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Chapter 1

History

Up to now, the history of cellular automata seems to revolve around three out-
standing events, or periods of heightened interest, although there has always been
a fairly steady stream of contributions. The �rst of these was John von Neumann's
self-reproducing automaton, the second, Martin Gardner's popularization of John
Conway's game of Life, the third, Stephen Wolfram's classi�cation of automata.

1.1 Early origins

Cellular Automata have been studied as a part of the abstract theory of computa-
tion since the time that John von Neumann became interested in the possibility of
constructing self-reproducing automatic factories. Since actual factories and physi-
cal machinery involve a myriad of practical but non-essential details, he eventually
followed a suggestion of Stanislaw Ulam that an abstractmathematicalmodel would
be more amenable to a demonstration of the possibilities of universal construction
and self reproduction. He worked out a scheme for such an automaton, in terms
of a cellular space occupying a two dimensional grid, in which each cell would be
found in one of twenty nine states.

The details of von Neumann's construction remained unpublished at the time
of his death in 1957, but were subsequently edited and published by A. W. Burks
[90]. Even as he was working on his model, von Neumann realized that it was too
literal an interpretation of the computing machines of the era, but he himself never
attempted to carry out a complete revision of his original design. About a decade
later, in the years 1964-65, E. F. Codd [25] worked out a variant which required
only eight states per cell, still using the original �ve cell neighborhood.

Ulam's [111] work on functional iteration and his experiments on nonlinear
mappings were reported in conference proceedings, and in the course of time cellular
automata became a topic in the theory of abstract machines, along with the work of
Edward F. Moore, Claude Shannon , and others. The principal results of the time
were the demonstrations of the existence of universal constructors, and Moore's
\Garden of Eden" theorem which showed the necessary existence of con�gurations
in automata of a rather representative type which could only be initial states.

1



2 CHAPTER 1. HISTORY

Such a pattern could never again be repeated during the course of the automaton's
evolution.

Of course, there were even earlier beginnings to automata theory, for example
in the studies of Warren S. McCulloch and Walter Pitts in 1943 on neural nets,
followed in 1951 by an interesting mathematical abstraction to regular events by
S. C. Kleene, and even in general ideas about the new subject of Cybernetics
introduced by Norbert Wiener [115] in his famous book of 1948.

An interesting parallel development arose from an even older source, Henri
Poincar�e's emphasis of the qualitative aspects of classical mechanics in terms of
stability, ergodic properties, and the recurrence of orbits; such topics nowadays
constitute measure theory, topology, or symbolic dynamics, all of which are an
outgrowth of various of Poincar�e's ideas.

The latter, symbolic dynamics, elaborated by George Birkho� [15] and oth-
ers, was described by Walter Gottschalk and Gustav A. Hedlund in an American
Mathematical Society Colloquium Publication [45] in 1959, and continues to be a
subject of intense mathematical interest. Hedlund's very abstract summary [56]
of 1969 contains a wealth of results applicable to cellular automata, although its
orientation is entirely di�erent and the relationship between the two concepts has
not always been well appreciated.

1.2 Automata theory

Cellular automata are but a specialized instance of the general theme of automata
theory; the di�erence lies in the fact that automata are driven by input signals
and produce output signals. Cellular automata enjoy all the symmetries, mostly
translational, inherent in their crystallographic layout; but they use the states of
selected neighbors for input signals and are not generally considered to produce
output.

Automata theory itself has an ancient history, if one thinks of automata as
mechanisms capable of performing intricate movements; but if the actual apparatus
is discarded in favor of the activity itself, such a theory more properly begins with
the neurophysiological abstractions of McCulloch and Pitts. Their re�nement into
the theory of regular expressions by Kleene constitutes one of several viewpoints,
which have gone on to include semigroups (or monoids) of mappings of a set into
itself, or even the theory of grammars.

The semigroup aspect has been exploited by KennethKrohn and John L. Rhodes
[68]; that was followed up with monoid theory by Samuel Eilenberg [38, 39]. Semi-
group theory is much more intricate than the theory of groups, whose classi�cation
has been one of the more important mathematical accomplishments of recent times;
but a general knowledge of the principles involved is still very useful for automata.
These principles include the de�nition of one sided and two sided ideals, and their
use to give a semigroup a standard structural form.

The grammatical approach is primarily a creation of the MIT linguist Noam
Chomsky [20, 21, 22, 23], referring primarily to the sequence of transformations
which a system can undergo. The emphasis is more on characterizing a set of
symbolic equations describing the transformations, than on the transformations
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themselves, which is the province of semigroup theory. The details to be resolved
consist principally in establishing the existence and possibly the uniqueness of the
solutions.

The decades of the �fties, sixties, and into the seventies, saw a tremendous
amount of research on automata, languages, and similar topics; cellular automata as
such were not given much special attention, although sometimes they were utilized
as examples or illustrations.

Some of the themes treated, although not necessarily unique to cellular au-
tomata, but often emphasizing one dimension, were the \busy beaver" problem in
which long lasting activity from simple initial con�gurations was sought, the \�ring
squad" problem in which evolution to a speci�ed con�guration was the goal, or the
ability to achieve \universal computation" via the emulation of a Turing machine.

1.3 The Gardner era

Public awareness of cellular automata can mostly be attributed to John Conway's
interest in �nding a simpler con�guration than von Neumann's and exploring its
capabilities. Some of his results were presented in 1970 as an ecological game called
Life, at a time when such concerns were popular, in Martin Gardner's monthly
Mathematical Games column in Scienti�c American. For a period of about three
years Robert T. Wainwright maintained a quarterly newsletter [113] disseminating
discoveries made by Martin Gardner's readers, some of which were followed up in
later columns in Scienti�c American. Many of the more interesting results were
obtained at MIT's Arti�cial Intelligence Laboratory with the help of the graphics
facilities of their PDP-6 computer 1.

When microcomputers began to attract popular attention, Conway's game of
Life became one of the early inspirations for an application; Cromemco's \Daz-
zler," a color video controller and one of the earliest peripherals, was frequently
used to display the evolution of Life con�gurations. Early issues of Byte maga-
zine contained some material on Life, but in one memorable issue many results
which had appeared in Wainwright's newsletter [113] a decade earlier, but still not
reached mass circulation, were presented by some of their discoverers. Other mag-
azines, such as Omni, also revived the topic [53, 85], and in recent years Scienti�c
American has returned to the subject, most recently in A. K. Dewdney's Computer
Recreations, the current successor to Martin Gardner's column.

All of Martin Gardner's columns of the early 1970's have been reissued in a
recent reprint collection [43], together with some of his reminiscences. He identi�es
three places as having been particularly active centers of interest, at all of which
people were mainly concerned with collecting examples of one type of behavior or
other, many of them reported in Wainwright's newsletter. Many fanciful names
were invented to describe the variety of con�gurations which were found, including
two (glider gun and pu�er train) due to Conway himself.

Conway had devised the rules of evolution of Life carefully, to avoid the ex-
tremes in which live cells proliferated and grew without bound, or in which live

1for an account, see Levy's book [72]
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cells dwindled and eventually died. He was still not sure about the ultimate fate
of his delicately balanced creation; there could always be some fairly uncommon
combinations nevertheless capable of unlimited growth. Several small patterns were
known which delayed thousands of generations before their �nal behaviour became
evident.

A �ve-cell �gure called a \glider" capable of diagonal movement had been dis-
covered in the early stages of experimentation, as well as larger �gures { \space
ships" { capable of horizontal or vertical movement. An isolated \glider gun"that
produced gliders periodically would be one structure with unlimited growth, a pu�er
train formed by a space ship which left permanent debris behind as it moved would
be another. Whether such structures existed was not clear at �rst, but it was ev-
ident enough that regular structures would be required before theorems could be
proved. Otherwise there were simply too many courses of evolution open to study
them all.

At MIT glider guns were quickly found; also glider collisions were studied in
great detail. Interestingly enough, pu�er trains were also found, even some that
included gliders in their residues. Through this combination a mass was found
which, not really dense but still reasonably compact, violated Conway's conjecture
against an in�nitely growing con�guration in the worst possible way. That is, it
occupied a diamond shaped region of constant density whose borders expanded at
a uniform velocity { a quarter of the \velocity of light" { because of the prevalence
of gliders in its makeup.

Glider guns created a steady stream of objects - gliders - which could be used
as signals in something resembling an electrical network, which enabled Conway to
design a con�guration which ful�lled von Neumann's original goals of creating self-
replicating automata. In the process it was made clear that many questions about
automata theory were undecidable because their answers would also have to de-
scribe the Turing machines which could be associated with the process. However,
that conclusion can be reached much more directly by embedding linear cellular
automata which emulate Turing machines in two-dimensional environments. How-
ever such machines use many more than the two states per cell which Conway's
construction achieves.

Work at MIT also revealed some interesting schemes for constructing very large
con�gurations of period two, even some which completely vanished in the process
of creating the new generation and which in turn disappeared as they recreated
the original generation. Another group of students in Canada worked out large
numbers of oscillators of di�erent periods, on the basis of the strategic placement
of structures which came to be called \eaters."

It was evident from the �rst that some structures were much more stable than
others, and that they could be used as building blocks to regulate the growth of
more erratic or less stable combinations. Indeed, glider guns seem to have been a
byproduct of having �rst constructed oscillators by con�ning colonies with promis-
ing but undisciplined growth, and then checking out collisions of the moving parts
of such oscillators.

Of course, given moving objects such as gliders or space ships, it was natural to
look into their collisions with stationary objects or with each other. Rather than
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simply admiring the spectacle, one can take a scienti�c approach, systematically
varying the relative positions of the reactants and recording the results. In one
way or another, some extremely varied and highly interesting con�gurations were
discovered.

Wainwright undertook a classi�cation of all the noteworthy Life con�gurations
which his correspondents reported, and one could fairly say that the \Gardner
era" of cellular automata was characterized by an intensive search for \interesting"
con�gurations in Conway's Life. Some modest variants were considered by various
persons; but Life itself was su�ciently challenging, and the variations exibited by
the variants insu�ciently spectacular, to result in any great volume of reports.

The extent of the diverse results which were obtained was indeed impressive, but
it was inevitable that the �eld would become saturated as the readily imaginable
concepts of \interesting" were explored, and the combinations accessible to the
computer technology of the day were exhausted. The next steps depended not only
upon a new computer technology, but upon advancing concepts in information
theory and even in formal language theory.

1.4 The Wolfram era

Professional scienti�c interest in cellular automata received a considerable impetus
from the investigations of Stephen Wolfram [118], who undertook a computer based
search through the properties of one dimensional automata, guided by some con-
cepts from the realm of nonlinear dynamics and statistical mechanics. For anyone,
in fact, the microcomputers, programming languages, and video displays which are
currently available are su�cient for many experimental studies of cellular automata,
not a few of whose results have considerable artistic merit.

A recent article exploring the aesthetic side of automata theory was entitled
Abstract Mathematical Art, by Kenneth E. Perry [95], published in the December,
1986, issue of Byte. The article included a Basic program for use on ibm/pc com-
patible computers, with indications that a Pascal version was available from the
magazine, and a statement that the author himself had used machine language to
quickly seek out the hundred examples which he selected for the readers' experi-
mentation. Several of them were shown in striking color photographs illustrating
the article.

The idea of a one dimensional cellular automaton is quite simple, and its evo-
lution in time is ideal for a two dimensional presentation, as on a video screen. To
start with, a cell is a region, even a point, with di�ering forms, called states. For
convenience, these states are usually numbered with small integers beginning with
zero, rather than described. For the purposes of automata theory the nature of the
states does not matter, only their relation to one another, and the way they change
with time according to their environment. Since they are abstract, they can just as
well be represented by colored dots on a video screen, which is what makes them
so dramatic when interpreted as an abstract artistic design.

Although both von Neumann and Conway were aware that alternative rules of
evolution existed, incredibly large numbers of them in fact, they concentrated on
one single rule which served their purposes, exploring its consequences in detail.
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Wolfram, by contrast, was one of the �rst to compare the evolutionary histories of
large numbers of di�erent rules, with the intent of classifying them according to their
long term behavior. Indeed he seems to have been inspired by work in dynamical
systems theory, particularly Stephen Smale's discovery of \strange attractors," and
the possible parallels they might have in automata theory.

In any event, he noticed that the evolutionary histories of linear cellular au-
tomata were quite varied, for which he proposed four classes. The �rst contained
automata evolved automata evolving, usually fairly rapidly, into a constant �eld.
Quiescence, of course, was a basic assumption of von Neumann, Conway, and oth-
ers who needed a static background against which to perform their constructions.
Wolfram took this class to be the analogue of those dynamical systems which evolve
toward a point of stable equilibrium.

The second class was supposed to correspond to the limit cycles of nonlinear
mechanics, that is, limiting behavior which is cyclic. With automata, many limiting
�elds are not quiescent, but nevertheless show little, no, or completely predictable,
activity. Life's still lifes are a typical example, as are the blinkers, gliders, and other
isolated periodic structures which characterize its long term evolution.

The third class is quite the opposite, consisting of chaotic �elds whose behavior is
never predictable; these would correspond to ergodic behavior in dynamical theory
or even strange attractors.

The fourth, and remaining, class is the one which may be the most interesting;
Wolfram wished to associate it with universal computation, but it is essentially
the same class which held Conway's interest; the reasoning was quite similar. In
spite of the ordering implied by Wolfram's numbering, the fourth class is probably
best regarded as an interface between the second and third classes as suggested by
Christopher Langton [71]. In any event, it is a class characterized by \islands of
chaotic behavior in an ocean of quiescence." One does not �nd such behavior in
binary automata of small radius; it is always fairly uncommon, yet far from rare.

1.5 One dimensional automata

To make a one dimensional automaton, a series of cells is strung out along a line,
the simplest assumption being that all the cells have the same number of similar
states, and that the rules of evolution will be the same for all of them. The idea
of forming the cells into a line implies a linear order, but of course other arrange-
ments are possible, both in terms of the dimension and the connectivity of the cells.
This is the second element of de�nition for a cellular automaton { the relationship
between the cells, or the kinds of neighborhoods which they form. Again, the sim-
plest neighborhood would consist of a cell and its nearest two neighbors; generally
speaking we would take a neighbborhood to consist of r neighbors on each side,
giving 2r + 1 for the total number of cells in a neighborhood.

There are some small quibbles to be made. If a chain is �nite, it has ends, which
surely do not have the same neighborhoods as the interior cells. Either they can be
treated di�erently, or the chain can be imagined to close into a ring, which would
preserve the uniformity of all the neighborhoods. Also, it is considered preferable
to work with symmetric neighborhoods, each one centered on its own cell, rather
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than worrying about irregular neighborhoods. An interesting exception would be
to work exclusively with a single neighbor, always on the same side, but that is
another story.

Thus there arises Wolfram's notation (k; r) for a linear cellular automaton which
has k states within each cell, and such that it, together with r cells on either side,
is considered to form a neighborhood. In reality, a neighborhood does not have
to be centered on its cell; for example when its length is an even number of cells,
succeeding generations might be staggered by half a cell, and the radius assumed
to be half-integral.

There is one �nal ingredient in the de�nition of a cellular automaton, which is
the rule of transition by which the cell changes state from one generation to the
next, conventionally assumed to be the same rule for each neighborhood. It is the
judicious selection of a rule as much as anything that makes a particular automaton
interesting or not.

Conway's game of Life was the result of a particular choice of rule for a two
dimensional binary automaton { two states per cell { whose neighborhoods con-
tained the cell in the center and the eight cells touching it, four of them laterally
and four of them diagonally. The announced criteria by which that particular rule
was chosen were that a �eld of cells should neither dwindle away to nothing { all
zeroes { or eventually �ll up completely { all ones. Reportedly, he examined many
di�erent rules before choosing the particular one which gave us his famous game;
even so, so much variety was encountered with that one particular rule that years
passed before many others were studied.

Wolfram's further work, mostly done at the Institute for Advanced Studies
in Princeton, systematically examined all the possible rules for one dimensional
automata. His recent book [121], a collection of reprints comprising much of his
work on automata, contains an extensive appendix tabulating diverse properties of
all 256 (2; 1) automata.

In two dimensions there are far too many possibilities { vastly more so even
than in one dimension { for there to be a chance to try everything, even with
a very fast computer. Notwithstanding, Dewdney's column in a recent issue of
Scienti�c American describes a three dimensional variant of Life devised by Carter
Bays [6, 7, 8]. With twenty seven cells per neighborhood, its analysis has to be far
beyond the reach of either present methods or present and foreseeable computers.
However, it is not necessary to choose such an ambitious model to gain useful insight
and obtain interesting results. So, even the one dimensional automata of type (2; 1)
constitute a reasonable starting point for systematic studies.

1.6 The vocabulary of automata theory

One of the heritages of the interest in Life is a rich vocabulary of such picturesque
terms as still lifes, gliders and so on, describing typical artifacts encountered during
evolution; even though of two-dimensional origin, they are freely used for other
automata.

Similarly, Wolfram has created some basic descriptive terms by which automata
can be classi�ed according to their rules of evolution, not to mention their classi�-
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cation into four phenomenological evolutionary types.
For (2; 1) automata, a neighborhood contains three cells, each of which exists in

one of two states; altogether eight possible neighborhoods. Since there is nothing
to require evolution of a given neighborhood to lead to one value of the new cell or
another, there are 256 possible ways that each set of eight di�erent neighborhoods
can evolve into the next generation, starting with the possibility that everything
evolves into zero and ending with the possibility that everything evolves into one.

The choice of the words \zero" and \one" assumes a decision to number the
states of an automaton, which is certainly convenient for computer processing, or
even a plain mathematical discussion. Yet the choice is quite arbitrary; Conway
must have thought that the more vivid dichotomy between \live" and \dead" or
\inactive" would make his game more appealing. Naturally the states of an au-
tomaton displayed upon a color television screen would be the colors of the pixels
themselves.

As suggested by the choice of a numerical representation, the easiest way to
enumerate (2; 1) neighborhoods is to make up a binary number whose eight digits
tell how the neighborhoods 000, 001, 010, and so on evolve. Every evolutionary
rule gets its own serial number in the process; it is convenient to always do this
in a standard way and refer to the rule by the decimal equivalent of the resulting
number. We might call the following choice its Wolfram rule number: Set out the
possible sequences of cells in reverse lexicographic order:

111 110 101 100 011 010 001 000
0 0 0 1 0 1 1 0

The second row shows how the three-cell neighborhoods evolve for Wolfram's
Rule 22, the decimal equivalent of the eight-digit binary number 00010110. This
ordering of neighborhoods is natural if one thinks in terms of \high order �rst" but
is just the opposite of the one used in Perry's article [95].

The working of the rule of evolution can be seen in the following sample of ten
generations of evolution of Rule 22 from a randomly chosen initial con�guration.
A cyclic ring is assumed, so the �rst cell in each row is the right neighbor of the
last cell, just as the last cell is the left neighbor of the �rst cell.

Every neighborhood is repeated numerous times throughout the diagram; evo-
lution is referred to central cells, whose new values can be found in the next line,
just below the old cell.

1 � � � � � � � �
2 � � � � � � � � � �
3 � � � � � � � � � � � � �
4 � � � � � � � � � � �
5 � � � � � � � �
6 � � � � � � � �
7 � � � � � � � � � � � � �
8 � � � � � � � � � � �
9 � � � � � � � �
10 � � � � � � � � � � �
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A table of transitions explicitly describes the function mapping each neighbor-
hood of a cell into the cell's next value, but for general discussions or proving
theorems it is better to use common mathematical notation. The symbol '(a; b; c),
or simply ', is often reserved to denote this transition function. Of course, such a
de�nition serves only for nearest neighbors; the function would have 2r + 1 argu-
ments if it belonged to a (k; r) automaton.

Either Perry's or Wolfram's representation makes clear how many rules there
are, because, given a (k; r) automaton, any one of the k states can result from the
evolution of each of the k2r+1 di�erent neighborhoods. Because of the exponent
involved, the number of possibilities increases drastically if either the number of
states for a single cell increases, or the number of neighbors increases. Thus a (3; 1)
automaton { three states with nearest neighbors { has 3�3�3 or 27 neighborhoods,
and the total number of possible rules would be 327, somewhere on the order of 1012,
so they are not soon going to be studied one by one. Alternatively, the combination
(2; 2) would have 32 di�erent neighborhoods, and thus 232 di�erent rules, which is
\only" in the range of 1010.

