next up previous contents
Next: T2 Up: T1 Previous: cross references   Contents

periodic lattice component

Figure 3: T1 is the smallest triangle, but nevertheless can crystallize in a lattice of pure T1's. The enantiomorphic diagonal reflection also tiles the plane, but cannot evolve under rule 110.
\begin{figure}\centering\begin{picture}(150,150)
\put(0,0){\epsfxsize =150pt \epsffile{lat1.eps}}
\end{picture}\end{figure}

The prime occurrence of T1 is in a cycle of length 4, generating staggered columns of T1's.


Table 1: At certain shift-periods, the cycle may coincide with other patterns (marked by f), especially in the formation of the A gliders (marked by A). It may also end abruptly at a half-space of zeroes (marked by z), as regularly happens in static configurations.
  10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10
1 c . . . c . . . c . . . c . . . c . . . c
2 . . c . . . c . . . z . . . c . . . c .  
3 c . . . c . . . c . . . A . . . c . . . c
4 . . c . . . c . . . z . . . c . . . c .  
5 c . . . c . . . f . . . c . . . c . . . c
6 . . c . . . c . . . z . . . A . . . c .  
7 c . . . c . . . c . . . c . . . c . . . c
8 . . c . . . f . . . z . . . c . . . c .  
9 c . . . c . . . f . . . f . . . A . . . c
10 . . c . . . f . . . z . . . c . . . c .  



next up previous contents
Next: T2 Up: T1 Previous: cross references   Contents
Jose Manuel Gomez Soto 2002-05-15