivity matrix is displayed using 2x2
pixels on a green background.
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Otherwise, if m � 128, the connectivity
matrix is displayed with 1x1 pixels. If there
are still more nodes, no matrix at all is shown.

In every case, it is possible to obtain a list-
ing of the matrix elements of the second level
matrix.

18.5.3 Isolated strips

Slightly wider strips can be accommodated
within the available computational space if
they are supposed to be isolated - that is,
beginning and ending with at least two cells
in state 0 (supposedly quiescent) - for neigh-
borhoods of radius 1 such as camex uses. If
complete isolation is desired, each strip pro-
duced by the second stage has to be checked
for eventual zero termination for both orien-
tations along the cross direction.

M 1 N 2 O 3

P 4 Q 5 R 6

The same presentation which is given to
the periodic strips is given to the isolated
strips; however, they are usually far less in
number, making wider strips feasible.

18.5.4 Sample

For those cases where the resulting number
of nodes was small enough to record the sec-
ond level connectivity matrix, sample con�g-
urations can be generated, both on the con-
sole screen and in cam bitplane 0. A ran-
dom number generator is used to read the
graph, taking each branch with equal proba-
bility. Consequently a di�erent pattern will
usually be generated each time this option is
used.

1 1 2 2 3 3

4 4 5 5 6 6

18.5.5 To run the sample

Following the overall camex conventions, S
and s will set evolution going in the cam,
whilst G and g apply to the console screen,
where the limitations of small size and non-
cyclic borders apply.

As they evolve, even the sample cam
screens will degenerate, for two reasons: Un-
less the width of the strip is a divisor of 256,
the width of the cam screen (or of the width
of the console screen, as appropriate), the
con�guration will not be truly periodic; only
in rare instances will this be immaterial.

The screen is generated from the center row
upwards and downwards; there is no guar-
antee that joining will occur in the vertical
direction either. Even if the second level
de Bruijn diagram permitted it, the program
would make no e�ort to ensure vertical clo-
sure. So all the allowable con�gurations can
materialize, but only as �nite extracts from
the in�nite plane.

18.5.6 Disk output

The connectivity matrix of the second level
de Bruin diagram is often rather large, usu-
ally exceeding the capacity of the screen dis-
play. Most of the time it is not required, but
occasionally one wants to see it; even when
it is small there are times when a permanent
record is desirable. The option k enables disk
output, K suppresses it.

No information is actually written on disk
by k or K; they decide whether one of the
options that generate strips, periodic or iso-
lated, will write the links on �le P0.DAT. Fur-
thermore, the execution of one of those op-
tions (A ... F, M ... R) is the only oc-
casion on which the �le can be written.

The �le name is �xed; later �les will over-
ate earlier ones. To save several �les requires
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executing camex several times, renaming the
�le every time.
Once produced, a �le can be sorted with

the dos utility sort. Sorted according to
either incoming or outgoing links, the lists
tend to be more readable than in their natu-
ral form, which follows chains as far as possi-
ble before returning to branches encountered
earlier.

18.5.7 Matrix power

Once the connectivity matrix for the �rst
level de Bruijn diagram has been set up, it
can be raised to powers; each time option t

is used, the power is increased by 1. At the
same time, the power matrix is displayed in
the matrix panel; from there it can be ana-
lyzed, even copied by a screen dump if it is
so desired.
By exhibiting a visual image of the matrix,

some of the details of the linkages can be seen,
such as their number and density. The ma-
trix is not sorted, so all but the most obvious
block diagonal or block triangular forms tend
to be obscured until the higher powers.
The matrix display distinguishes only non-

zero elements, but the (0; 0) element and the
trace are always shown just above the header
line; 0 is always the number of the zero partial
neighborhood.
Two matrices are maintained by the pro-

gram. One is the �rst level connection ma-
trix, displayed by typing m. The other is a
work matrix; it contains the powers gener-
ated by option t, and can be displayed by
typing n.
When the work matrix is used to hold the

second level diagram, the labelling arrange-
ment is di�erent; the matrix uses a coded
form of the link as the link's matrix element,
-1 for a non-link. The matrix can be viewed
using option o instead of n.

Conversion to standard form can be ef-
fected by option ~, but then no more samples
can be generated without starting all over
again. On the other hand, t and option 8

could then be used to gather statistics on the
second level diagram.

18.5.8 General survey

If it is only required to know how many hor-
izontal strips of a given length there are, but
not their exact composition, option 8 may be
used. The de Bruijn matrix and its �rst eight
powers are calculated; their (0; 0) elements
and traces are tabulated.
The (0; 0) elements tell how many isolated

strips there are, the trace the number of pe-
riodic strips. Not all these strips will stack
vertically, so the numbers represent an up-
per bound (but often a fair estimate) for the
number of nodes in the second level diagram.
The maximum number of links each node
may have is 2l�2 (isolated) or 2l (periodic),
for length l; in practice the number is much,
much lower.