To obtain a reasonable sampling of even the smaller linear automata, Wolfram
used the idea which was already implicit in Conway's statement of his rule, that the
evolutionary criterion should depend on the number of cells in the neighborhood,
but not on their particular arrangement. Talking in such terms reveals some hidden
assumptions about our vocabulary. In Conway's binary game, zero represented a
dead cell, one a live cell, and his rules were stated in terms of the number of live
cells in the neighborhood. It is a simple extension of this idea to assign numbers
(weights, if you wish) to the states, and make the transition depend only on their
sum. A rule gotten this way is called a totalistic rule; not all rules are totalistic,
but they lead to a more manageable sampling of all the possible rules.

Curiously, rule 22 cited above is also a totalistic rule. Three binary digits
can add up to zero, one, two, or three. If these possibles sums are arranged in
descending order as before and paired with the corresponding value of the evolved
cell, a totalistic rule number can be derived (which in this case would be decimal
4).

sum 3 2 1 0
new state 0 0 1 0

Even the use of the number of distinct sums can lead to very large numbers; also
there is a question of whether the evolving cell should have its own weight included
or excluded from the sum. For binary automata (but for higher dimensions) Bays
has introduced the notation w=x=y=z to mean: if the cell is one (alive) and there
are between w and x neighbors, it survives; while if is zero and has between y and
z neighbors, a cell will be born. In this notation, Conway's original game was a
2=3=3=3 Life.

Doubtless other notations will evolve as signi�cant new combinations requiring
them come to light.
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1.7 Probability theory

The enthusiasm which greeted Martin Gardner's exposition of Life was initially
focussed on tracing evolutions of two-dimensional con�gurations that struck one's
fancy, or in trying to design con�gurations which would have some interesting
characteristic. The original challenge was to either produce a con�guration that
would grow without limit, or to demonstrate that none existed. Conway proposed
two mechanisms, a glider gun or a pu�er train and examples of each were soon found
{ contrary to his expectations in spite of having conjectured them, apparently.

However, as David J. Buckingham [18] remarked is his Byte article, interest
eventually turned to information-theoretic aspects of automata theory { something
which would probably surprise anyone not familiar with this branch of engineer-
ing (or mathematics.) Even from the beginning, there was attention paid to the
stastical properties of Life, Martin Gardner having reported some results of Robert
Wainwright on the behaviour of "primordial soups" and their eventual evolution at
fairly constant density [43, p. 237].

Indeed, any prolonged observation of a Life �eld leads to the conclusion that
there are three phases of evolution: The �rst phase is a relatively short transient
phase { at most ten or tens of generations { in which excessively high or low initial
densities adjust themselves; the second phase may last for thousands of generations
in which nothing seems to be de�nite; followed by the third and �nal phase in which
isolated groups of cells go through predictable cycles of evolution.

Simple ideas of probability yield approximately correct but undeniably dis-
crepant results. The evident explanation that assumptions about independence and
exclusivity { after all, if the neighborhoods of two adjacent cells overlap by 50%
or more, their evolutions might not be independent { identi�es the likely source
of error, but says little about what to do about it. M. Dresden and D. Wong [35]
made some probabilistic calculations concerning the evolution of Life in 1975; L. S.
Schulman and P. E. Seiden [102] slightly later in 1978.

It has recently become apparent that old ideas about probability nests, quite
highly developed in other branches of mathematics, are ideally suited to contending
with this problem. It is a theory which can be especially well developed for one
dimensional systems; W. John Wilbur, David J. Lippman and Shihab A. Shamma
[116], then Howard A. Gutowitz, Jonathan D. Victor and Bruce W. Knight [51]
have all published interesting results using these techniques.

Not only has there been considerable interest in resolving the statistical prop-
erties of cellular automata, there is a very de�nite current running in the opposite
direction, by which known automata are taken as the starting point for exploring
the statistics of other systems whose rules of evolution are much complicated. In
this way one returns to Poincar�e's views of approximating the properties of a dy-
namical system. The underlying hope is that valid statistical conclusions will arise
from dynamical systems that are much simpler than those governed by di�erential
equations.

Regarding a discretized di�erential equation as a cellular automaton is too much
of a simpli�cation unless the cells have a rather large number of states; still there
are some signi�cant aspects of nonlinear systems which can be modelled by rela-
tively small automata. In one well studied case, three characteristic regions are
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recognized for the variable governed by a di�erential equation | quiescent, active,
and transitional.

Such a system is usually quiescent; but an activity can be initiated which must
proceed to completion before calm can be restored; especially in two or more dimen-
sions some interesting self-sustaining activation chains can be found, which have
been taken as models of chemical or neurological behavior [46, 76].

1.8 Graph theory and de Bruijn diagrams

Looking in another direction, the cells of one dimensional automata, by de�nition,
form linear chains. But the neighborhoods themselves form another kind of chain,
wherein they necessarily overlap. The result is an arrangement which has a very
close connection with shift register theory [44], which is a systematic study of the
properties of overlapping strings and how the overlaps happen to come about. In
particular, the form of graphical representation known as the de Bruijn diagram
[98] enters into many discussions, and can be used to organize a major portion of
the theory.

The application to automata theory arises from labelling links in a de Bruijn
diagram in two ways { as a neighborhood N or as the evolutionary image of that
neighborhood, '(N). Including or excluding links according to various properties
of either the neighborhood or its image results in a considerable variety of subdia-
grams, or graphs, to be used for further study.

Graphs provide a �nite frame of reference for describing the multitudinous paths
corresponding to the actual con�gurations of an automaton; an economy of pre-
sentation which fully justi�es linking graph theory with even the theory of general
automata. Graphs in turn have such diverse representations as their connectivity
matrix or a system of symbolic equations expressing their connectivity, not forget-
ting simple paper sketches of graphs which are not overly complex.

In turn the collection of paths through a diagram is readily described by such
entities as polynomials in the connectivity matrix or even by regular expressions.
The former permit the de�nition of a zeta function; the latter follow from the
symbolic connectivity equations, and can be seen as an opportunity to use formal
language theory to obtain further results. Both approaches have been discussed in
the literature.

Still further aspects of graph theory are available to describe automata and
their evolution { such as dual diagrams, cartesian product diagrams, or mappings
between diagrams. For example, product diagrams serve to compare two or more
paths through the underlying graph, a comparison which can pro�tably be used to
decide questions of uniqueness or of ambiguity.

So in one way or another it pays to be familiar with the standard results of
graph theory. As it is, Masakazu Nasu [86] refers the properties of injective and
surjective evolutionary functions to de Bruijn and related diagrams; Wolfram [120]
himself used them to express evolutionary properties, and Erica Jen [62] has used
them to calculate ancestors.

Other examples can be found in the literature. Moreover, it is always possible
for a retrospective knowledge of the appropriate diagrams to facilitate the under-
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standing of those publications whose authors did not avail themselves of graph
theory. Or at the very least least, to hope that the resulting insight will lighten the
burden of obtaining further results.

1.9 Reversible automata

Supposing that von Neumann's goal of exhibiting an automaton capable of universal
construction or of universal computation has been realized, additional questions
come to mind. For example, an automaton which contains an embedded Turing
machine has to su�er some of the same limitations as the Turing machine, the most
notorious of which is undecidability.

It would appear that a cellular automaton ought to be more versatile than a
Turing machine; for example it could have numerous read heads and work on many
computations simultaneously. Nevertheless, since any automaton can presumably
be modelled within some Turing machine, the computational powers of the two
artifacts must be coextensive. One seeming paradox arose when it was found that
some automata had con�gurations which could not be the product of any evolution,
the \Garden of Eden" states of Edward F. Moore [82, 84].

The reconciliation of such states with a universal constructor lies in the real-
ization that the constructor is not required to �ll space with arbitrary designs, but
rather to create speci�c objects (including copies of itself) according to the instruc-
tions which it has received. Universality refers to whether arbitrary descriptions
can be followed, not whether arbitrary constructs can be produced.

Nevertheless, there has been considerable interest in ascertaining whether or
not there are restrictions on the long term behavior of an automaton, both in the
remote past and in the remote future. Such restrictions could manifest themselves
in unattainable con�gurations such as the Garden of Eden, as well as in certain
limiting con�gurations which would only develop fully as limits.

But there is also a middle ground, consisting of rules or even of con�gurations
within a given rule, which never end up in some inaccessible region, either past
or future. For this to be true, it is especially important that there be no barrier
such as the Garden of Eden, devoid of a previous existence in any form. Equally,
although the future always exists in some form or other, there might be reasons to
avoid an approach to extremely complicated limits.

In other words, there is an interest in time reversal symmetry, or even a sim-
ple equivalence between past and future, whereby past con�gurations would be
just as recoverable from a given con�guration as the future con�gurations that are
deducible from the same data. Quite trivial instances in which the states shift side-
ways, remain unchanged, or complement themselves between generations readily
come to mind; naturally real interest centers on whether there are others, besides.

S. Amoroso and Y. N. Patt [4] searched for possible reversible rules and discov-
ered eight nontrivial (2; 3=2) rules in 1972; Tommaso To�oli [109] found a way to
generate whole classes by an increase in dimension in 1977, and Edward Fredkin
discovered another scheme which has been reported in To�oli and Margolis's book
[110]. Fredkin employed evolutionary functions extending over two generations,
evidently extendible within the same framework to three or more generations. Yet
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another alternative employs some of the states in a cartesian product to create a
sort of memory.

It is interesting to observe that the whole idea of reversible automata falls within
the province of dynamical systems (once the connection is realized) just as it was
already reported in great detail by Hedlund [56] in 1969. A recent survey article
by Roy Adler and Leopold Flatto [2] contains a good exposition of the relationship
of symbolic dynamics to ows through a graph.

The reason that symbolic dynamics has such a special relationship to reversible
automata lies in the fact that a dynamical system can be given a topology, with
respect to which it is much easier to discuss in�nite systems and the existence of
limits. This in turn brings up such concepts as continuity, the multiple valuedness
of mappings, and the existence of inverse functions.

An essential element of the discussion hinges upon the fact that the evolution
function for automata is not invertible in and of itself, but the discrepancies between
counterimages can be pushed to remote regions of the automaton. With the help
of the topology they can then be made to vanish in the limit, providing a context
in which the reversibility of evolution can be discussed.
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Chapter 2

What to look for

Before studying the properties of linear cellular automata in detail it may be worth
a quick review of a few of their most visible features, as well as a summary of
some of their more important features. This includes the Wolfram classes, some
traditional elements of mathematical structure, specialized rules of evolution, and
relationships between di�erent automata. Everything will be discussed again at
greater length, very likely in its own chapter.

2.1 General characteristics

To watch the evolution of an arbitrary linear automaton from a random initial
con�guration is to see a great deal of confusion. Gradually { in some cases quite
quickly { it becomes apparent that each rule of evolution has its own personality,
and that as rules and types of automata are varied, similarities are as apparent
as di�erences. Presumably this led Conway to seek out rules for which random
con�gurations eventually settled down to simple activity rather than disappearing
entirely, remaining motionless, or �lling up the entire space. However, there seem
to be automata for practically every taste.

Wolfram laid down a serviceable classi�cation into four categories

� Class I { evolution to a uniform state

� Class II { evolution to isolated cyclic states

� Class III { evolution to comprehensive cyclic states

� Class IV { evolution to complex isolated states

which were derived from some classi�cations in nonlinear mechanics. His attention
was particularly attracted to the Class IV states. It seems that these are to be
found for rules whose de Bruijn diagrams contain certain loops. These can be
readily detected, for short periods at least.

A good starting point, having selected a speci�c rule, is to work out a table of
periods (time repetition) and cycles (space repetition) in which a given row shows
the number of cycles of given period in rings of length given by the columns. It

15
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may be a bit disappointing that so few rows can be obtained within the limits of
computer memory and running time that presently exist. The exponential growth
of resources required ensures that rows or columns will only be added one at a time,
and gradually at that, as computer power increases. Still, the �rst few rows and
columns can actually be done; the information obtained can be quite informative.

2.2 Cycles

There are two ways to obtain the cycles for a given automaton. The �rst is to
enumerate all the rings of the desired length, and follow up the evolution of each.
In doing so various shortcuts can be taken, such as generating the con�gurations
in Gray code order so that only a single cell changes state from one to the next.
Still lifes can be detected very quickly this way. Numerical comparison of successive
generations means that whenever the new generation is smaller, it will already have
been examined and need not be pursued further.

The second way is more systematic and is worth the bookkeeping e�ort involved.
A graph whose links are determined by evolution is prepared, following which a
path enumerating procedure is followed to locate all the loops, whose lengths will
give the periods of all the cycles of that length. Cycles of length up to ten can
be obtained easily, twenty with e�ort, but passing thirty requires dedication; for
binary automata it is slightly easier, increasingly more di�cult for others.

Certain theoretical conclusions do not depend on practical limitations. For
example, we might select an initial ring and examine successive generations of its
evolution. The new generations can all be distinct, or at some point we might �nd
that an earlier generation has repeated itself. For a �nite ring the �rst possibility
cannot occur, because there are only kn possible di�erent combinations of states in
a ring of length n { 32 in a binary ring of length 5, for example. If no repetitions
were allowed, the supply of distinct rings would eventually be used up, so repetition
is the only alternative. In practice, the number of generations elapsing before one of
them repeats may be fairly large, but is usually much smaller than the exponential
bound of the worst possible case.

Once repetition has occurred, we need to recall that evolution is uniquely de�ned
{ there is just one successor to a given ring in each new generation { so the tail end
of the evolution has to repeat over and over again in a �xed cycle, starting with
the generation which �rst repeated.

Statistics of interest concerning the cycles include: the number of cycles and
their lengths, the height of the transient trees leading into the cycles, and the
convergence factor at each node of these trees.

2.3 Periods

The rows of the period-cycle table can be found from de Bruijn diagrams in the
same way that the cycles can be found from the evolution diagram; since 2r+1 cells
are needed to deduce a generation of evolution, only about half as many periods
as cycles can be worked out for a given amount of e�ort. This anomaly is really
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an artifact of the way r parameterizes the neighborhood, and would disappear if
half-integral increments were taken for r.

Similar theoretical conclusions are possible, since the periods are gotten from a
subset of the de Bruijn diagram. A 2r-stage de Bruijn diagram for k symbols has
k2r nodes; k times as many links. Once this number of links has been used up in
constructing a path through the diagram, one of them would have to be repeated.
Thus there is also an exponential upper bound in the rows of the period-cycle table.
For example, if an automaton has a cycle of period 2, it must already show up in
some short ring; if it has not appeared in rings below a certain limit, it will never
appear in longer rings.

Similar statistics can be compiled for the de Bruijn diagrams: the number of
periods and their lengths, the number of transients leading into loops, and the
corresponding convergence and divergence factors. Failed loops are still interesting;
they correspond to strings which are periodic, but which dwindle away with each
generation, eventually leaving a residue which is no longer periodic.

Both the cycle diagrams and the period diagrams may have intersecting loops;
this simply means that choices are present at certain junctures in working up a
chain of cells with a certain property, leading to a greater variety of sequences than
would otherwise occur. This choice is particularly vivid in the de Bruijn diagram
when one of the loops consists of a single node of identical cells embedded in another
loop, since these can be strings of Wolfram's Class IV.

Not only can the de Bruijn diagram can be used to reveal the periodicities of
a given cellular automaton, it can also be used in automaton synthesis. That is,
desired loops can be marked out �rst in the diagram, and then a rule chosen which
respects the links. For period 1 properties the mapping has to be direct, since
each link in the de Bruijn diagram corresponds to a distinct neighborhood in the
automaton. Including or excluding it from the period diagram either determines
or limits the value of the transition for that neighborhood. For longer periods the
evolution corresponds to a composite rule, which may or may not be factorizable
in the required manner.

2.4 Ancestors

Another use of the period diagram is to obtain ancestors of a given chain. The
simplest application is to �nd the ancestors of uniform chains, which follows readily
from the fact that each link represents the evolution of the central cell in one
neighborhood. All the links evolving into zero determine the chains which must
evolve into zero; conversely demanding that given loops evolve into zero determines
the rules for which such an evolution is possible. For a binary automaton, that is
enough information to determine the rule uniquely.

An interesting exercise is to show that for totalistic automata, the ancestor
diagram for constant chains consists of pure loops, without any transients at all.
One consequence of this result is that any �nite chain which maps into zero can be
embedded in a still longer chain which also maps into pure zeroes.

Only slightly more complicated is the determination of the static chains, or
still lifes. Rather than choosing neighborhoods which evolve into a constant value,
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neighborhoods for which the central cell evolves into itself must be chosen. Quite
a few other variations on the theme are also possible.

Historically, de Bruijn diagrams were created to solve the problem of �nding all
the distinct sequences of certain symbols [98]. This idea can be applied to a period
diagram, by asking whether all possible sequences of cells can appear as possible
evolutions. Since the period diagram is a restriction of the de Bruijn diagram, it
may be suspected that they may not; this con�rms the existence of \Garden of
Eden" states for cellular automata. These are chains of cells which can only be
seen as initial con�gurations for an automaton, because they have no ancestors and
cannot arise during the course of evolution from any other states.

Searching for a path in a diagram can be a tedious process, but if no more is
required than knowing of its existence, Moore's subset diagram [81] provides a way
to systematize the search. It is a new diagram, whose nodes are subsets of states;
each subset is linked to the union of the states which are linked to its members.
Let the evolutionary function, which links nodes in the dew Bruijn diagram, be '.
Further let A be a subset whose typical member is the node a. Then

�(A) =
[
a2A

f'(a)g

de�nes the linkage between subsets.
One usually starts from the full set, supposing that it does not matter where a

path begins, continuing as long as possible. Having arrived at the null subset, it is
certain that there was no path of the same characteristics in the original diagram.
An even more elaborate subset diagram retaining all details can also be constructed,
from which the original paths with all their multiplicities can be extracted.

2.5 Subautomata

Binary automata may be judged to be less interesting because they \don't do
anything" or fall into Wolfram's Classes I and II; but there are other ways in which
automata with larger numbers of internal states can fall into a pattern of restrictive
behavior. For many rules, watching the screen display for a while will reveal that
one of the colors has disappeared. This would be especially noticeable for a rule in
which a certain value never appeared in the rule, because it would have to be be
absent in all lines after the �rst.

A mathematician would describe this situation by saying that he was dealing
with a subautomaton { one for which a subset of states could be found which was
closed under evolution. What that means is that states in the given subset would
evolve only into each other and into no others. Just as mathematical de�nitions tend
to include many apparent quibbles as extreme cases of some general proposition,
it might be remarked that a good many automata actually exhibit one extreme
example of subset behavior. For these automata dead states evolve only into dead
states, using Conway's biological metaphor.

Here, the extreme subset is the one consisting of just the quiescent state, so that
the subset automaton, strictly speaking, would be a monary automaton; a category
which we might have thought that we would never need to use. In reality we have
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happened upon the concept of an automaton with a quiescent state (a more elegant
adjective than \dead"), and seen its characterization by saying that the quiescent
state belonged to a subautomaton.

At the opposite extreme, equally a convenient quibble, the whole set of states
can be considered as a subset of states forming its own automaton. The value of
setting up such a vocabulary becomes apparent when we have more complicated
automata in which a whole hierarchy of subautomata can be perceived and we want
to make systematic comparisons between the members of the hierarchy.

2.6 Factor automata

There is another mathematical concept related to subsets, which is the idea of
equivalence relations. According to this concept, two or more states of the automa-
ton might be regarded as being interchangeable. If not actually identical, there is
no essential di�erence between them. Watching the evolution of certain automata
on the screen, there sometimes seems to be a wash of color laid over an underly-
ing pattern. The pattern seems to endure, while the color overlay has a life of its
own. This is an example of a factor automaton, in which the overlaid colors are
equivalent. They form one equivalence class, black (the general background color)
another; the automaton could just as well be binary and could be viewed on a
monochromatic screen.