18.6 Typical operation

To calculate a de Bruijn diagram, and partic-
ularly, to set up some examples whose evolu-
tion can be checked by the cam, the following
steps could be followed.
First, select the rule, and be sure that it is

installed both in mogrul and the cam lookup
tables. It is better to do this explicitly rather
than relying on one of the rec demonstra-
tions to leave the tables behind. The insert
option within the f1 options which allow rule
editing will usually load the tables correctly.
The main menu option d a�ords the only

access to de Moore (2; 1) de Bruijn diagrams
(access to Moore (4; 1=2) diagrams resides in
the menu for that option, but it is much
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more limited and requires far less space);
the scarcity of data space for camex pre-
cludes having any additional data structures
present.
Within the de Bruijn submenu, the class

of shift should be selected at once; otherwise
the connectivity matrix will be uninitialized,
making further results meaningless.
The general survey, matrix powers, or a

second level diagram can now be selected.
Having generated a second level matrix, it

can be saved on the disk, or used to generate
samples on the screens. Only one matrix can
be saved per session, the latest if there were
several attempts. Samples can be generated
and run inde�nitely.
Screen samples should con�rm whatever

type of evolution was selected, but the in-
evitable discontinuity at the edges of the
screen will usually erode the image, starting
at the lines where the periodicity fails.
It is possible to begin over again at any

time by going back to select a shift class. Dif-
ferent widths within the same class can also
be chosen, without having to go all the way
back to the shift class options.
The rule table remains intact when return-

ing to the main menu, but all the connection
matrices will have to be reestablished when
reentering d later on.
Whether the rule has changed in the in-

terim depends on whether mogrul has been
altered during that time; von Neumann op-
tions leave it intact, but having used insert
during any Moore option will have surely re-
sulted in change.

18.7 External data bases

The use of de Bruijn diagrams is somewhat
varied. Theoretically, they establish the ex-
istence of many phenomena and limits which
otherwise could have gone unrecognized. In

that respect they are very useful, even when
they are never calculated at all; but once a
calculation is undertaken, it usually turns out
to be very lengthy.
There are two instances in which de Bruijn

diagrams appear within camex, and a third
where it could be included were the demand
to materialize.
The �rst, option d in the main menu, ap-

plies to (2; 1) Moore automata in two dimen-
sions, having been discussed here at some
length. Only �rst generation diagrams were
possible; their inclusion required substantial
revision of the layout of camex's data seg-
ment. Even so, the strips that can be gotten
must be less than six cells wide.
The second, option j within the (4; 1=2)

Moore automata, is even more restricted;
only �rst generation diagrams with strips of
width less that three cells can be realized.
A third possibility would be to annex

lcau's de Bruijn modules to camex, but
the prospective user would be well advised to
go directly to the corresponding lcau pro-
gram, where there is intrinsically a greater
variety of automata to choose from. Even so,
the 64K barrier still exists; somewhat longer
strips still �t the limitation.
Life is one of the few automata for which a

signi�cant demand has actually arisen for ex-
tensive results of de Bruijn calculations; this
is no doubt due to Life's high recreational
value.
Considering that the �nal diagram is fairly

modest, particularly having taken into ac-
count the e�ort required to obtain it, suggests
the formation of a data base from which Life

patterns can be generated on demand.
The important parameter is the size of the

�nal diagram, rather than the demands upon
the program which created it. E�orts are
underway to create this data; as it becomes
available the �nal diagrams will be adjoined
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to camex.
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19 cam hardware

Although the circuit diagrams for all the dif-
ferent cams seem to be proprietary infor-
mation, published descriptions allow working
up at least a block diagram of their opera-
tion; contemplating software which interacts
directly with the cam without such informa-
tion would appear to be rather di�cult.

One of the important characteristics of a
cam is its role as a video controller, as a con-
sequence of which it can be implemented as a
specialized shift register. Rather than build-
ing a fully parallel circuit in which every cell
evolves simultaneously, it is only necessary
that each cell be updated as its place on the
monitor screen comes around. The process
evidently favors two-dimensional cellular au-
tomata.

Three essential components of a cam have
to be considered: output to the video mon-
itor, data de�ning the states of the cells,
and the rule of evolution of the automaton.
Choice of these parameters is restricted and
in
uenced by permanent elements of the cir-
cuit design, such as how many states are al-
located to each cell, and the neighborhood
which will surround it. To a certain extent,
these details are also programmable.

The fundamental structural element of a
cam is a bitplane; in the cam/pc it is a
256x256 binary array. Grouping two bit-
planes into a half-cam gives a full cam a
complement of four bitplanes. The peculiar
nomenclature results from an assymetry in
the two planes of a half-cam | sometimes
only one of them evolves. Following mathe-
matical and computing convention, the four
planes are numbered 0, 1, 2, 3.

The way that a linear shift register of 64K
stages can be treated as a plane is to take out
taps at 256 bit intervals; it is su�cient to read
from the feedback point of the cycle, 1 and

256 bits ahead, also 1 and 256 bits behind
to obtain a �ve cell, two dimensional, binary
von Neumann neighborhood.
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20 Modi�cations and ex-
tensions

20.1 Hardware origin

20.2 Radius 1/2 Moore neigh-
borhood
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