Finally, there are mappings from one automaton to another. One of the simplest
examples would be to complement all the cells of a binary automaton. The com-
plemented automaton would probably not evolve according to the same rules, but
it might. For automata whose states are television colors, interchanging the colors
would be such a mapping. Aesthetically the di�erence is striking; mathematically
it is the same automaton.

Let f be a function between the state sets of automaton A and automaton A0,
with equal neighborhood size and evolutionary functions ' and '0. Functions which
satisfy the condition

'0(f(x); f(y); f(z)) = f('(x; y; z))

are of a special kind, evidently more compatible with the two automata than ar-
bitrary functions. Counterimages of individual states by such a function are the
prototypes of equivalence classes; equivalence means having the same image.

2.7 Product automata

The identi�cation of subautomata and factor automata is an analytic process, in
which structure is to be sought in a previously existing system. Synthesis, the
converse process, seeks to build up more complex objects by combining simpler
parts in prescribed ways. The most common synthetic procedure is to try to endow
a cartesian product with structure analogous to that of its constituents. As would
be expected, the process works well with automata.
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Suppose that A is one (k; 1) automaton, with transition function �, and that B
is a second, with transition function �, and that (x; y) is a pair of states. We could
de�ne the new transition function ' for paired states by setting

'((a; b); (c; d); (e; f)) = (�(a; c; e); �(b; d; f)):

In other words, corresponding members of the pairs are neighbors of one another,
and transitions in the two halves take place independently, even according to dif-
ferent rules if such is the case.

With pairs for states, a common neighborhoodwidth, and the product transition
function, we have created a new automaton, A � B which is called the product
(or cartesian product) of the two automata A and B. Although the de�nition
given applies to r = 1, a similar de�nition would apply for automata with wider
neighborhoods. It is apparent that such de�nitions multiply the number of states
in the automaton, while keeping the same neighborhoods. Thus, a (2; 1) � (2; 1)
automatonwould really be a (4; 1) automaton, if the states were relabelled properly.

Two applications of product automata come to mind at once. One is to see how
the same data evolves according to two di�erent automata; we would set x = y to
see simultaneous evolution by two di�erent rules. The second is to set A = B, to
see how di�erent initial data evolve for one single automaton.

It is a standard result of structure theory that a product automaton has factor
automata corresponding to each of the two automata used to construct it, and that
their equivalence relations are complementary. Likewise, we would want to use the
notation ' = � � �.

2.8 Automata with memory

There is another way to use the cartesian product to create a composite automaton.
Begin with the (2; 1) automaton whose transition rule is �. De�ne, for pairs such
as (x; y) (
 is exclusive or),

'((a; b); (c; d); (e; f)) = (d; c
 �(b; d; f))
'�1((a; b); (c; d); (e; f)) = (�(a; c; e) 
 d; c):

The left part of the pair simply remembers the right part from the old generation
while the right part combines the new and old values of the cell. Thus both items
of information are always present and can be extracted if needed. The inverse rule,
whose structure is similar, follows the same procedure.

States a and e are of no consequence in de�ning the transition, serving simply
as a one-generation memory which will be forgotten by the second generation.
Nevertheless their presence is essential, likewise the fact that ' must ignore them.

As with the cartesian product, we have a (4; 1) automaton with the square of
the number of states and the same width. Still another way to induce an automaton
in the cartesian product would be to omit the exclusive or:

 ((a; b); (c; d); (e; f)) = (d; �(b; d; f));
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from which the previous generation with respect to � can always be recovered, but
not with respect to  . By contrast all of ''s previous generations can be recovered,
but it must not be thought that the same applies to �, even though it participates
in the de�nition of '.

For example, suppose that �(b; d; f) = 0, which is not reversible at all. Then
'((a; b); (c; d); (e; f)) = (d; c), indeed reversible, but of no help whatsoever for ob-
taining ��1.

2.9 Idempotent rules

For some automata it can be seen that states repeat themselves; indeed this be-
haviour is a very prominent feature of Wolfram's Class II automata. Formally, a
(k; 1) automaton with transition rule ' is idempotent if

'('(a; b; c); '(b; c; d); '(c; d; e)) = '(b; c; d):

Even though the algebra is messy, it can be veri�ed that for such a transition rule,
a cell remains unchanged from the second generation onward.

It is a temptation to state the idempotency condition in the form '2 = '; in a
sense it is true that iterated ' acts like '; but ' has three arguments and only one
value, and so it is better to give the precise de�nition shown above.

It is too strong a requirement to insist that '(a; b; c) = b always, because only the
identity rule ful�ls this requirement. There are also many evident variations on the
theme { evolution could stagnate after the third generation rather than the second,
for example. Likewise, the states could shift sideways rather than stagnating:

'('(a; b; c); '(b; c; d); '(c; d; e)) = '(a; b; c);

for example. Other variations would have the states undergoing permutations leav-
ing the entire con�guration stagnant only in those generations in which the full
cycle of the permutation had run its course.

The evolution of idempotent automata, or those equivalent by one of the vari-
ations, is not particularly interesting from a dramatic point of view. Nevertheless,
they form a class susceptible to a closed analytical treatment, and they are of
rather common occurrence when all the possible types of rules are taken into ac-
count. There is an interesting borderline class of automata whose rules are not
idempotent, but monotonic. For example, one of the (2; 1) automata has the rule
(& is boolean and)

'(a; b; c) = a&b&c

which is the logical and of the three binary neighbors. The rule is Wolfram's # 128,
and has the property that zeroes persist. Unless one began with an in�nite or cyclic
chain of ones, all ones must eventually disappear, and the rule looks idempotent to
the zeroes left behind. It is convenient to call these rules asymptotically idempotent
and classify them together with idempotent rules.
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2.10 Membranes and macrocells

More subtle than Wolfram's Class IV automata are another class which seem to
exhibit natural barriers, not just the quiescent regions which characterize Class IV.
Areas of independent evolution are observed, which seem to go about their business
independently of what is happening in other regions [16].

Nor are the barriers always invariable; they may go through their own relatively
simple cycle of evolution while still separating regions of more complex activity.
Let us call such regions macrocells to distinguish them from the individual cells of
which the automaton is composed. When their width is short their behaviour must
be periodic of relatively short duration. There is the slight di�erence that their evo-
lution will be subject to di�erent boundary conditions than if the macrocells were
cyclic or part of an in�nite cyclic pattern. Wider macrocells have a correspondingly
longer { exponentially longer { period for repetition.

An explanation can be found by consulting the de Bruijn diagram; it is found
that there are certain nodes, for which all incoming or outgoing links survive in the
period diagram, even if they do not continue on to form closed loops. It is only
necessary that there is an unbroken chain from a node with complete incoming links
to another (possibly the same) with complete outgoing links. These chains form
the prospective cell membrane; the environment of the terminal cells ensures that
the membrane will evolve properly, no matter the content of the macrocells which
they enclose.

Slight perturbations are possible; a membrane may be stable in most environ-
ments and attacked by con�gurations in others. Once it starts to dissolve, the
membrane will diminish by two cells each generation, and no long term declara-
tions can be made about the evolution. Membranes may form spontaneously when
conditions are right; it is also possible to have periodic membranes or shifting mem-
branes. With moving boundaries, the de Bruijn diagram need only be adjusted so
that all the pertinent links correspond to a consistent translation. However, the
positioning of the guard strings must be changed; instead of anking the boundary
membrane they must run ahead of it ensuring an adequate anticipation of the glider
which they are protecting.

A �nal variation, which is also often encountered, is to �nd that not all the links
beyond the terminal nodes in the de Bruijn diagram are guard links, but that the
macrocell will only place cells near the membrane whose links are guarding. As
an extreme case, a wall of one color could con�ne cells of di�erent colors, but still
dissolve when confronted with cells of its own color.

Since the critical requirement for a membrane is the presence of guard links
at its extremes, its internal structure can be simple or complex as the occasion
demands. Thus, there could be loops in the chain de�ning the membrane, allowing
macrocells to be separated by membranes of varying structure.
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2.11 Totalistic rules

A totalistic rule is one for which the transition depends upon the sum of the weights
of the neighborhood. Such a rule, for a (k; 1) automaton, would take the form

'(a; b; c) = �(a + b+ c) mod k

where � is a function of the integers modulo k. In fact, the simple modular sum is
a good example of a totalistic rule, yielding a rule for which the computations of
linear algebra su�ce to determine its evolution.

While the choice of a totalistic rule simpli�es evolutionary calculations, it is clear
that a given sum can be formed in many di�erent ways. Thus every neighborhood
possessing a �xed sum must necessarily evolve into the same state. This should not
cause undue concern; since there are always more neighborhoods than states, any
rule will necessarily have clusters of neighborhoods mapping into the same state. It
is just that the multiplicity follows the degeneracy of sum formation for totalistic
rules, giving them a statistical property which is useful.

There are more ways to form sums in the middle range than for the extremes;
one might think in terms of the binomial distribution. Thus the values assigned
the middle range will be relatively inuential in determining the overall behavior of
the automaton, while the extremes can be used for �ne adjustments. One extreme
determines what happens to long sequences of zeroes, the other to long sequences
of k � 1's, and in both cases to sequences in which these extremes dominate.

In practice, a sum of zero can only arise in one way, from a string of zeroes.
Equally, the high sum can only be formed from a string of cells of the highest
weight. Whatever value is assigned to these extremes will inuence the color of the
background, just as will the values assigned to the evolution of any other constant
strings. Thus the sequencing of long strings of solid color can be read o� directly
from the totalistic rule. In prompting for the rule, the programs mark o� the sums
which would correspond to constant values.

A bit more e�ort is required to work out the sequencing of repeated pairs, but
it is not too hard to do mentally. It is an interesting observation that for totalistic
rules, the sequencing of iterated triples follows the same sequencing as for constant
sequences, but in terms of the sum corresponding to the triple.

In conclusion, the values assigned the extreme sums inuence the cycling of
background colors and can be deliberately chosen for this e�ect, but the drama of
this change should not overshadow the fact that the remainder of the evolution is
little changed and that the change will hardly be noticeable unless the rule tends
toward large areas of constant color.

The next-to-extreme sums tend to determine what happens to the fringes of
regions dominated by the middle values, and it is often preferable to step through
these values rather than the extremes themselves to get small changes in the pat-
terns of evolution.

Although totalistic rules form a special class of rule, they are general enough
to be representative in the sense that any other rule can be transformed into a
totalistic rule, although the new rule may have a considerably larger number of
states. Albert and Culick have demonstrated [3] that all that is really required is
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to express the (k; r) neighborhood as a r-digit number relative to the base k + 1,
but in such a way that the overlap between neighborhoods is taken into account.
Thus, suppose that the con�guration

: : : a b c d e f : : :

is rewritten

: : : 000a 00b0 0c00 d000 000e 00f0 : : : :

Now, suppose that the sum U of three four digit numbers X + Y + Z = U
has the base k + 1 representation U = wxyz. The reason for changing to k + 1 is
that the new representation needs a zero which cannot be confused with one of the
states of the original automaton. If the original states were numerical, they should
be shifted to accommodate the new base; if they were not numerical, they should
now be assigned numerical values. Then, de�ne the auxiliary transition function �
to be

�(U) =

8>><
>>:

00'(z; y; x)0 w = 0
000'(w; z; y) x = 0
'(x;w; z)000 y = 0
0'(y; x;w)00 z = 0

and �nally, the new transition function � by

�(X;Y;Z) = �(X + Y + Z):

With this de�nition, we have embedded a (k; 1) automaton with an arbitrary
rule in a ((k + 1)4; 1) automaton with a totalistic rule, although it is necessary to
code the cells before making the simulation and to decode them afterwards. If strict
adherence is made to only necessary values for cell states, one non-zero digit in the
four-digit base k+1 expansion, the number of states could be considerably reduced,
improving the state economy. Otherwise, transitions for the unused combinations
get arbitrary de�nitions.

2.12 Two-cell neighborhoods

Amongst the variety of transformations which can change the appearance of cellular
automata are those which modify the neighborhoods. For example, it is possible
to show that linear cellular automata do not need to have large neighborhoods;
in fact, as Albert and Culick [3] showed,it is su�cient to have just two cells in a
neighborhood. The essential idea is to replace the entire neighborhood by a single
cell; of course the new cell must have enough states to describe every possible
content of the original neighborhood.

Even if the cells are grouped in clusters, there will still be some interaction at
the boundary, so that a new rule of evolution has to be devised. Also, since the in-
teraction has to be one-sided if there are only pairs of cells in the new neighborhood,
the original two-sided interactions can be recovered by extracting information from
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alternate generations. Since three cells would form a second generation neighbor-
hood, it can be contrived that we think of the central cell as evolving, rather than
one of the edge cells.

Thus, for lack of a better notation, let us de�ne a (k(k + 1); 1=2) automaton A
with the rule � in terms of a given (k; 1) automaton a whose rule of evolution is '.
The states of A are to be the k � k) ordered pairs (i; j) together with the k states
i. We shall only de�ne �(I; J) partially through the table

(j0; k) j

(i; j)

�
'(i; j; k) j = j0

unde�ned otherwise
� � �

i � � � (i; j)

:

There is an enormous number of possible de�nitions of A, since the mixed
transitions involving pairs and singlets are left undetermined. In a given case, some
guidance may be available to complete the table, but for the present construction
the completion is irrelevant.

To recover the operation of a from the initial con�guration : : : ijk : : : we need
to see that A generates �rst : : : (i; j)(j; k) : : : and then : : : '(i; j; k) : : : : Thus every
second line contains the evolution of a, but we have to be observant of how it is
positioned inasmuch as A always leaves its result in the left cell.

In order to guarantee the substitution of a two-cell neighborhood for a three
cell neighborhood it has been necessary to augment the states by state pairs. For a
binary automaton this means that we have six states rather than two. We de�ned
the rule of evolution � for just enough arguments to ensure the recovery of the
automaton a, which means that there are really many automata capable of making
the simulation. There may be some reason for selecting the remaining transitions
in a certain way, perhaps to simplify the automaton somehow. It also shows that
one automaton may be capable of simulating another if only one can detect the
proper embedment.

2.13 Blocking transformations

There are no doubt countless ways of embedding an automaton in another whose
neighborhoods are constructed di�erently, or which has a di�erent state set; but
one mapping which might be among the �rst to be tried out would be to group
several cells together and treat them as a single unit. It is not as useful a pro-
cedure as it might seem at �rst because there are necessarily redundancies in the
evolutionary rules. This is because cells which lie beyond the range of interaction
after the grouping cannot inuence the evolution, so that blocked neighborhoods
in which they di�er must have the same rule of evolution. Of course there is a
small possibility that this might turn out to be an advantage going in the opposite
direction, whereby the number of states might be reduced by dividing the cells into
pairs.
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For simplicity, suppose that a (k; 1) automatonundergoes an evolution described
by the following sequences of cells

: : : x a b c d y : : :
: : �(a; b; c) �(b; c; d) : :

Then the transition rule for the blocked (k2; 1) automaton is de�ned by

�((xa); (bc); (dy)) = ('(a; b; c); '(b; c; d))

Conversely, any (k2; 1) automaton for which a coding of its states could be exhibited
satisfying this rule could be regarded as a (k; 1) automaton by splitting its states.

2.14 Tailor made automata

Two contrasting ways to approach automata theory are to begin with an automaton
to see how it evolves, or to think of an interesting evolution and try to select the
rules accordingly; the latter were von Neumann's and Conways approaches. From
either aspect it is convenient to have a random number generator available; in the
�rst instance for following the evolution of typical con�gurations, in the second it
can even provide the rule to study.

A more deliberate approach begins speci�c plans for the evolution, and attempts
to deduce a suitable rule. Suppose that the objective is a slow glider, that advances
two cells in four generations. There is at least a 5 � 5 rectangle to be considered,
to accommodate the generations, the displacement, and the neighborhood length.
The evolution of at least 25 neighborhoods must be de�ned, but fewer may su�ce
on symmetry grounds; at least �ve if every row is the same.

Neither (2; 1=2), (2; 1), nor (3; 1=2) automata look promising with 4, 8, and 9
distinct neighborhoods, respectively; but any other state-radius combination be-
ginning with the 16-neighborhood (2; 3=2) ought to have rules with such a glider.
These �gures may not be precise, but they lend plausibility to the conjecture that
there is an automaton of some minimal complexity for almost any task that can be
described by a sample evolution.

One typical task which is quite instructive is to emulate a Turing machine;
Albert and Culick [3] suggest one approach. Just as there are simpler Turing
machines than the universal machine, there are numerous simple automata to be
designed. Binary counters are a good example; their existence shows that there are
automata with very long transients, also with very long cycles. A challenge might
be to come as close as possible to the theoretical upper limit, a sort of variant on
the \busy beaver" problem for Turing machines.

Another traditional exercise is the \�ring squad problem," wherein there is a
reserved state, \�re" which all the cells of an automaton of arbitrary length are to
enter simultaneously, none having occupied it previously [83, 114]. It is a whimsical
one-dimensional variant of one of the components of von Neumann's constructor;
which was supposed to activate each �nished object, as a �nishing touch when it
was �nally completed and turned loose on its own.
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Cycles in space

Fundamental to �nite automata is eventually periodic evolution, prolonged to the
full number of states in the exceedingly rare event that their sequence is cyclic. The
number of \states" of a cellular automaton is the number of con�gurations (not
states per cell), providing an exponentially large bound relative to the automaton's
length. In practice, many short cycles usually predominate over a few long ones,
almost always reached through transients.

Longer automata admit longer cycles and longer transients too; the in�nite limit
may lack cycles. Cyclic boundary conditions locate behavior repeating over a �nite
range, leaving truly aperiodic con�gurations for a separate study.

3.1 Cycles in Life

When Martin Gardner �rst announced Conway's game of Life, there was much
experimentation with simple designs, some of the simplest consisting of just a single
row, column, or diagonal of live cells. Columns tended to grow shorter and fatter
until they formed a diamondlike con�guration which in one remarkable case|a
column of �fteen cells|retreated back into a column and became periodic. It was
one of the �rst complex oscillators to be discovered.

However, instead of forming diamonds, very long columns exhibited a rather
curious behaviour not unlike a binary counter. That is, except for the ends, a
single column survived while two new live columns anking it were born. The next
generation saw the birth of still another pair of anking columns, but the central
three could no longer survive, leaving the new pair of columns isolated by a gap of
three cells.

Then in the fourth generation two triple columns separated by a vacant column
produced a single pair of columns separated by a distance of seven cells. In subse-
quent generations these columns repeated the behaviour already established until a
collision occurred between the anks expanding into the central region, This time a
single pair of columns separated by a gap of �fteen cells was left in the ninth gener-
ation. Continuing this sequence on through further generations inevitably suggests
a binary interpretation of the evolution.

27
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In�nitely long constant columns reduce a two dimensional automaton to one
dimension; all the cells in any given column behave alike, leaving all the signi�cant
information to be gleaned from a row acting as a cross section. Such con�gura-
tions were called \ripples" in Wainwright's newsletter. Adaptation of Conway's
rule shows that Wolfram's Rule 22 for a (2; 1) automaton gives the appropriate
description of the result, which might reasonably be referred to as Life in one
dimension.

A great advantage of working with one dimensional cellular automata is that
their time evolution can be shown on a two dimensional chart, whereas the evo-
lution of a two dimensional structure would require a third dimension. While not
impossible to show, there is too much information involved to keep the presentation
from becoming extremely cluttered. Even so, an in�nite, or even a very long, line
is hard to manage. A systematic study could easily start with short lines, folded
around to form a ring, avoiding end cells whose rules of evolution would di�er from
the interior cells. For short enough rings, the complete evolution of all possible
con�gurations can be calculated.

3.2 Evolution for Rule 22 - one dimensional Life

Let us study some examples.
The shortest ring has one cell, which is consequently always its own neighbor.

A zero must evolve into zero, while a one evolves into zero, which must repeat itself
thereafter.

This result applies speci�cally to Rule 22, but it is equally applicable to any
other rule for which uniform neighborhoods have the same transitions. General
binary rules admit other possibilities, four altogether, since a �eld of zeroes can
either be quiescent or switch over to ones. A �eld of ones could do the same, so
either: 1) both �elds are quiescent, 2) they alternate parity in a cycle of length two,
3) zero is quiescent and one vanishes in a single generation, or 4) one is quiescent
but absorbs zero after the �rst generation.

Naturally the more states there are, the more sequences of evolution that could
be followed by uniform �elds; ascertaining which one should be the �rst order of
business in analyzing any given automaton.

There are four rings of two cells: 00 evolves into 00, 01 into 01, 10 into 10, but
11 evolves into 00. Again there are many formats for the general case to follow, the
more so the more states in the automaton; it is a matter of how many graphs can
be constructed using k2 nodes with an outgoing link for each.

There are eight rings of three cells, the shortest ring for a (2; 1) automaton in
which left and right neighbors can be distinct. Shorter rings always lack certain
neighborhoods, in this case, those which are nonsymmetrical. Therefore classifying
short ring evolution is useful in establishing common features that could eventually
distinguish classes of automata.

The transitions for three cells are:

000 ! 000 100 ! 111
001 ! 111 101 ! 000
010 ! 111 110 ! 000
011 ! 000 111 ! 000
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It is already evident that there are four classes with cyclic symmetry, namely
f000g, f001,010,100g, f011,110,101g, and f111g, and that it would be su�cient to describe
the mappings of the classes into one another.

For this purpose it is convenient to select one typical element from each class, but
a class representative will not often evolve into another representative. Therefore
the mapping between representatives should be supplemented with an indication of
the discrepancy. A sequence of cells is naturally interpretable as a binary number,
making the least number in the class a convenient representative.

f000g ! f000g f011g ! f000g
f001g ! f111g f111g ! f000g

Of course, there are sixteen rings containing four cells. They form six symmetry
classes: f0000g, f0001, 0010, 0100, 1000g, f0011, 0110, 1100, 1001g, f0101, 1010g, f0111, 1110, 1101,
1011g, and f1111g. Individually, the transitions are

0000 ! 0000 0100 ! 1110 1000 ! 1101 1100 ! 0011
0001 ! 1011 0101 ! 0101 1001 ! 0110 1101 ! 0000
0010 ! 0111 0110 ! 1100 1010 ! 1010 1110 ! 0000
0011 ! 1100 0111 ! 0000 1011 ! 0000 1111 ! 0000;

so that the economy of listing the transitions by class becomes more and more
evident:

f0000g ! f0000g f0101g ! f0101g
f0001g ! f0111g (rotated right) f0111g ! f0000g
f0011g ! f0011g (rotated two right) f1111g ! f1111g

Writing down lists of transitions, either between rings or between symmetry
classes, does not show the structure of the transitions to very good advantage. It
is better to group them into transitive chains, in which an evolutionary sequence
is shown until it repeats. Only maximal chains should be shown, which means
beginning with a ring which has no ancestor if the chain has one. Sometimes there
are cycles which have no ancestors outside the cycle. Since evolutionary sequences
tend to converge, it may be necessary to mark some chains as continuing in another
chain that has already been presented.

If we give this treatment to the thirty two chains of �ve elements, the result
is surprisingly compact; there are eight symmetry classes, seven of which form a
sequence terminating with pure zeroes, and another which evolves to zero indepen-
dently (enclosing a string of classes in parentheses signi�es that the string forms a
cycle).

11111 (00000)
01011 00001 00111 00011 01001 01111 (00000)

There are sixty four chains of length six, which fall into thirteen symmetry
classes (the conuence of one chain with another is indicated by enclosing the
junction in square brackets).
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010111 000001 000111 000101 011011 (000000)
001111 000011 001001 111111 (000000)
001011 [000111]
(010101)
011111 (000000)

Several formal representations of sequences of this kind exist; two of them are
through graphs and their connectivity matrices.

3.3 Evolutionary diagrams and matrices

These evolutionary sequences could be represented by diagrams, which makes them
considerably easier to visualize. According to the presentation, either the rings of
cells or their symmetry classes are represented by nodes in a diagram. Nodes are
linked according to whether the node at the head of the arrow has evolved from the
node at the tail of the arrow or not. The result is what would technically be called
trees rooted on cycles. Zero, one, or more arrows may enter a node according to the
number of its ancestors. Only one arrow can leave each node, because evolution
is unique, and so is the symmetry class of the descendant. However, cycles are
possible because a ring could evolve either into itself or one of its ancestors.

A numerical, or at least matricial, representation of these sequences is also
possible. The dimension of the square matrix is equal to the number of nodes of
the diagram; its elements are to be zeroes or ones. Call the N �N matrix M , its
matrix elementsMi;j; then its elements will be zeroes or ones according to whether
the row nodes are linked to the column nodes. A variant of the Kronecker delta
represents this alternative numerically.

Mi;j =

�
1 i! j
0 otherwise

= �(i! j)

Such matrices are sparse, meaning that the non-zero elements are usually few
and far between. Nevertheless, even if they are not constructed explicitly, they
are very useful for expounding certain properties of diagrams. To begin with, the
well-known formula for matrix multiplication, together with the property that zero
annihilates any product in which it participates, shows that

M2
i;j =

NX
k=1

Mi;kMk;j

=
NX
k=1

�(i! k)�(k! j)

=
NX
k=1

�(i! k ! j):
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Thus M2 has zeroes except for those elements for which the row index is con-
nected to the column index by two links. Generally, the elements of the pth power
of M show where there are connecting paths of exactly p steps. Of course, the
non-zero elements of some of these powers may be integers greater than one, but
that simply means that there are multiple paths between those pairs of nodes.

Other properties of M and its powers:

� the row sums give the number of chains leaving a node,

� the column sums give the number of chains entering a node,

� the diagonal elements tell how many loops contain that node,

� the trace gives the total number of loops.

Normally neither M nor its powers are symmetric matrices, which complicates
using Sylvester's theorem to represent them. Nevertheless, since all their elements
are non-negative, the classical results of Frobenius and Perron[41] apply. The prin-
cipal conclusions are that:

� a largest positive eigenvalue is bounded by both row sums and column sums;

� there is an nonzero eigenvector belonging to the largest eigenvalue, none of
whose elements is negative;

� under certain circumstances this eigenvalue is unique, with a unique normal-
ized eigenvector.

These results can be used for estimating the behavior of large powers ofM , and
thus the general characteristics of long chains.

3.4 Evolution of a seven-cell ring

We could then set up the matrixM for the eighteen symmetry classes of the seven-
cell rings. To obtain manageable indices, let us express each binary class represen-
tative in decimal. Since these numbers are not consecutive anyway, we might as well
improve the appearance of M by ordering the indices as they appear in maximal
chains. Figure 3.1 shows the evolutionary diagram together with its connectivity
matrix corresponding to a ring of length seven.

There are seven classes without ancestors, corresponding to the zero columns.
There are two static classes, represented by ones on the diagonal. Every class has
just one successor, shown by the single one to be found in each row. Seven classes
have unique ancestors; these are the ones with a single one in their column. Multiple
ones within the same column mean multiple ancestors. All of this information can
be obtained by inspection from any evolution matrix; much of it is discernible
numerically by examining thr product of M with a vector all of whose components
are ones.

The lengths of transients can also be read o� from the matrix, as well as the
lengths of cycles, but this information is harder to perceive. If, as has been done
here, the row indices follow the evolutionary sequence insofar as possible, a chain
of ones will be found on the superdiagonal of the submatrix corresponding to the
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15 5 27 3 9 63 0 21 47 1 7 23 43 19 31 55 127 11

15 : 1 : : : : : : : : : : : : : : : :

5 : : 1 : : : : : : : : : : : : : : :

27 : : : 1 : : : : : : : : : : : : : :

3 : : : : 1 : : : : : : : : : : : : :

9 : : : : : 1 : : : : : : : : : : : :

63 : : : : : : 1 : : : : : : : : : : :

0 : : : : : : 1 : : : : : : : : : : :

21 : : : : : : : : 1 : : : : : : : : :

47 : : : : : : : : : 1 : : : : : : : :

1 : : : : : : : : : : 1 : : : : : : :

7 : : : : 1 : : : : : : : : : : : : :

23 : : : : 1 : : : : : : : : : : : : :

43 : 1 : : : : : : : : : : : : : : : :

19 : : : : : : : : : : : : : : 1 : : :

31 : : : 1 : : : : : : : : : : : : : :

55 : : : : : : 1 : : : : : : : : : : :

127 : : : : : : 1 : : : : : : : : : : :

11 : : : : : : : : : : : : : : : : : 1

l15
l5
l27
l3
l9
l63
l0

l43
l19
l31
l23

l55

l21
l47
l1
l7

n127 l11

?

?

?

?

?

?

?

?

?

?

�-

�-
�-

�����- ���� ��

��

Figure 3.1: Evolution of a seven-cell ring under (2; 1) Rule 22.

cycle or transient. Otherwise the chain may be fairly well hidden among the other
matrix elements.

Powers of the connectivity matrix, being less sparse, are often easier to interpret
because the remaining zeroes indicate disconnected groups of nodes more clearly.
In any event, the elements Mp

ij specify the number of paths of length p running
from node i to node j; the diagonal elements therefore disclose the number of loops
passing through a given node. The trace in turn counts the total number of loops;
each loop is counted once for each of its nodes, but not for multiple passes through
the same node.

Some results which have been calculated for rings up to length 12 are

symmetry Gardens longest
N rings classes of Eden chain cycles
1 2 2 1 2 0
2 4 3 2 2 1
3 8 4 2 3 0
4 16 6 4 3 2x1
5 32 8 2 7 0
6 64 13 3 6 1
7 128 18 8 7 1x7
8 256 30 11 9 1x1; 1x2
9 512 46 19 13 3x4; 6x6
10 1024 78 34 9 38x4
11 2048 126 56 12 1x1; 24x4
12 4096 224 105 24 42x5

There are 2N rings of length N , just the quantity of binary numbers of that
length; but the number of classes is a more complicated group theoretical result[44,



3.5. CYCLES FOR A SIXTEEN-MEMBER RING 33

pp. 118-122]:

K =
1
oG

X
g2G

I(g):

In this formula, the symmetry operations g of the group G of order oG have I(g)
�xed points. When the symmetry is rotational, the �xed points are sequences which
repeat sooner than the full length of the ring; for reections they are palindromes.

For rotational classes, Golomb transforms this formula into an expression in-
volving Euler's function � which counts divisors. The main point of interest is that
the number of classes grows exponentially, although for longer rings it lags behind
the number of con�gurations by a factor which uctuates around 2N , the size of
the dihedral group of rotations and reections.

The remaining statistics have to be obtained on a case-by-case basis for each
rule and each cycle length, although some rules admit special techniques | for
example if the rule of evolution is addition in a �nite �eld. An extensive source of
this kind of information is Wolfram's reprint collection[121], especially the tables
of data in the appendix.

3.5 Cycles for a sixteen-member ring

The data eventually becomes so voluminous that it seems only to be worthwhile
tabulating the cycles into which the rings of length N evolve, ignoring all the
transients. Below, we show one particular case, N = 16, in detail. The ring is
long enough to show a variety of interesting behaviour, but yet not so long that it
cannot still be readily displayed.

The notation x:y describing each cycle means that the period of the cycle is x,
but that there are only y distinct phases within the cycle. This could either mean
that the original pattern has reected after y generations and will be completed by
running through the mirror images, or that the pattern has been translated by a
certain amount. Thus x must be a multiple of y, cycles of the form 2y:2 almost
always (but not exclusively) resulting from reection. Sometimes an even more
explicit notation, such as 16:14.7(ref) or 15 : 20:4(3`) is required, in which the
length of the ring is shown along with an indication of the direction and distance of
displacement. Since reectivity could be inferred if a displacement were not shown,
it is not always indicated.

First, we show the smallest numerical representatives for each of the eight dis-
tinct symmetry classes of cycles for a ring of length N = 16:

Next, the eight �gures which follow show a full cycle of evolution for every one of
these patterns. In preparing each illustration, every line is copied twice to improve
perception of the region which would otherwise be broken up by the boundary.

3.5.1 Quiescent ring

A sequence of pure zeroes is a still life whenever zero is quiescent; the resulting
redundancy is generally avoided by omitting the quiescent con�guration from all
cycle censuses. Figure 3.3 contains the sixteen cell ring satisfying this description.
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zero � � � � � � � � � � � � � � � �
14:7 � � � � � � � � � � � � � �
12:6 � � � � � � � � � � � � � �
12:12 � � � � � � � � � � � � � �
6:3 � � � � � � � � � � � �
4:2 � � � � � � � � � � � �
2:1 � � � � � � � �
1:1 � � � � � � � �

:

Figure 3.2: (2; 1) Rule 22 rings of length 16 have eight symmetry classes of cycles.

1 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
2 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Figure 3.3: By de�nition, a quiescent con�guration is a still life.

3.5.2 Period 14

1 � � � � � � � � � � � � � � � � � � � � � � � � � � � �
2 � � � � � � � � � � � � � � � � � � � � � � � � � � � �
3 � � � � � � � � � � � � � � � � � � � �
4 � � � � � � � � � � � � � � � � � � � � � � � � � � � �
5 � � � � � � � � � � � � � � � � � � � �
6 � � � � � � � � � � � � � � � � � � � � � � � �
7 � � � � � � � �
8 � � � � � � � � � � � � � � � � � � � � � � � � � � � �
9 � � � � � � � � � � � � � � � � � � � � � � � � � � � �
10 � � � � � � � � � � � � � � � � � � � �
11 � � � � � � � � � � � � � � � � � � � � � � � � � � � �
12 � � � � � � � � � � � � � � � � � � � �
13 � � � � � � � � � � � � � � � � � � � � � � � �
14 � � � � � � � �
15 � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Figure 3.4: (g:p) = 14:7: Evolution from a joined (gap 0) pair.

Many evolutionary rules are distinguished by the presence of numerous inverted
triangles in their space-time diagrams. The evolution of pure cycles shows them to
especial advantage, often exhibiting a fractal structure[117]. Indeed, strings of any
arbitrary format can be expected to show up occasionally; but quiescent strings
are of particular interest because they can only disappear gradually, as live cells
encroach on their boundaries. Triangles are the visual evidence of the eventual
regrowth of the live region, evident in Figure 3.5.
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3.5.3 Period 12, 6 phases

1 � � � � � � � � � � � � � � � � � � � � � � � � � � � �
2 � � � � � � � � � � � � � � � � � � � � � � � �
3 � � � � � � � � � � � � � � � � � � � � � � � � � � � �
4 � � � � � � � � � � � � � � � � � � � �
5 � � � � � � � � � � � � � � � � � � � � � � � �
6 � � � � � � � � � �
7 � � � � � � � � � � � � � � � � � � � � � � � � � � � �
8 � � � � � � � � � � � � � � � � � � � � � � � �
9 � � � � � � � � � � � � � � � � � � � � � � � � � � � �
10 � � � � � � � � � � � � � � � � � � � �
11 � � � � � � � � � � � � � � � � � � � � � � � �
12 � � � � � � � � � � � �
13 � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Figure 3.5: (g:p) = 12:6: Evolution from a gap 1 pair.

Rule 22 is a rule which acts somewhat like a binary counter, in the sense that
isolated cells expand, generating regions whose interiors periodically vanish, leaving
the frontier cells to expand anew. These new sites of expansion eventually collide,
possibly leaving the whole new interior vacant. Properly synchronized, the binary
counter e�ect ensues. Rule 22 has an especial tendency towards binary counters,
notably amongst con�gurations evolving from single pairs of live cells. Figures 3.5
and 3.6 show boundary collisions leaving gaps of 1 and 2 respectively

Compatibility with a �nite cycle length implies constraints which exclude certain
mutual separations; most work, the rest vanish after a while or convert into other
patterns. The majority of the cycles of length 16 �t this pattern; scrutiny of the
�gures reveals a variety of interactions amongst advancing boundaries, also the
systematic depletion of the interiors.

3.5.4 Period 12, 12 phases

Some cycles run their course without returning to the same symmetry class; others
may shift the original con�guration several times before returning to their original
form. Alternatively, they may pass through a reected image before repeating;
most cycles of the form (2p:p) operate by reection but a shift by half the length of
the ring could produce the same result. Sometimes there is no distinction between
translation and reection. If N and p are relatively prime, quite long periods can
result.

Amongst the last two examples, all the phases of Figure 3.6 are distinct, wheres
Figure 3.5 manifests reective symmetry. Given the way that boundaries interact,
a pair with one gap may evolve into a pair with another gap, and then evolve back
into the original pair, although this phenomenon is not present on a ring of length
sixteen.

3.5.5 period 6
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1 � � � � � � � � � � � � � � � � � � � � � � � � � � � �
2 � � � � � � � � � � � � � � � � � � � �
3 � � � � � � � � � � � � � � � � � � � � � � � �
4 � � � � � � � � � � � � � � � �
5 � � � � � � � � � � � � � � � � � � � �
6 � � � � � � � � � � � � � � � �
7 � � � � � � � � � � � � � � � �
8 � � � � � � � � � � � � � � � � � � � � � � � �
9 � � � � � � � � � � � � � � � �
10 � � � � � � � � � � � �
11 � � � � � � � � � � � � � � � � � � � � � � � �
12 � � � � � � � � � � � � � � � �
13 � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Figure 3.6: (g:p) = 12:12: Evolution from a gap 4 pair; no phase is shifted nor
reected relative to any other.

1 � � � � � � � � � � � � � � � � � � � � � � � �
2 � � � � � � � � � � � � � � � � � � � � � � � �
3 � � � � � � � �
4 � � � � � � � � � � � � � � � � � � � � � � � �
5 � � � � � � � � � � � � � � � � � � � � � � � �
6 � � � � � � � �
7 � � � � � � � � � � � � � � � � � � � � � � � �

Figure 3.7: (g:p) = 6:3: A eight cell cycle repeated twice to get sixteen cells.
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Any cycle of length N is automatically a cycle of length 2N ; or of any other
integer multiple kN for that matter. Consequently censuses are prone to containing
divisors unless it is agreed that they should be omitted from the tally, just as it
is usually agreed to drop quiescent con�gurations (which are really just a special
case). Figure 3.7 shows the cycle of period six which can also be found in rings of
length eight.

3.5.6 Period 4

1 � � � � � � � � � � � � � � � � � � � � � � � �
2 � � � � � � � � � � � � � � � �
3 � � � � � � � � � � � � � � � � � � � � � � � �
4 � � � � � � � � � � � � � � � �
5 � � � � � � � � � � � � � � � � � � � � � � � �

Figure 3.8: (g:p) = 4:2: Another cycle for an eight cell ring twice repeated.

Cycles of period four occur in a variety of forms during evolution according to
Rule 22, although only one of them makes its appearance in the context of a sixteen
cell ring (as a doubled eight cell ring), as shown in Figure 3.8. They all evolve from
a pair of cells with small gaps, which can sometimes sum up to produce the same
ring length in di�erent ways.

3.5.7 Period 2

1 � � � � � � � � � � � � � � � �
2 � � � � � � � � � � � � � � � �
3 � � � � � � � � � � � � � � � �

Figure 3.9: (g:p) = 2:1: A four cell ring repeated four times �lls a sixteen cell ring.

Since the cycle of period two has length four, it will recur in every ring whose
length is a multiple of four. Cycles of very short period can usually be deduced by
ad hoc methods, but their de Bruijn diagrams are su�ciently small that they can
be rapidly identi�ed from hand drawn graphs.

3.5.8 Period 1 (still life)

Rule 22 has two still lifes, but the reason for discounting a uniformly quiescent �eld
has already been given; Figure 3.10 shows the other one.
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1 � � � � � � � � � � � � � � � �
2 � � � � � � � � � � � � � � � �

Figure 3.10: (g:p) = 1:1: A two-cell ring repeated eight times �lls a sixteen cell
ring.

3.6 Cycles for Rule 22

In the process of surveying Rule 22, the following table of cycles N (row number)
versus periods P (column number) was found. In counting the number of rings
with each period, the zero ring was discounted because it occurs for every value of
N ; likewise a ring was not repeated if its period was a proper divisor of P , nor was
redundancy due to shifting or reection included (thus it is a table of cycle classes).

| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

---+-----------------------------------------------------------

1 | . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1

2 | . . . 1 . . . 1 . . . 1 . . . 1 . . . 1

3 | . . . . . . . . . . . . . . . . . . . .

4 | . . . . . . . 1 1 2 1 1 . . . 1 1 3 3 5

5 | . . . . . . . . . . 1 1 1 . . . . . . .

6 | . . . . . . . 1 . 1 . . . . . 1 . . . 2

7 | . . . . . . 1 . . . . . . 1 . . . . . .

8 | . . . . . . . . . . . . . . . . . . . 1

9 | . . . . . . . . . . . . . . . . . . . .

10 | . . . . . . . . . . . . . . . . . . . .

11 | . . . . . . . . . . 1 . . . . . . . . .

12 | . . . . . . . . . . . . . 1 . 2 1 2 1 1

13 | . . . . . . . . . . . . . . . . . . . .

14 | . . . . . . . . . . . . . . . 1 . . . .

15 | . . . . . . . . . . . . . . . . . . . .

16 | . . . . . . . . . . . . . . . . . . . .

17 | . . . . . . . . . . . . . . . . . . . .

18 | . . . . . . . . . . . . . . . . . 1 . .

19 | . . . . . . . . . . . . . . . . . . . .

20 | . . . . . . . . . . . . . . 1 . . . . .

|15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

---+-----------------------------------------------------------

21 | . . . . . . . . . . . . . . . . . . . .

22 | . . . . . . . 1 . . . . . . . . . . . .

23 | . . . . . . . . . . . . . . . . . . . .

24 | . . . 1 . 1 . . . 1 . . . . . . . . . 1

25 | . . . . . . . . . . . . . 1 . . . . . .

26 | . . 1 . . . . . . . 1 . 1 . . . . . . 1
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27 | . . . . . . . . . . . . . . . . . . . .

28 | . . . . 1 . . . . 1 1 3 1 3 . . . 3 3 6

29 | . . . . . . . . . . . . . . 1 . . . . .

30 | . . . . . . . . . . . . 1 1 1 . . 1 . .

31 | . . . . . . . . . . . . . . . . 1 . . .

32 | . . . . . . . . . 1 . . . . . . . 1 . .

33 | . . . . . . . . . . . . . . . . . . . .

34 | . . . . . . . . . . . . . . . . . 1 . .

In addition, there were many cycles in the range 21 � N � 34 with longer
periods than convenient for a table, which are listed below.

N P N P N P N P

21 77.11 25 55.55 27 1215.135 30 1070.107
23 138.6 25 150.6 29 72.36 31 248.8
24 50.25 25 150.6 29 667.23 31 248.8
24 54.9 26 78.6 30 40.4 32 41.41
24 72.6 26 78.6 30 70.35 32 84.42
24 72.6 26 90.45 30 86.43 33 138.69
24 80.40 26 546.21 30 120.60 34 52.52
24 384.32 27 162.6 30 240.8 34 4590.135
25 50.2 27 459.17 30 240.8

3.7 The evolution matrix

The evolution of an automaton can be described in matrix form, as well as by the
evolution function '. The matrix required has to be rectangular, since there are
boundary cells at the ends of the string whose evolution cannot be computed from
the information available in the string itself. The simplest matrix in the series
describes the cells of the second generation in terms of the cells comprising their
neighborhoods; two values (f0; 1g can evolve from eight neighborhoods f000, 001,
010, 010, 011, 100, 101, 110, 111g, so the required matrix has the dimension 2� 8;
for Rule 22 it would take the form:

G(1 : 2) =

�
000 001 010 011 100 101 110 111

0 1 : : 1 : 1 1 1
1 : 1 1 : 1 : : :

�
;

where the evident formula for the matrix elements is

G(1 : 2)i;jk` = �(i; '(j; k; `))

Since the matrix is not square, successive generations of the evolution cannot
be obtained by raising it to powers. However, by iterating ' it is possible to
obtain the matrix for further generations, and thus to relate any pair of generations.
Unfortunately such a procedure corresponds to none of the commonly recognized
operations on matrices (such as the tensor product).

For example, we might work out, again for Rule 22, the matrix for one gener-
ation of evolution of the �ve-cell neighborhoods which will produce the three-cell
neighborhoods which evolve into single cells. Such a matrix would be
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G(2 : 3) =

2
666666666664

00000000000000001111111111111111
00000000111111110000000011111111
00001111000011110000111100001111
00110011001100110011001100110011
01010101010101010101010101010101

000 10000000000001110000001100010111
001 01000000000000000000000000101000
010 00010000000000000000010010000000
011 00100000000000000000100001000000
100 00000011000100001000000000000000
101 00000000001000000100000000000000
110 00000100100000000001000000000000
111 00001000010000000010000000000000

3
777777777775
;

and �nally, going one step further,

G(1 : 3) =

2
6664

00000000000000001111111111111111
00000000111111110000000011111111
00001111000011110000111100001111
00110011001100110011001100110011
01010101010101010101010101010101

0 10101100111001110111101101010111
1 01010011000110001000010010101000

3
7775

.

According to this scheme, one has G(1 : 3) = G(1 : 2)G(2 : 3), and a clear
procedure for advancing through further generations. Since the dimension of these
matrices increases rapidly { doubling each generation { and since they have very
few non-zero elements, they are of more interest for theoretical discussions than as
a practical means of computation. In keeping with the fact that they represent a
function, there is exactly one non-zero element in each column, but since they are
not square, some rows must necessarily have several non-zero elements. The exact
distribution will vary from rule to rule and to a great extent will characterize the
rule involved.

3.8 The reduced evolution matrix

The matricesG(i:i+1) are rectangular rather than square because of the incomplete
neighborhoods at the ends of a chain of �nite length, which preclude calculating
the evolution of all the cells of the chain. This incompleteness was fully understood
in de�ning such matrices, but it would still be useful if the evolution of a block
of cells could be related to the block itself. One approach would be to close the
block into a ring. Variations on the same theme would involve extending the block
in various ways before closing it into a ring, somewhat in the way that a M�obius
strip is formed by giving a strip of paper a twist before joining its ends to form a
cylinder.

Another approach to compensating the lack of knowledge of what lies beyond
the limits of a �nite chain would be to characterize the possible extensions of the
chain numerically and either storing this information in a square matrix, or possibly
annotating the links of a connectivity diagram.

For example, let the rows of the matrix be indexed by the 2N sequences of N
bits, and the columns by the 2N central sequences of N + 2 bits which can evolve
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into their indices via one of the (2,1) rules. The number of counterimages of each
row index can range from zero to four, and this number could be recorded as the
matrix element. Let us call such a matrix a reduced evolution matrix, denoted by
EN . Then

EN
i;j = cardfa; b 3 '�1(i) = ajbg

For example, choose N = 3, and use Rule 22; then,

E
3
=

2
6666664

000 001 010 011 100 101 110 111

000 1 1 : 3 : 1 2 4
001 1 1 : : : 1 2 :

010 : 1 1 : 1 : : :

011 : 1 1 : 1 : : :

100 1 : : 1 : 1 : :

101 1 : : : : 1 : :

110 : : 1 : 1 : : :

111 : : 1 : 1 : : :

3
7777775
:

The column sums are always 4, but the row sums could range between 0 and 32,
according to the rule involved. A zero sum would signify a Garden of Eden state,
because the row index would then have no chains from which it could be formed.
The high extreme would signify a pathological rule favoring one single sequence, for
example Rule 0 mapping all chains into the zero chain. Diagonal elements do not
portend chains of period one, but a still life could not exist if all diagonal elements
were zero.

Unfortunately the square of E does not correspond to the number of two-
generation ancestors producing a given chain even though it arises from two steps of
evolution. The reason is precisely the correlations introduced by the order in which
cells occur. Squaring E implies some ancestor for each step of the evolution, but
does not guarantee that they coincide where they overlap. An easy counterexample
is obtained from chains of length 1. E1 for rule 22 is�

2 3
2 1

�
;

so its square is �
10 9
6 7

�
:

The table for two generation evolution according to Rule 22 is

00000 00001 00010 00011 00100 00101 00110 00111
000 001 011 010 111 110 100 100
0 1 0 1 0 0 1 1

01000 01001 01010 01011 01100 01101 01110 01111
110 111 101 100 001 000 000 000
0 0 0 1 1 0 0 0

10000 10001 10010 10011 10100 10101 10110 10111
100 101 111 110 011 010 000 000
1 0 0 0 0 1 0 0

11000 11001 11010 11011 11100 11101 11110 11111
010 011 001 000 001 000 000 000
1 0 1 0 1 0 0 0

which produces a two-generation reduced evolution matrix�
10 11
6 5

�
;
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which is clearly di�erent from the square of the one-generation matrix.
There is an evident relation between the evolution matrices G(i; j) and the

reduced evolution matrices Ei; If we de�ne a matrix R, for which

R(3) =

2
6666664

0 1

000 1 0
001 1 0
010 0 1
011 0 1
100 1 0
101 1 0
110 0 1
111 0 1

3
7777775

is typical, we have
Ej = G(j : j + 1)R(j + 1)

and the evident de�nition

[R(j + 1)]p;q = �(p; bin(q) = apb):

In such terms it is clear that G(1 : 2)G(2 : 3)R(3)R(2) 6= [G(1 : 2)R(2)]2 as a
general proposition.
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Periods in time

The constraint of a �xed spatial periodicity on a cellular automaton produces an
assortment of time periods, into one of which the evolution must eventually fall.
The converse problem would be to select a time interval, with the intention of
enumerating the lengths of all the possible rings whose evolution would regenerate
after the given delay.

4.1 Characteristics of cycles

The course of evolution of any �nite automaton can be traced through a diagram
constructed for the purpose, or such an equivalent representation as the connectivity
matrix of the diagram. Features of interest surely include:

� the cycles in which all evolutions terminate,

� nodes with no ancestors { the Garden of Eden con�gurations,

� the length of the longest transient,

� the average and standard deviation of transient lengths,

� the amount and type of branching in the diagram.

The �rst item is the only one of importance for the operation of an automaton
after an extremely long time, but it is still useful to understand the short term be-
haviour, particularly as it a�ects the choice among di�erent long term alternatives.
Furthermore, what is a long term for a ring of a hundred cells is still very short
term for a ring of a thousand cells.

The technique of tracing out the full evolution of a ring of lengthN yields all the
con�gurations in an in�nite ring which repeat themselves after translation through
a distance N , whatever their period of repetition in time; in other words all the
patterns with a given spatial periodicity. In the process of observing the results one
learns to recognize certain patterns and to be able to predict their periodicities. It
would be nice to have a procedure which would yield all the con�gurations with
a given period, irrespective of the length of the ring on which they might occur,

43
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beginning with a method for �nding all the still lifes - patterns which never change
with time.

4.2 Overlapping of neighborhoods

Neighborhoods in which the central cell does not change can be read o� from the
evolutionary rule. The complication in �nding sequences which do not change lies
in the overlap between neighborhoods of two successive cells. Fortunately there
already exists a diagrammatic technique for dealing with overlapping sequences of
symbols, which is commonly encountered in the theory of shift registers[44]. The
underlying combinatorial theory goes back at least to the last century[98].

To see how this works, let us calculate the still lifes for Rule 22. The table
below shows quite a bit more information than this; each transition is classi�ed as
to whether the new cell is the same as the old, as its left or right neighbor, whether
it has evolved into zero or one, or the complement of its old value. In general
the new cell could be tested against any Boolean function of the members of its
neighborhood.

neighborhood 000 001 010 011 100 101 110 111
new cell 0 1 1 0 1 0 0 0
same x . x . . x . .
left x . . x x . . .
right x x . . . . x .
zero x . . x . x x .
one . x x . x . . .
complement . x . x x . x x

Three neighborhoods qualify for producing still lifes, namely 000, 010, and 101.
000 can overlap only with itself in either direction, so that it can only participate
in a chain of pure zeroes. Such a chain does in fact remain zero, so it quali�es
as a still life. The other two neighborhoods can overlap each other in alternation,
leading to the sequence : : : 010101 : : : which is also seen to be a still life. These two
alternatives exhaust the possibilities, and answer the question \What are the still
lifes of Rule 22?"

There are three neighborhoods whose central cell evolves into one, namely 001,
010, and 100. The �rst of these can only �t between the third and the second, in that
order. The second can only �t between the �rst and third, and the third must follow
the second and precede the �rst. Thus only the sequence : : : 100100100100 : : : can
produce pure ones. On inspection this is reasonable|contiguous ones necessarily
force a zero, while a gap of zeroes longer than two can never be �lled with ones in
a single generation.

Similar arguments can be given regarding the remaining lines in the table. How-
ever, something more concrete than such verbal arguments is required, and is af-
forded by the subdiagrams of a map outlining all the possible ways in which the
neighborhoods de�ning the evolution can overlap.
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4.3 The de Bruijn matrix

The basic diagrammatic tool is called a de Bruijn diagram[44, 98], whose ks nodes
represent the possible sequences of s symbols chosen from amongst a collection of k;
making the convenient choice of integers modulo k for symbols, the nodes become
simply s-digit numbers to the base k.

Two nodes are to be linked if the �rst ends with the same s�1 digit sequence with
which the second begins; in other words, if they represent overlapping sequences.
Since there is no restriction on the symbols which can be placed at the free ends,
each node will have k incoming links and k outgoing links. Having chosen numbers
as symbols, the linkage rule is expressible in a simple arithmetic form; namely, that
node i is linked to nodes si; si + 1; � � � ; si + k � 1. Since there are S = ks nodes in
all, the foregoing sums are to be taken modulo S. Indeed the most straightforward
representation of a de Bruijn diagram is through the vertices of an S-gon inscribed
in a circle, chords marked according to the links present. It can also be represented
by a connectivity matrix whose block diagonal structure models this circle.

Since those nodes are linked which di�er by shifting their label, dropping the
digit on the left and inserting a new digit on the right, de Bruijn diagrams are
frequently used in shift register theory. Here, the shift register is simply a moving
window which can be used to scan a long chain for the neighborhoods needed by the
evolutionary rule of a cellular automaton. Any chain can be reconstructed from the
windows by following a path through the diagram, recording the digit associated
with each link as one moves along.

Now we need to examine de Bruijn matrices in detail, but to give concrete
examples we will stick to low order matrices over the binary alphabet. Let Bk;n

denote the connectivity matrix for a de Bruijn diagram for k symbols and n stages;
write Bn for B2;n.

4.3.1 B1

Let us start with B1, which is a 2 � 2 matrix (showing a border identifying the
1-blocks which have been linked).

0 1

0 1 1
1 1 1 ��

��
0 ��

��
1

-
�

�� - ���
00

01

10

11

Figure 4.1: Single stage binary de Bruijn matrix and diagram.

The simple structure is due to the fact no matter whether 0 or 1 is dropped
from a 1-block, or whether 0 or 1 is added to the block, the maneuver is feasible;
thus all positions of the matrix are �lled with a one. By inspection, we see that

B2
1 = 2B1;
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which is the characteristic equation for B1. It has eigenvalues � = 0; 2. Since it is
symmetric it has an orthogonal eigenvector matrix, which is:

1

2

�
1 1
1 �1

�
:

The coe�cient 1=2 rather than 1=
p
2 is chosen because we will presently use

probability vectors, which are normed by sums of absolute values rather than sums
of squares.

4.3.2 B2

Let us continue with B2, likewise labelling its rows and columns by the 2-blocks
to which they correspond. Zero matrix elements|for which there is no link in the
de Bruijn diagram|will be suppressed in favor of dots.

00 01 10 11

00 1 1 : :

01 : : 1 1
10 1 1 : :

11 : : 1 1
n10

n00

n11

n01

�

-

6

?�
�
���
�

�
��	

� 	
��

��
�-

011

001

110

100
101

010

111

000

Figure 4.2: Two stage binary de Bruijn matrix and diagram.

By a simple calculation,

B3
2 = 2B2

2 ;

which is a minimal equation rather than a characteristic equation since it is not of
degree 4. Its roots are � = 2; 0; 0. B2 is evidently singular because of the repeated
rows, but on closer inspection we �nd that it shows the Jordan canonical form with
respect to a 2� 2 block belonging to eigenvalue 0.

The matrix of principal vectors reducing B2 to canonical form could be

1

4

2
664

1 1 1 1
1 �1 �1 1
1 1 �1 �1
1 �1 1 �1

3
775 :

The �rst three columns are eigenvectors, the last a principal vector.
Although characteristics of the de Bruijn matrices are already evident in B2, it

is worth going on to examine B3 for good measure.

4.3.3 B3
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000 001 010 011 100 101 110 111

000 1 1 : : : : : :

001 : : 1 1 : : : :

010 : : : : 1 1 : :

011 : : : : : : 1 1
100 1 1 : : : : : :

101 : : 1 1 : : : :

110 : : : : 1 1 : :

111 : : : : : : 1 1

n100

n000

n101

n001

n110

n010

n111

n011

��

- -

6

?�
�
���

�
�
���
�

�
��	

�
�

��	

��������� ��
��

��
��*

� �6

� �?

� 	
��

��
�-

Figure 4.3: Three stage binary de Bruijn matrix and diagram.

This time the minimal equation is

B4
3 = 2B3

3 :

The general result is that Bk;n is a kn � kn matrix whose minimal equation is

Bn+1
k;n = kBn

k;n;

and which exhibits the Jordan canonical form for k > 2.
This result shows that it takes at most n links to get from one node to another in

an n-stage de Bruijn diagram; in terms of shift register sequences this is precisely
the shift required to completely replace one sequence by another. If the node
labels have internal symmetry, a smaller shift and hence a shorter path through the
diagram may exist.

Although the form of the minimal equation can be conjectured readily enough
by inspection, an instructive proof can be given, whose elements will be useful later
on. We begin with two factorizations of the de Bruijn matrix, motivated by the
observation that it would be block diagonal if only its rows were rearranged.

4.3.4 Bn as product and sum

B3 =

2
66664

1 : : : : : : :

: : 1 : : : : :

: : : : 1 : : :

: : : : : : 1 :

: 1 : : : : : :

: : : 1 : : : :

: : : : : 1 : :

: : : : : : : 1

3
77775�

2
66664

1 1 : : : : : :

1 1 : : : : : :

: : 1 1 : : : :

: : 1 1 : : : :

: : : : 1 1 : :

: : : : 1 1 : :

: : : : : : 1 1
: : : : : : 1 1

3
77775

Expressing this equation in the form Bn = PnUn implicitly de�nes the orthog-
onal permutation matrix P and a block diagonal U . These matrices satisfy the
equations Pn

n = I, U2
n = 2Un, where I is the unit matrix. Note that Un is a

Kronecker product, Un = In�1 
 U1; and that the following two identities hold

Bn = Pn(In�1 
 U1)

Bn = (U1 
 In�1)Pn
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Due to the symmetry of the matrix U, a slightly di�erent factorization is possi-
ble, in terms of a permutation matrix which we could call Qn:

B3 =

2
66664

: 1 : : : : : :

: : : 1 : : : :

: : : : : 1 : :

: : : : : : : 1
1 : : : : : : :

: : 1 : : : : :

: : : : 1 : : :

: : : : : : 1 :

3
77775�

2
66664

1 1 : : : : : :

1 1 : : : : : :

: : 1 1 : : : :

: : 1 1 : : : :

: : : : 1 1 : :

: : : : 1 1 : :

: : : : : : 1 1
: : : : : : 1 1

3
77775

Qn satis�es the equationQ2n
n = I; but P andQ do not commute. It is interesting

to note that

Bn = Pn +Qn

Thus there are both factorizations and sum decompositions for the de Bruijn matrix,
all readily obtained in a way that indicates that many more representations are
possible, although the others would not be as symmetrical as the ones shown.

If we adopted a more formal de�nition of P and Q we would �nd

[Pn]i;j = �(2i; j) mod 2n

[Qn]i;j = �(2i+ 1; j) mod 2n

from which would follow

B2
n = (Pn +Qn)

2

= PnPn + PnQn +QnPn +QnQn

Writing the four terms of this sum according to their matrix elements, we �nd
(where � is Kronecker's delta):

[P 2
n ]i;j = �(4i; j) mod 2n

[PnQn]i;j = �(4i+ 2; j) mod 2n

[QnPn]i;j = �(4i+ 1; j) mod 2n

[Q2
n]i;j = �(4i+ 3; j) mod 2n

a representation which can readily be generalized for any power of B; and also
for any number of states per cell, k: In particular, the form of both the minimal
equation and the characteristic equation for the de Bruijn matrices follows. Note
that the congruence in these equations is multiplicative, not additive, making 2N

congruent to 1, not 0.
The factorized form of the de Bruijn matrices can be used to obtain the deter-

minants and inverses of their probabilistic generalization; since the strict de Bruijn
matrices are singular their zero determinant can be derived in this way, but of
course they have no inverses.
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4.4 Periods and other properties

There are two ways that a de Bruijn diagram can be associated with the neigh-
borhoods of a linear cellular automaton. The neighborhoods can be attributed to
the nodes or to the links. The latter is the more compact representation; then the
node between two links would describe the overlapping portion of the two neighbor-
hoods. Any classi�cation of neighborhoods immediately becomes a classi�cation of
the links. In searching for still lifes, we would discard all those links which did not
stand for a neighborhood whose central cell evolved into itself.

If the remaining links formed chains, they would be chains which remained
unchanged from one generation to the next. Unless they closed into loops however,
they might dwindle away in each generation. If there were suitable loops, their
lengths would determine the lengths of the ring automata in which they could be
found. For example, chains of alternating ones and zeroes can only be found in
rings of even length according to Rule 22, whereas the zero chain can exist in rings
of any length.

Consequently loops often have to be extracted from larger fragments of de Bruijn
diagrams, just as they have to be to get cycles from the evolutionary diagrams; in
both cases the transients leading into the loops get discarded.

The formation of barriers between macrocells is one exception to the rule that
only loops give interesting still lifes. The criterion for such a barrier is that the
terminal nodes have a full complement of incoming or outgoing links according to
the end of the chain which they occupy.

Another combinationwhich often occurs is that a loop will be connected through
a series of links to another loop, but that there is no return path. Thus some
pattern may occupy the left side of an in�nite chain, then undergo a transition into
another pattern which occupies the right side of the chain. Such con�gurations
were called fuses in Gardner's column and Wainwright's newsletter, and can exist
in one dimension just as well as in two.

Nor are still lifes the only patterns which can be deduced from de Bruijn di-
agrams. To obtain all the patterns of period two, it is only necessary to iterate
the evolutionary rule once and then look for still lifes. This would transform a
(k; r) automaton into a (k; 2r) automaton using a de Bruijn diagram of 4r stages,
whose links would be classi�ed by their behaviour after two generations of evolution.
Similar considerations apply to periods of three or higher.

Any binary property at all of a neighborhood of cells can be reected by its
inclusion as a link in the de Bruijn diagram for neighborhoods of that length, and
be extended to a larger region by pursuing chains throughout the diagram. Cells
other than the central cell can repeat themselves, so that it is just as easy to
search for shifting patterns as for periodic ones. Evolution into constant chains is
likewise easy to test, and is helpful in determining the behaviour of backgrounds,
particularly in automata with many states per cell.

Figure 4.4 shows several examples; in fact con�gurations possessing any of the
attributes mentioned in Section 4.2, and many more, can be read o� by inspection,
the (2; 1) de Bruijn diagram being quite small.

Two less obvious properties can be mentioned. One is the search for super-
luminal con�gurations. Quiescent automata are ones in which there is a state q
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Figure 4.4: Simple properties of Rule 22 via de Bruijn diagrams.
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such that '(q; q; q) = q; when such a state exists, it is generally assigned the value
zero. Actually, especially for automata which are not binary, there may be several
quiescent states, in which case only one of them would be labelled zero. Quiescence
simply means that a non-quiet cell cannot arise unless there is another non-quiet
cell in its neighborhood, which is to say, \nearby." In quiescent automata infor-
mation can propagate through a quiet region at a maximum velocity equal to one
radius per time step; this velocity is picturesquely called the velocity of light.

A pattern can move faster than the velocity of light if it moves through a region
which is densely enough populated by non-quiet cells. Superluminal con�gurations
can always be found for any velocity, but they may turn out to be so trivial as
to be uninteresting. For example, one may simultaneously be superluminal with
a smaller velocity, or even be a higher harmonic of a subluminal con�guration.
The argument is that one can choose an arbitrary interval consisting of one super-
light-second plus half the width of the neighborhood. Say its length is `. Anything
beyond this interval is �xed by the combination of evolution and shifting. Of course,
the shifted image which emerges does not have to be part of the original interval,
but there is not much else that it can be because there are only 2` intervals and
2`�2g images after g generations. So, there has to be some interval which generates
a recurrent pattern.

Idempotent rules lead to a particularly restrictive type of behaviour, but not
all rules are idempotent. Still, one of the boolean questions which can be asked of
second generation evolution is whether

'('(a; b; c); '(b; c; d); '(c; d; e)) = '(b; c; d)

and consequently whether a given rule admits any con�gurations which have an
idempotent evolution even if all of them do not.

4.5 Superluminal con�gurations for Rule 22

Conceptually superluminal con�gurations may be somewhat easier to describe than
those of lower velocity. For convenience, consider a :1(2) con�guration, which is
supposed to have a single phase which shifts by a distance of 2 in each generation.
Its evolution would have the symbolic form

: : : : a b c d e f :
: : a b c d e f : : :

From this it is evident that a; b; and c are arbitrary, but that necessarily

d = '(a; b; c)

e = '(b; c; d)

= '(b; c; '(a; b; c))

f = '(c; d; e)

= '(c; '(a; b; c); '(b; c; '(a; b; c)))

: : :
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The point is that any seed sequence a; b; c determines the entire sequence of
cells from some point on, but only eight di�erent binary sequences of three cells
are possible. The original seed need not repeat itself, but some seed must repeat
within at least eight cells. Thus only eight strings need to be examined to ascertain
all the possible :1(2) con�gurations; for Rule 22 we would �nd:

con�guration

0 0 0 0 : : : : 0�

0 0 1 1 0 0 1 : (0011)�

0 1 0 1 0 : : : (01)�

0 1 1 0 0 1 1 : (0011)�

1 0 0 1 1 0 0 : (0011)�

1 0 1 0 1 : : : (01)�

1 1 0 0 1 1 0 : (0011)�

1 1 1 0 0 1 1 0 (0011)�

These con�gurations are not very interesting, because they all have simpler
descriptions; but they all ful�ll the technical description, and are moreover the
only con�gurations which do so.

If one wanted to �nd :1(3) con�gurations, the seed would have length 4, and in
general a :p(d) con�guration would have a seed of length p+d and the superluminal
con�guration would have length less than 2p+d and have to be manifest within that
many cycles of iteration of the above procedure.

The following superluminal con�gurations (single phase, shift no longer than
12) exist for Rule 22:

:1(4) 11:1 :1(8) 29:1
:1(5) 30:1 :1(9) 132:1
:1(6) 46:1 :1(10) 191:1
:1(7) 31:1 :1(11) 96:1
:1(8) 37:1 :1(12) 83:1

Subluminal con�gurations can be found by the same procedure, but since the
displaced seed overlaps its own neighborhood, consistency requirements must be
met. Thus superluminal con�gurations always exist even if they are degenerate or
trivial, but subluminal con�gurations may fail the additional requirement. In any
event, the de Bruijn diagram yields a more systematic procedure for all con�gura-
tions, and the foregoing discussion is mainly useful an an existence theorem.

4.6 Periods for Rule 22

Whereas the diagram for the cycles of a linear cellular automaton is a collection
of \trees rooted in cycles," its periods are obtained from the de Bruijn diagram
which consists of an enormous number of cycles, all interlacing. Still, the length
of a ring with a given period is limited by the number of nodes in its de Bruijn
diagram, which after g generations is k2rg: For one-generation properties of a (2,1)
automaton this number is 4. This means that any still life must be evident in a
ring whose length is no longer than 4, and that if there is a still life in a longer ring,
it must contain repeated segments whose length is no longer than 4.
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There is only one loop of length 4 in a 2-stage binary de Bruijn diagram, formed
by the sequence 0011; to require it to represent a still life makes the following
demands on the transition rule:

111 110 101 100 011 010 001 000
a 1 b 0 1 c 0 d

:

Thus four neighborhoodshave their evolution prescribed and for the other four it
is arbitrary. For the maximum variety, a; b; c; and d should be chosen opposite to the
central cell, yielding Rule 105, but there are altogether sixteen rules for which the
sequence : : : 001100110011 : : : is a still life. Of course, there may be additional still
lifes besides the one which was stipulated; for example if d were chosen to be zero in
this example, any number of additional zeroes could be inserted into the sequence
besides the two shown, and we would have Rule 104. Then : : : 0011000001100011 : : :
would also be a still life. At the points where additional zeroes can be inserted,
there is no restriction on the exact number.

It is harder to survey the possible periods for a rule than the possible cycles
because the lengths of the con�gurations that have to be checked grow twice as fast
with increasing period as with increasing cycle length; thus if it is feasible to survey
all cycles up to length 30, the corresponding limit for periods is 15. Furthermore,
the diagram for cycles has only simple loops, whereas the period diagrams can have
multiple loops, whose branching is somewhat harder to describe.

Shifting con�gurations are just as easy to determine as are the periodic con�g-
urations; let the notation P:p(d) denote a con�guration which has period P with p
phases after which time it has shifted d cells to the left (a negative d signi�es a right
shift, which only need be catalogued separately for non-symmetric rules). Reective
con�gurations of the form 2p:p can be found among the 2p:2p(0) con�gurations, the
calculation required to detect them being the same in either case.

Actually it is better not to specify to specify the period, since it will depend
somewhat on the length N of the ring in which it occurs. That is, if d does not
divide N , the pattern may have to make several circuits of the ring before repeating
itself, and

P = p� lcm(d;N):

The smaller subluminal periods for Rule 22 have been determined; they include
the following up through �ve generations:

1 generation :

.1(0) - 0;� (01)�

.1(1) - 0�

2 generations :

.2(0) - 0;� (01)�, (0011)�

.2(1) - 0;� (0001101)�

.2(2) - 0;� (01)*

3 generations :
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.3(0) - 0;� (01)�

.3(1) - 0;� (000010011 11)�

.3(2) - 0;� Figure 4.5

.3(3) - 0�

4 generations :

.4(0) - 0;� (1(0+ 00 + 000)10000(0+ 00 + 000))� and evolutes

.4(1) - 0�

.4(2) - 0;� (01);� (0001101)�

.4(3) - 0;� Figure 4.6

.4(4) - 0;� (01);� (0011)�

5 generations :

.5(0) - 0;� (01);� (100001000 0(0 + 00 + 000))� and evolutes

.5(1) - 0;� (0001101)�

.5(2) - 0;� (0000111100 1);� (0011);� (01)�

.5(3) - 0;� (0000011100 0010001001 1101111000 0000010)�

.5(4) - 0;� (0001110001 0001011101 1000000010 0);� (01)�

.5(5) - 0;� (0010011000 0101110001 0000011111)�

22 22

2 2 22

� -�

�- ��
� �

?
� � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � �

Figure 4.5: Con�gurations satisfying .3(2) for Rule 22.

The unshifted period six is interesting for a wide variety of cycles, all of whose
lengths are multiples of ten, situated as vertical faces on the hexagonal prism of
Figure 4.7. Of course the table continues inde�nitely; shifting con�gurations of
period six exist, not to mention longer periods. Taking into account additional
shifting and longer periods tends to produce diagrams of increasing complexity,
but three classes of diagram are already apparent in the results shown here.

First, there are simple cycles which evolve by shifting (including still lifes with
zero shift); a single diagram serves all generations.

Next, there are diagrams, such as the .4(0) or .5(0) families, in which succeed-
ing generations are described by distinct components of a disconnected diagram,
although symmetric images of the �rst (and subsequent) generations may be en-
countered before the full period closes.

The third class, typi�ed by the .4(3) con�gurations of Figure 4.6 or the .6(0)
con�gurations of Figure 4.7, combines several di�erent phases within a single gen-
eration, producing a much more intricate single component diagram.
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15:4(3r) left hand rhombus
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29:1(8r) outer periphery

� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �
31:1(7`) inner periphery

Figure 4.6: Con�gurations satisfying .4(3) for Rule 22.
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Shortest 10:6(0); period 6:
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First 20:6(0);

repeating 10:6(0) twice:

� � � � � � � � � � � �� � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �
Second 20:6(0);

annexing adjacent face:

Figure 4.7: Con�gurations satisfying .6(0) for Rule 22.
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The .5(0) con�gurations arise from a single pair of cells embedded in a torus;
two gaps separate them of which one always has length 4, the other may have length
5, 6, or 7. Altogether the cycle length may be 11, 12, or 13; longer con�gurations
arise from joining the triplets in sequence.

By contrast, the .4(0) con�gurations also feature a live cell pair, but this time
the short gap can have length 1, 2, or 3 while the long gap's length can be 5, 6, or
7; this time an ennead whose members can be sequenced.

In summary, the de Bruijn diagram determines sequences of neighborhoods, and
therefore cyclic or in�nite con�gurations which meet some requirement which can
be placed on its links. Cyclic con�gurations follow from the loops inherent in the
diagram, but aperiodic con�gurations also exist; these can arise in two ways.

If there are two loops with a one-way connection between them, such as can
be seen in Figure 4.5 describing .3(2) con�gurations, a transition between the two
loops can be made at some point. The result in some cases has been called a \fuse,"
a left hand �eld arises which is di�erent from the right hand �eld; the boundary
between them may be moving or static. To make a good fuse, the �eld from which
the boundary retreats should be quiescent.

If two loops are mutually connected, the transition back and forth can be made
many times; imagine that the choice is made to correspond to the binary expansion
of an irrational number to obtain an aperiodic con�guration. The greater the variety
of loops in the diagram, the greater the variety of con�gurations, but a connected
pair is enough for aperiodicity.

4.7 The gap theorems

In the course of obtaining all the cycles of length up to N = 34 for Rule 22, rings
of cells were examined in such an order that those with more leading zeroes were
examined �rst. Moreover, rings were discarded if, in the course of evolution, a ring
appeared which might have been used earlier as a starting point, or was equivalent
to such a ring by some symmetry operation. In e�ect, that meant if a ring evolved
which contained a string with more zeroes than there were leading zeroes in the
original ring, the analysis was halted and the next case considered.

It was quickly observed and proved that when a single leading zero was encoun-
tered, only one cycle was going to be discovered | the still life if the length of the
ring was even. Likewise, two leading zeroes would only lead to the ring of period
two, and then only when the length of the ring was a multiple of four. If we say
that a sequence of m zeroes (presumably bounded by ones at both ends) is a gap
of length m, then the conditions in the following table were observed

gap increases to unless

1 2 (01)�

2 3 (0011)�

3 4 (0001011)�

4 5 (00100001111)�

A conjecture that the only exceptions to gap 5 were the con�gurations of period 4
and period 6 was made, but proved intractable to verify. Essentially the conclusion
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was drawn that there would always be some phase of a cycle with a larger gap than
a certain value unless the ring were of a particular form, generally of low period, in
which the given gap was conserved.

These observations had practical importance because the search for cycles could
be stopped when the leading gap got to be small enough. The search time doubled
each time the leading gap was decreased by one, so that it was worthwhile to stop
with the largest possible leading gap.

By the use of the de Bruijn diagram, the low order gap theorems can be derived;
the procedure is applicable to any rule in any automaton. It is convenient to
change the point of view of the theorems slightly. Rather than worry about \gaps
increasing," the question could be: What strings of cells do not evolve into gap
m? This property is just one of many predicates which could be used to select
subdiagrams from a de Bruijn diagram. For example, which strings of length three
do not evolve into zero? Or, which strings of length four do not evolve into 00?

Since a small gap is contained in a larger one (gaps without worrying about
boundaries), it must mean that only strictly smaller gaps can occur when a given
gap is excluded from the next generation. Rings from which such gaps are excluded
can only be made up from surviving loops in the de Bruijn diagram, and hence are
even limited in their maximum length.

The simple exclusion of gaps from the second generation does not mean that
the gaps were not present in the �rst generation, or that they might not appear
in the third or subsequent generation. So, drop them from the �rst generation as
well, leaving a �nite set of candidates whose periods must be determined and which
must be followed through their full cycle of evolution to see whether overly large
gaps occur at some stage.
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Figure 4.8: (2,2) de Bruijn diagram excluding 000 in �rst and second generations.
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Figure 4.8 shows the process applied to Rule 22 for gap 3; using the table of
Section 3.8 all links are excluded which contain three consecutive zeroes in either
the �rst or the second generation; consolidating the results shows that either an
additional generation should have been considered (resulting in a larger starting
diagram) or some of the known counterimages of three zeroes should also have
been dropped (a rather ad hoc procedure).

The elimination of a gap from a sequence is similar to the construction of Can-
tor's set, wherein the digit `1' is excluded from triadic decimals constructed from
the digits f0; 1; 2g; but clearly additional and fancier exclusions are possible. The
di�erence lies in extending the exclusion to several, and possibly all, generations;
the latter requires skill, persistence, and luck.

Carrying a diagram through additional generations generally reduces the num-
ber of con�gurations which are admissible; the triangular bridge lying between the
cycles (01)� and (0011)� disappears in the next generation, leaving results which
are provably applicable to all future generations. The process works well because
these cycles lack ancestors other than themselves; but it is another matter to arrive
at gap 5 which can be found in all Rule 22's period four con�gurations, all of which
have large numbers of ancestors with small gaps.

Useful results have been obtained for practically important cases with small
gaps, but the theorems are slightly more complicated if aperiodic con�gurations
are included: there are some interesting \black hole" states. Also to be borne in
mind is the fact that for symmetrical rules such as Rule 22, symmetric images of
exceptions are also exceptions, as we have tacitly assumed.

gap nonincreasing con�gurations delay

0 0� 0
1 (01)� 1
2 (0011)� 3
3 (0011)�(0001011)� 5
3 (0001011)�(1100)� 5
3 (1101000)3n(1100)7n0(0001011)3n 21n
4 (11110000100)� 4
4 (00100001111)� 4
4 (1101000)�(1100)�11(0001011)�



Chapter 5

The Garden of Eden

The de Bruijn diagram is particularly useful for the purpose of extending the prop-
erties of a neighborhood in a cellular automaton to the properties of chains of
cells because they give a particularly graphical way to deal with the overlapping of
neighborhoods. Links in the diagram correspond to neighborhoods, nodes to the
intervals by which they overlap, and paths through the diagram either to extended
neighborhoods or to the sequence of cells into which they evolve.

The de Bruijn diagram di�ers from the evolutionary diagram in one important
respect - it consists wholly of cycles and there are as many links leading into a
node as emerging from it; a number which is uniform for each node. Of course this
�ne balance may be upset when a subdiagram of the de Bruijn diagram is chosen,
and one of the important problems may consist in locating the loops which have
survived the pruning which created the subdiagram.

5.1 The subset construction

There is another way in which an imbalance may occur. Let us suppose that each
link is labelled by the state into which its neighborhood evolves. A path made of
such links has evolved from some state of the automaton, namely the one formed by
reading o� the sequence of overlapping neighborhoods rather than the sequence of
evolved cells. We may invert this process. Suppose that we are given an arbitrary
sequence of states. If we can locate it somewhere in the diagram, then we have
found at least one extended neighborhood which is its ancestor. Sometimes we can
locate the sequence along several paths; but it might also occur that such a path is
nowhere to be found.

Although the number of links emanating from each node is the same, it is up to
the particular rule what the mixture of labels will be. For example, Rule 0 would
show a label of zero on all links, with a one nowhere to be found. Which is correct;
it is a rule under which no ones can evolve. It is a dangerous situation if there
is an imbalance at a certain node, so that some state does not label a link there
and some other state labels more than one link. If one is ever obliged to use that
node in forming a chain of evolved cells, the combination in which the missing cell

59
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is the next one required will be impossible. It may or may not happen that the
desired sequence can be can be located somewhere else in the diagram, so we need
an accurate determination of just which sequences can be folded up and �tted into
the diagram.

Moore's subset construction[84] ful�lls this requirement very nicely. The basic
idea is that if we were systematic, we would start with the �rst cell of our evolved
sequence and look through the diagram taking note of all the links matching that
cell. They would emanate from a subset of nodes, so we could make a new diagram
in which that subset was a node. The nodes to which the acceptable links lead
form a new subset, which we write down and connect to the �rst subset by a single
link with the common label. Turning to the second cell of the evolved sequence,
we would examine only those nodes in the second subset node to see which new
subset we might form and link with the second cell as label. It would be pointless
to examine more nodes in the de Bruijn diagram, because they wouldn't even make
the �rst cell in the evolution come out right.

The �nal result would be a network of subsets linked and labelled with the
same labels used in the de Bruijn diagram. There is no reason not to complete the
diagram showing other subsets and other links, but there are exponentially many
subsets and they may not all be required if the ancestor of only one chain is sought.
The di�erence is that the nodes and links would now cover all the possibilities in a
systematic fashion rather than after the alternative laborious search. In e�ect the
search has already been made, but in an orderly way. Note that in the complete
subset diagram, every node has exactly one emerging link for each of the k states
of an individual cell; thus one can never reach an impasse seeking a route through
the subset diagram.

What one may �nd instead is that one has arrived at the empty set, which is
simply a polite way of saying that the search has been fruitless.

The subset diagram serves a dual purpose. By avoiding the empty set, it is
possible to obtain all the possible con�gurations of the second generation; since
the diagram is �nite and sequences of cells can be arbitrarily long, the diagram
necessarily contains loops, just as does the de Bruijn diagram. By seeking out the
empty set, the class of sequences is found which do not have ancestors, and which
therefore belong to the Garden of Eden. By examining the �nal approaches to the
empty set, but mainly by rejecting loops, sequences may be found which spoil any
other sequence in which they appear, and thus are the basic excluded words for
their rule.

5.2 Excluded states for Rule 22

As an example, consider Rule 22. For brevity, label the nodes A, C, D, F. They
are linked by zeroes and ones according to the following table:

node 0 leads to 1 leads to

A A C

C D F

D C A

F D; F (none)
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The links are not evenly distributed between zeroes and ones; indeed there are
�ve zeroes and three ones so there just couldn't be a balance. In this case the
discrepancy shows up at node F , which will surely cause trouble.

Figure 5.1 shows the connections between the subsets of the initial subset fA C
D Fg, and the resulting subset diagram. Note that the penultimate row, containing
the unit classes, almost reects the de Bruijn diagram, except where the imbalance
in links results in a link descending to the empty set or rising to a higher level
(which can only be to the row of doublets, for a binary rule).

subset 0 leads to 1 leads to

fACDFg fACDFg fACDg
fACDg fACFg fACDg
fACFg fADFg fCDg
fADFg fACDFg fACg
fCDg fCFg fADg
fACg fAFg fCDg
fCFg fDFg fDg
fADg fACg fACg
fAFg fADFg fCg
fDFg fCDFg fAg
fDg fCg fAg
fCg fFg fDg

fCDFg fCDFg fADg
fAg fAg fCg
fFg fDFg fg
fg fg fg

�� ��ACDF�� ��ACD
�� ��ACF

�� ��ADF
�� ��ACD

�� ��AC
�� ��AD
�� ��AF
�� ��CD
�� ��CF
�� ��DF

����A ����C ����D ����F�����
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Figure 5.1: The subset diagram (exit links) for Rule 22.

It seems that all sixteen subsets have to be used to complete the analysis. It also
appears that both 10101001 and its reverse, 10010101, lead directly to the null set,
so they are both excluded words; the shortest ones that can be found for Rule 22.

5.3 Symbolic equations

Diagrams can be represented by connection matrices, through which many proper-
ties of the diagram can be deduced more readily than from the diagram itself. There
is another representation, in terms of regular expressions, which is often useful. To
see how this works, let us try to express the diagram through a set of symbolic
equations. Let nodes be represented by capital letters, links by small letters. Then
the two-stage de Bruijn diagram for Rule 22 can be written in the form

A = A0 +D1 + �

C = A1 +D0 + �

D = C1 + F0 + �

F = C0 + F0 + �

In such an equation, \products" represent concatenation and are usually written
without any explicit operator sign, and \sums" represent alternative choices and
may be read as \or." The symbol � represents a null string and acts like a one in
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products. It is included in the equations to signify that one can get to a node by
doing nothing; that is, by following a null link.

A system of equations is \solved" in much the same way that a system of alge-
braic equations would be solved. The distributive law holds, and any variable (the
nodes) may be substituted by an equivalent expression. The process of elimination
would eventually leave a single variable de�ned in terms of constants, following
which the whole chain of substitutions could be unravelled to obtain the values of
all the variables.

There is just one technical point, however, which concerns the procedure to be
followed when the same variable occurs on both sides of an equation, as in

X = Xa + b

An attempt to write

X(� � a) = b

and thence

X = b(�� a)�1
= b(�+ a+ aa + aaa + : : :)

is very suggestive but hardly justi�ed in a system which lacks any trace of subtrac-
tion, division, in�nite series, convergence, and the like.

The correct procedure is to set about a series of substitutions

X = Xa + b

= (Xa+ b)a+ b

= ((Xa+ b)a+ b)a+ b

: : :

and observe the general form of the result

X = Xa : : : aaa + b(: : : aaa + aa + a + �):

It is the �rst term which refuses to disappear; in the context of arithmetic,
multiplication, and a numerical a less than 1, it could be argued that its magnitude
eventually becomes arbitrarily small and hence it can safely be neglected. Here the
argument might run along the lines, that if the symbolic a is not the null chain,
�; then the �rst term becomes arbitrarily long and can safely be ignored if we are
seeking �nite solutions to the symbolic equation.

The case a = � is special, because it really doesn't de�ne anything; any value
of X whatsoever, including b, will work. On the other hand, if b is empty and a is
not null, the solution must be empty because otherwise we would be requiring X
to be equal to something strictly longer than itself. That, however, is a di�erent
matter.
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5.4 Arden's lemma

If this point of view is adopted, then we have three rules of inference.

� two expressions equal to a third are equal to each other

� an expression may be substituted for an equal expression

� the solution to X = Xa+ b; a 6= � is X = ba�

The notation a� stands for the continued alternative � + a + aa + aaa + : : : ;
and is read \a star." Any symbolic expression constructed by the aid of concate-
nation, alternative selection, and the star operation, is called a regular expression.
Regular expressions are ideally suited to describing paths through a diagram. and
conversely, any regular expression has a diagrammatic representation. Conway's
monograph[25] is a concise reference for regular expressions and their properties.

If we apply these principles to the de Bruijn diagram for Rule 22 above, we �nd
the following chain of substitutions

A = (D1 + �)0�

F = (C0 + �)0�

C = D(10�1 + 0) + 0�1 + �

D = C(1 + 00�0) + 0�0 + �

C = C(1 + 00�0)(0 + 10�1) + (00� + �)(10�1 + 0) + �)�1 + �

Finally we have

C = ((1 + 00�0)(0+ 10�1)) � ((00� + �)(10�1 + 0) + �)�1 + �)

of which the leading term is signi�cant and the remainder represent transients.
Although we have set up the equations for the evolution of one generation of

a (2; 1) automaton for the special case of Rule 22, in fact the equations have the
same form for all rules. Given the general evolution table

111 110 101 100 011 010 001 000
h g f e d c b a

the equations are, in symbolic form,

A = Aa+Dh+ �

C = Ab+Dd+ �

D = Cc+ Fg + �

F = Ce+ Ff + �

with the general solution

A = Dha� + a�

F = Cef� + f�

C = ((f�g + �)(d+ ha�b) + a�b+ �)((c+ ef�g)(d+ ha�b))�

D = ((a�b+ �)(c+ ef�g) + f�g + �)((d+ ha�b)(c+ ef�g))�
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For symmetric rules we would have b = h and e = g. If 0 were a quiescent state,
we would have a = 0.

For in�nite or cyclic chains the interesting part of these solutions would be the
starred right hand expression common to the four nodes. In essence the remainder
of the expression tells how to get to the designated node from any other, while the
main term tells how to keep returning to that node. For purposes of reference we
could tabulate the results for all the symmetric, quiescent rules for (2; 1) automata.
These are just Wolfram's \legal" rules.

5.5 The use of symbolic equations

Unfortunately the scheme which solves systems of symbolic linear equations tends
to multiply the length of the solution by a constant factor, equal to the number
of alternatives, for each node that has to be resolved by the star formula. Since
the symbolic coe�cients do not tend to simplify in general, symbolic solutions
become impractical for all but the very smallest diagrams. We might also note
that the table above describes a considerable variety of automata, and yet they are
uniformly described by formulae of the same general appearance. Many of them
can be further simpli�ed, in spite of the fact that most cannot. For example the
expression describing Rule 0 transforms into 000�; the descriptor of Rule 4, for
which 11 is an excluded word, simpli�es to (100� + 0000�)�.

Some additional remarks ought to be made concerning symbolic equations. The
equations which we have shown are entrance equations, in the sense that C =
A1 + D0 + � says that you enter node C via link 1 from node A, via link 0 from
node D or you do nothing. But it is also true that C = 1D + 0F + �, wherein
you leave node C via link 1 and continue from D, or else leave via link 0 and
continue from F . The complete set of conditions would constitute a description
of the de Bruijn diagram via exit equations, and can be equally solved by regular
expressions.

Using the same example as before, the exit equations for Rule 22 would take
the form

A = 0A+ 1C + �

C = 1D + 0F + �

D = 1A+ 0C + �

F = 0D + 0F + �

For many purposes, the entrance equations and the exit equations of a diagram
give equivalent descriptions. However, the path running between the full set and
the empty set which corresponds to the excluded words for a rule ought to be be
de�ned by entrance equations rather than exit equations. After all, interest lies in
how an impasse is arrived at, not in what to do once it has occurred.

We have not explained why � has been incorporated as an alternative in each
equation. Were it omitted, the equations would be shorter and thereby easier to
solve. However the �nal equation for Rule 22 would then read C = C(1+00�0)(0+
10�1) whose solution according to Arden's lemma would the the empty set|that is,
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Rule a b c d e f g h ((c+ ef�e)(d+ h0�h))�

0 0 0 0 0 0 0 0 0 ((0 + 00�0)(0 + 00�0))�

4 0 0 1 0 0 0 0 0 ((1 + 00�0)(0 + 00�0))�

18 0 1 0 0 0 0 0 1 ((0 + 00�0)(0 + 10�1))�

22 0 1 1 0 0 0 0 1 ((1 + 00�0)(0 + 10�1))�

32 0 0 0 1 0 0 0 0 ((0 + 00�0)(1 + 00�0))�

36 0 0 1 1 0 0 0 0 ((1 + 00�0)(1 + 00�0))�

50 0 1 0 1 0 0 0 1 ((0 + 00�0)(1 + 10�1))�

54 0 1 1 1 0 0 0 1 ((1 + 00�0)(1 + 10�1))�

72 0 0 0 0 1 0 1 0 ((0 + 10�1)(0 + 00�0))�

76 0 0 1 0 1 0 1 0 ((1 + 10�1)(0 + 00�0))�

90 0 1 0 0 1 0 1 1 ((0 + 10�1)(0 + 10�1))�

94 0 1 1 0 1 0 1 1 ((1 + 10�1)(0 + 10�1))�

104 0 0 0 1 1 0 1 0 ((0 + 10�1)(1 + 00�0))�

108 0 0 1 1 1 0 1 0 ((1 + 10�1)(1 + 00�0))�

122 0 1 0 1 1 0 1 1 ((0 + 10�1)(1 + 10�1))�

126 0 1 1 1 1 0 1 1 ((1 + 10�1)(1 + 10�1))�

128 0 0 0 0 0 1 0 0 ((0 + 01�0)(0 + 00�0))�

132 0 0 1 0 0 1 0 0 ((1 + 01�0)(0 + 00�0))�

146 0 1 0 0 0 1 0 1 ((0 + 01�0)(0 + 10�1))�

150 0 1 1 0 0 1 0 1 ((1 + 01�0)(0 + 10�1))�

160 0 0 0 1 0 1 0 0 ((0 + 01�0)(1 + 00�0))�

164 0 0 1 1 0 1 0 0 ((1 + 01�0)(1 + 00�0))�

178 0 1 0 1 0 1 0 1 ((0 + 01�0)(1 + 10�1))�

182 0 1 1 1 0 1 0 1 ((1 + 01�0)(1 + 10�1))�

200 0 0 0 0 1 1 1 0 ((0 + 10�1)(0 + 00�0))�

204 0 0 1 0 1 1 1 0 ((1 + 10�1)(0 + 00�0))�

218 0 1 0 0 1 1 1 1 ((0 + 10�1)(0 + 10�1))�

222 0 1 1 0 1 1 1 1 ((1 + 10�1)(0 + 10�1))�

232 0 0 0 1 1 1 1 0 ((0 + 0f�1)(1+ 00�0))�

236 0 0 1 1 1 1 1 0 ((1 + 0f�1)(1+ 00�0))�

250 0 1 0 1 1 1 1 1 ((0 + 10�1)(1 + 10�1))�

254 0 1 1 1 1 1 1 1 ((1 + 10�1)(1 + 10�1))�

Table 5.1: Paths through the de Bruijn diagrams of Wolfram's \legal" Rules.
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no solution. After all, the equation requires that C be equal to something strictly
longer than itself. Nevertheless the \in�nite recursion" C = ((1+00�0)(0+10�1))�

is just the part of the solution we extracted to represent a cyclic or in�nite state
for this automaton.

There is evidently a philosophical issue involved, concerning the di�erences be-
tween our conceptions of �nite and in�nite. However, it is not a particularly di�cult
philosophy. Had we been more selective in the introduction of the �'s, we would
have paid more attention to the fact that they represent a starting point or a stop-
ping point, according to the handedness of the equations. By including a � in each
of the entrance equations, we have implied that any node in the diagram could be
a starting point, and thus we should be prepared to see that the cyclic part of the
equation for each node is preceded by the transients leading into it from the other
nodes.

If we are looking for �nite paths using entrance equations, only the initial nodes
should be provided with �'s and the equations should be solved for the terminal
nodes; not only will the equations be simpler, but the results will be more accurate.
For exit equations, the situation is reversed; the terminal nodes get their �'s in
preparation for solving for the initial states.

If we are genuinely interested in in�nite solutions, we can entertain alternatives
to Arden's lemma, but we should beware that the result may depend upon the
node which we have chosen for the �nal equation; it will only express a solution
involving that node. It often happens that a diagram contains a loop which makes
a transition to a second loop, but that there is no return path to the �rst loop. In
de Bruijn diagrams for cellular automata, such a con�guration corresponds to one
of Wainwright's fuses. If the equations are solved for a node in the �rst loop, the
existence of the second loop will not be evident.

The algebra of regular expressions is not as direct as one would like, and often
questions involving regular expressions are most easily resolved by constructing an
equivalent diagram, transforming the diagram, and converting the result back into
a regular expression. For example, regular expressions form a Boolean algebra, but
the de�nition of a regular expression only involves unions|the regular expression
sum. Intersections, which represent words conforming to several regular expression
descriptions, and complements, which are words which in no way conform to the
description, are readily de�ned in terms of diagrams, but not by operations directly
on the regular expression itself. For example, excluded words are obtained through
the subset construction, even though they are then readily described by regular
expressions.

A related problem is the one of determining the equality of two regular expres-
sions, and is the reason that there is no canonical form for regular expressions.
Equality can be determined by constructing equivalent diagrams, reducing them to
their simplest form and comparing the results; however there is no unique regular
expression corresponding to any given diagram.

Another result for which there is no simple calculus is to obtain the regular
expression which results from the evolution through one or more generations of
a given regular expression. The di�culty clearly lies in accounting for all the
overlapping which has to be taken into account where sums are involved. It is
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easier to form the composite rule corresponding to the desired evolution and solve
the equations converting the de Bruijn diagram of the composite rule into a regular
expression.

Although each generation of evolution of an automaton can be described by a
regular expression, the tendency is for the expression to become more and more
complicated with each increasing generation. Likewise the description of the words
excluded from each generation becomes increasingly complex as the exclusions from
the previous generation have to be taken into account. One may naturally won-
der what kinds of limit there may be to all this increasing complexity, and indeed
whether the limit may be in some cases simpler than all the confusion which pre-
ceded it.

Generally speaking, the limit of a sequence of regular expressions need not be
a regular expression. One has only to recall that balanced parentheses are not
described by a regular expression, although parentheses nested to any �nite depth
can be listed explicitly and thus described by a regular expression. Here, then, is a
limit which is conceptually far simpler than its approximations, but for which there
are approximations more than adequate for practical purposes.

There is something qualitatively di�erent between keeping a huge list of accept-
able parenthesis sequences to check parentheses, and a huge list of binary numbers
to check the regular expression (0+ 1)�; the latter is simply unnecessary because a
simpler procedure su�ces. In our present situation we might �nd that we have to
let a cellular automaton run for a very long time to �nd out something that another
approach might discover much more quickly. Nevertheless, it is still interesting to
know what the possibilities are, or when such a situation might be occurring.

Certain transformations can be carried out on cellular automata themselves
which can be used to clarify their limiting behaviour. These transformationsmostly
go in the direction of showing how cellular automata can be used to simulate Turing
machines, from whence many known results concerning computability and decid-
ability can be passed over to cellular automata. These results in turn a�ect the
possible types of limiting behaviour which may be encountered.

5.6 Systems of symbolic equations

In Conway's monograph[25] it is shown that the premise of Arden's lemma, that
the symbolic equation X = aX + b can be solved by X = a�b, is just as applicable
to systems of equations if they are written in matrix notation. Thus if we de�ne
the following vectors and matrices

X =

�
P
Q

�
; b =

�
u
v

�

a =

�
a b
c d

�
;

we can write one single matrix equation
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X = aX + b

whose solution would be

X = a�b:

Of course, such a solution is not of much value unless there is an e�ective way
to calculate the \star" of a matrix. Fortunately the matrix elements of the star are
simple regular expressions of the elements of the matrix being starred, expressing
in a concise form the results of the chain of substitutions that would otherwise be
carried out explicitly each time a system of symbolic equations was to be solved.
Indeed, the easiest way to establish the point is to go ahead and solve the equations:
Given

P = aP + bQ+ u

Q = cP + dQ+ v

we deduce in succession

P = a�bQ+ a�u

Q = d�cP + d�v

P = a�bd�cP + a�bd�v + a�u

= (a�bd�c)�(a�bd�v + a�u)

Q = d�ca�bQ+ d�ca�u+ d�v

= (d�ca�b)�(d�ca�u+ d�v)

Disentangling u and v from the �nal equations for P and Q yields a formula for
a�

a� =

�
(a�bd�c)�a� (a�bd�c)�a�bd�

(d�ca�b)�d�ca� (d�ca�b)�d�

�
:

Although these results have been stated for a 2�2 matrix, the fact that the ma-
trix elements can be matrices themselves means that the results are valid in terms
of submatrices. By repeated partitioning, in principle a system of any size can be
reached. In practice, each partition multiplies the complexity of the symbolic ex-
pressions involved, quickly reaching unmanageable proportions. Alternative forms
for these matrix elements can be derived using some of the identities satis�ed by
regular expressions, but the di�culty is a fundamental one|the formulas required
are intrinsically complicated.
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5.7 Ancestorless states for Rule 18

Rule 18, whose statistical properties have been extensively studied by Grassberger,
is very similar to Rule 22, except for the fact that single cells die out rather than
remaining to a�ect further evolution. The consequence is that isolated cells form
growth clusters whose interiors die out, just as for Rule 22. However, the fate
of colliding frontiers from two di�erent clusters depends on the parity with which
they collide, and as a result the evolution of Rule 18 is largely characterized by
the conict of neighboring domains of opposite parity. Occasionally a domain will
shrink and disappear, allowing its two neighbors to coalesce. Grassberger was
interested in the random walk involved.

The following script shows the subset machine for Rule 18.

(2,1) Rule #18

Like LIFE but single cells die

(00*(0+10*1))*

Transitions from original machine

Node A: Link 0:(A ) Link 1:(C )

Node C: Link 0:(D F ) Link 1:(% )

Node D: Link 0:(C ) Link 1:(A )

Node F: Link 0:(D F ) Link 1:(% )

Transitions from subset machine

Node ADF: Link 0:(ACDF ) Link 1:(AC )

Node CDF: Link 0:(CDF ) Link 1:(A )

Node A: Link 0:(A ) Link 1:(C )

Node DF: Link 0:(CDF ) Link 1:(A )

Node : Link 0:( ) Link 1:( )

Node C: Link 0:(DF ) Link 1:( )

Node AC: Link 0:(ADF ) Link 1:(C )

Node ACDF: Link 0:(ACDF ) Link 1:(AC )

The next script shows the symbolic equation set of the subset machine for
Rule 18. (The nodes have been relabelled according to a = fACDFg, b = fACg,
c = fADFg, d = fCg, e = fDFg, f = fCDFg, g = fAg, h = fg)

a=a.0+c.0+%

b=a.1+c.1

c=b.0

d=b.1+g.1

e=d.0

f=e.0+f.0

g=e.1+f.1+g.0

h=d.1
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Since there are relatively few equations, we can write their symbolic coe�cient
matrix fairly easily. By partitioning it into submatrices certain characteristics of the
equations are emphasized; namely that certain groups of nodes are selfcontained.
Links lead into the group but there are no links leading out again. Figure 5.2 shows
the coe�cient matrix (assuming the nodes to form a column vector) and the part
of the subset diagram derived from the full subset.

a b c d e f g h

a 0 1 . . . . . .
b . . 0 1 . . . .
c 0 1 . . . . . .

d . . . . 0 . . 1
e . . . . . 0 1 .
f . . . . . 0 1 .
g . . . 1 . . 0 .

h . . . . . . . .

lf
le lg
ld

lh
lb

la lc

���@@R

�����	

� �
?

���� �6
�

���

-
@@I

�
�3

� �

6
?

@@R ��	

Figure 5.2: Subset diagram for Rule 18.

The solutions for these equations can be obtained in a way which emphasizes
the triangular nature of the coe�cient matrix:

b=(0*1)(000*1+01)*

d=b.1((01+000*1)0*1)*

h=d.1

g=d.(01+000*1)0*

f=d.000*

e=d.0

a=b.000*+0*

c=b.0

The coe�cients of b and d can be simpli�ed slightly. The new coe�cient
0�1(00�1)� means that (reading from left to right) after meeting the �rst 1, we
can remain on the highest level only if 1's do not come in joined pairs. Having met
the �rst such pair, we may now remain on the second level as long as the sequence
00�10�1 repeats itself, which it will do unless three 1's come along in sequence, or
else a pair of pairs enclosing a single isolated 1. Descent to level three ensues, �nally
leaving a sequence without an ancestor. Thus three ones in sequence is a sure mark
of a Garden of Eden sequence, but the other condition is much less speci�c, as it
does not refer to some sequence of �xed length.

5.8 Factors

Regular expressions form an algebraic system in the same way that many other
structures, such as groups, semigroups, rings and �elds; they probably resemble
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semigroups more than any of the others. Consequently there are standard aspects
of structure theory which may be brought to bear, including the study of equiva-
lence relations, order relations, and mappings which are consistent with the regular
operations of sum, concatenation and star. Conway's monograph touches on all
these points, without explicitly mentioning them. His theory of \factors" is related
to the decomposition of an algebraic structure into ideals, with implications for the
establishment of a canonical form for regular expressions.

In the case of Garden of Eden con�gurations, it is noticed that the mere presence
of certain strings in a sequence of cells will prevent the whole sequence from having
an ancestor; for instance 10101001 is su�cient to block the formation of ancestors
for Rule 22. Tracing back from the empty set in the subset diagram, it is seen that
all the strings lacking ancestors have to end with 01. A question which can be asked
is whether the lack of ancestors is always a local matter, for which de�nite strings
can be assigned responsibility, or whether di�culties can build up more slowly, with
the possibility of being reversed before they become inescapable. The presence of
loops in the paths leading from the universal set to the empty set allow for a wide
variety of ancestorless chains, included among which there is a �nite collection of
loopless paths, whose maximum length is (exponentially) bounded.
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Chapter 6

The calculus of regular

expressions

After having watched the evolution of a variety of cellular automata and developed
a certain amount of theory regarding their behaviour, it is not only possible to begin
to predict the behaviour of a previously unfamiliar automaton, but one also begins
to feel that certain desired e�ects could be obtained if only certain changes were
made in the rules of evolution. This is the beginning of automaton engineering,
wherein automata are designed to order; at least within the limits of certain con-
straints. To do this job well, it is necessary to continue analyzing the structure of
automata, particularly along the lines of formal structure theory, possible mappings
between automata, and the possible embedment of one automaton in another.

6.1 Derivatives

Regular expressions are the natural formalism arising from an attempt to devise so-
lutions to the symbolic equations encountered in trying to trace out all the possible
paths through a network. They comprise one of three productive viewpoints; the
other two being, �rst, the diagrammatic or graphical representation of the network,
and second, a relatively numerical description of the network via its connectivity
matrix.

The symbolic equations de�ning regular expressions are soon seen to be the
simplest examples of a whole hierarchy of symbolic equations, both implicit and
explicit, with various restrictions on the precise form which the system is permitted
to assume. Just because they lie at the bottom of the hierarchy, it is worthwhile
to make an exhaustive study of their properties, which will surely be encountered
again and again in any more comprehensive theory.

Having obtained regular expressions as the description of the paths through
a diagram, the converse question arises as to whether there is a diagram for an
arbitrarily given regular expression. If such there were, it would be a diagram
relating how one regular expression di�ered from another by its initial letter, in the
case the regular expression were solving exit equations, or by its terminal letter, in

73
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the case of solutions to entrance equations. Since the two cases are symmetric, it
su�ces to study one of them|which might as well the case of pre�xes.

One of the charming aspects of this theory is its formal resemblance to the dif-
ferential calculus of analysis. J. Brzozowski developed this point of view, explicitly
incorporating the notation of partial derivatives, in an article[17] published in the
Journal of the Association for Computing Machinery in 1961. The basic concept
is the following: Let � = fa; b; c; : : :g be a set of letters, �� be the set of all �nite
sequences of letters from �, and 
 be some other subset of �. Perhaps it could be
the set of words represented by a given regular expression, but this is not necessary
for the de�nition.

The derivative of 
 with respect to a is de�ned to be the set

@


@a
= f! 2 ��ja! 2 
g

In other words, it is the set of tails of the words in 
 which begin with the letter a.
Sets are the derivatives of sets; since regular expressions de�ne sets it remains

only to verify that their derivatives are also described by regular expressions, to be
able to talk directly about the derivatives of regular expressions. The easiest way
to attack the problem is to resort to the axiomatic de�nition of regular expressions,
thereby obtaining a list of rules de�ning the derivatives of composites in terms of
the derivatives of their constituents. It is at this point that the formal resemblance
to di�erential calculus becomes apparent, evidently being thereby responsible for
the terminology.

A functional notation is convenient; for example f(a; b; c; : : :) might be a regular
(or other) expression built up explicitly from variables a; b; c; : : :, all belonging to
�, using speci�c operations or further functions similarly de�ned. At one point it is
required to know whether the null word � could be represented by f ; the easiest way
to �nd out is to evaluate f with zero (empty set, not null word; they're di�erent)
arguments. Let us designate this particular value of f by [f ]:

[f(a; b; c; : : :)] = f(�; �; �; : : :)

Then, given � as above, � null, and � zero, we have:

� de�nition of a regular expression

1. � is a regular expression

2. � is a regular expression

3. a 2 � is a regular expression

4. if x and y are regular expressions, so is xy

5. if x and y are regular expressions, so is x+ y

6. if x is a regular expression, so is x�

� regular expression whose arguments are zero

1. [�] = �
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2. [�] = �

3. [a] = �

4. [xy] = [x][y]

5. [x+ y] = [x] + [y]

6. [x�] = �

� derivative of a regular expression

1. @�
@a

= �

2. @�

@a
= �

3. @a
@a

= �

4. @b
@a

= � (a 6= b)

5. @xy

@a
= @x

@a
y + [x]@y

@a

6. @(x+y)
@a

= @x
@a

+ @y
@a

7. @x�

@a
= @x

@a
x�

Note that [x] is required in the \product" rule because we must devote our
attention to the second \factor" if the �rst is the null word; otherwise the �rst
\factor" is long enough to yield a derivative without regard to what follows
it.

� canonical form

f(a; b; c; : : :) = [f ] + a
@f

@a
+ b

@f

@b
+ c

@f

@c
+ � � �

The evident way to get a diagram corresponding to a regular expression f is to
start with a node labelled f; and to connect it to a node labelled @f

@a
via an outgoing

link labelled a; to a node labelled @f

@b
via an outgoing link labelled b; and so on.

The canonical form guarantees that we have the correct set of exit equations; the
term [f ] determines whether we have a terminal node or not.

To incorporate additional nodes into the diagram, it is necessary to take further
derivatives, which can be done recursively by applying the de�nitions once again.
Our only real doubt is whether or not there is a �nite total number of derivatives,
so that the diagram will be �nite. Higher derivatives correspond to words which
begin with a speci�ed sequence of letters rather than just a single letter; sometimes
this is written as a single derivative with respect to the longer sequence.

6.2 Ideals and factors

One of the goals of any theory of the structure of an algebraic system is to decom-
pose the system into standard combinations of standard components; in the case of
vector spaces the result is to express any vector as a linear combination of a certain
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number of basis vectors. However, a vector space represents the ultimate in unifor-
mity; the typical decomposition in other systems may be neither as complete nor
as uniform, but there are usually some vestiges of both a basis and of coe�cients.

When the system has both a multiplication and an addition, these terms bear-
ing their usual connotations with respect to things like the commutative and the
distributive laws, the principal object of interest is the behaviour of products. If
there is a subset, such as 
; typically closed with respect to addition, and an entire
set �; we may classify products according to which of these two sets contains them,
particularly with respect to the source of the factors. The most notorious example
of this relationship is the fact that the product of any factor with zero results in
zero; the idea is to generalize the properties of zero.

The following table expresses the possible relationships:

left factor right factor product name

a 2 � w 2 
 aw 2 
 left ideal
w 2 
 a 2 � wa 2 
 right ideal
x 2 
 y 2 
 xy 2 
 subwhatever

Any subset which is simultaneously a left ideal and a right ideal is simply called an
ideal; the set consisting entirely of zero is the prototypical ideal, but so also is the
entire set �.

In the case of regular expressions, Conway has explored these concepts directly,
without making any reference either to ideals or to the general theory of semi-
groups from which the results might possibly be taken. In doing so he exploits a
natural order which exists for regular expressions, or any system having the regular
expression operators; namely

x � y: � :9z 3 x+ z = y

Zero is clearly a minimum element for this order; the goal is to factorize any regular
expressionE as a product of other regular expressions, but this may not be possible;
thus one must work up to the concept in stages. The �rst is to de�ne a trial
factorization through the equation

F:G : : : H : : : J:K � E

and then de�ne successively

� another trial factorization F 0:G0 : : : H 0 : : : J 0K 0 is dominant if F � F 0; G �
G0; : : : H � H 0; : : : ; J � J 0;K � K 0

� any term is maximal if it cannot be increased while keeping the product less
than E

� a factorization is a trial factorization in which every term is maximal

� any term of a factorization is a factor, further characterized as left or right
according to whether it occupies that position in some factorization
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Amongst others, the canonical form of a regular expression provides trial factor-
izations whose terms are letters and derivatives. By taking further derivatives, trial
factorizations may be developed with arbitrary words as leading terms. The point
of starting with trial factorizations is the expectation that they can be promoted
to factorizations by systematically increasing each of their terms.

In doing so we depend upon the fact that sums provide the route to upper
bounds. Thus if P � E and Q � E, P +Q � E; follows readily from the de�nition
of inequality; as long as we do not insist that the result necessarily be a regular
expression, the same conclusion also holds for arbitrary sums. Consequently the
maximal element less than E is simply the sum of all the elements less than E:

A product is linear in each of its terms individually, so replacing G by summing
the set

G0 = f� 2 ��jF:� : : : H : : : J:K � Eg
gives a new trial factorization dominating the �rst. Moreover the replacement
does not spoil the maximality of any of the other terms; if a maximal term were
increased, the distributive law shows that the expression which previously o�ended
the inequality would still be present. Consequently trials can be re�ned one term
at a time until they are �nally factorizations.

Without further restriction, a factorization of E need not be unique; the trial
factorizations even less so. One such restriction is that all terms but one be max-
imal; there is only one way the remaining term can be re�ned, and that must
produce the term itself if it were already maximal. The concept of factor, de�ned
as a maximal term, depends upon the environment in which it is encountered, but
the environment can be reduced to a product of two terms for either a left or a
right factor, or three terms for an interior factor, by using the associative law to
consolidate the remaining terms.

Finally it is possible to conclude that, whatever the number of left factors, they
are paired with unique right factors; thus they can be given a common index set
reecting this correspondence; let us call them Li and Ri; they all satisfy LiRi � E;
each of which is dominant. It is a temptation to combine them with each other.
Thus we further de�ne Ei;j as the maximal solution to the trial factorization

LiEi;jRj � E
dominating Li:�:Rj

Several special cases come to mind. Since �:E = E, there must be an index `
for which � � L` and R` = E; likewise an index r for which � � Rr and Lr = E:
Finally, since L`:E:Rr = E we conclude E`;r = E:

As for the L's andR's, note that by the de�nition of inequality, LiRi+X = E; so
that L`LiRi+L`X = L`E = E; making L`LiRi a trial factorization with maximal
terms|a factorization. Consequently Li = E`;i; and similarly Ri = Ei;r. Thus the
Ei;j 's can be arranged into a square matrix, wherein the left factors form a certain
row, the right factors a certain column, and E lies at their intersection. The Ei;j 's
in general behave like elementary matrices, satisfying the following rules:

� � � Ei;i [non-zero diagonal]

� Ei;jEj;k � Ei;k [matrix basis]
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� AB � Ei;k , A � Ei;j&B � Ej;k
� F1F2 : : : Fn � E , F1 � E`;i&c
One consequence of these rules is that by extending inequality elementwise to

matrices, E �E � E; which implies that

E� = E:

Interesting as it may be, this discussion has so far been purely theoretical,
depending on maximizing through the formation of arbitrary sums. Turning to
the canonical representation and symbolic derivatives it is possible to have more
concrete results. Note that a right factor of E is a maximal R satisfying LR � E;
in terms of words belonging to L this means

R =
\
w2L

@E

@w
;

The pairing between L and R is quite evident from the structure of this formula.
By building up the parallel theory of right derivatives, a similar relationship can
be created to express L in terms of R: If it is found inconvenient to work with
intersections, de Morgan's rules for regular expressions can be invoked to obtain

�R =
X
w2L

@ �E

@w
;

using the notation that �X is the complement of X; which may itself require some
e�ort to obtain.

6.3 Rule 18

The generation evolving from the regular expression (0 + 1)� according to Rule 18
is ((0 + 00�0)(0 + 10�1))�; which can be simpli�ed slightly to (00�(0 + 10�1))�: If
we calculate derivatives strictly according to the rules, simplifying only to remove
�'s (% in the following script) and terms beginning with �'s (#'s), we obtain for the
�rst few derivatives

(00*(0+10*1))*/0= (0*(0+10*1))(00*(0+10*1))*

(00*(0+10*1))*/1= #

(00*(0+10*1))*/00= (0*(0+10*1)+%)(00*(0+10*1))*

(00*(0+10*1))*/01= (0*1)(00*(0+10*1))*

(00*(0+10*1))*/10= #

(00*(0+10*1))*/11= #

(00*(0+10*1))*/000= (0*(0+10*1)+%)(00*(0+10*1))*+(0*(0+10*1))(00*(0+10*1))*

(00*(0+10*1))*/001= (0*1)(00*(0+10*1))*

(00*(0+10*1))*/010= (0*1)(00*(0+10*1))*

(00*(0+10*1))*/011= (00*(0+10*1))*

(00*(0+10*1))*/100= #

(00*(0+10*1))*/101= #

(00*(0+10*1))*/110= #

(00*(0+10*1))*/111= #
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If we introduce the de�nitions

e = (00�(0 + 10�1))�

a = 0�(0 + 10�1)

b = 0�1

we may draw the conclusion that there are only �ve distinct derivatives, one of
which is zero, and one of which is a sum. Thus the following table is su�cient to
deduce all the remaining derivatives.

@e

@0
= ae

@e

@1
= �

@ae

@0
= (a+ �)e

@ae

@1
= be

@be

@0
= be

@be

@1
= e

The �ve distinct derivatives are also the nodes in a diagram describing the
second generation of Rule 18; it is an exit diagram, whose links are shown in
Figure 6.1. Comparison with Figure 5.2 shows them to be equivalent, although
slightly di�erent.

node (�; �) 0 leads to 1 leads to

e � ae �
ae � (a+ �)e be

(a+ �)e � (a+ �)e be
be � be e

l�
le

lbe lae
�
 �	ae+ �

��- ���?
���� �6@@R

�
@@I��	

���

Figure 6.1: Exit diagram for Rule 18.

The right factors will be formed from intersections of these left derivatives.
It is possible to work out the right derivatives of this same regular expression;

One might think that the results should be the same because Rule 18 is a symmetri-
cal rule. However, the regular expression describing it is not, and consequently the
remainder of the analysis must proceed accordingly. We can use the same program
to calculate the derivatives, however, just by reversing the order of the factors:

((0+10*1)0*0)*/0= (0*0)((0+10*1)0*0)*
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((0+10*1)0*0)*/1= ((0*1)0*0)((0+10*1)0*0)*

((0+10*1)0*0)*/00= (0*0+%)((0+10*1)0*0)*

((0+10*1)0*0)*/01= #

((0+10*1)0*0)*/10= ((0*1)0*0)((0+10*1)0*0)*

((0+10*1)0*0)*/11= (0*0)((0+10*1)0*0)*

((0+10*1)0*0)*/000= (0*0+%)((0+10*1)0*0)*+(0*0)((0+10*1)0*0)*

((0+10*1)0*0)*/001= ((0*1)0*0)((0+10*1)0*0)*

((0+10*1)0*0)*/010= #

((0+10*1)0*0)*/011= #

((0+10*1)0*0)*/100= ((0*1)0*0)((0+10*1)0*0)*

((0+10*1)0*0)*/101= (0*0)((0+10*1)0*0)*

((0+10*1)0*0)*/110= (0*0+%)((0+10*1)0*0)*

((0+10*1)0*0)*/111= #

This time we de�ne

e = (00�(0 + 10�1))�

f = 00�

g = 00�(10�);

obtain the derivatives �
@e

@0

�
r

= ef�
@e

@1

�
r

= eg�
@ef

@0

�
r

= e(f + �)�
@ef

@1

�
r

= ��
@eg

@0

�
r

= eg�
@eg

@1

�
r

= ef

and the entrance diagram

node (�; �) 0 comes from 1 comes from

e � ef eg
ef � e(f + �) �

e(f + �) � e(f + �) eg
eg � eg ef

:

While di�erent from the exit diagram, it evidently serves the same purpose.
To use an entrance diagram one builds up an expression from right to left reading
backwards along the arrows until an initial node is reached.
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6.4 Factors for Rule 18

Now that we have all the derivatives for the second generation of Rule 18, it is
possible to calculate its factors using the representation that they are intersections
of the derivatives. The easiest way to calculate an intersection is to represent each
intersectand via its diagram, collect corresponding nodes into pairs, and work out
the regular expression representing the terminal nodes in this new diagram. A
terminal pair is one which is terminal for both of its components, signi�ed by the
presence of �'s in their own diagrams.

Accordingly the exit diagram for the intersections of the left derivatives can be
gotten from a table of links, which can be written in a compact form if certain
preparations are made. De�ne x = a + �; then deduce the links for e and its
derivatives by writing them in canonical form, and �nally display all the pairwise
intersections in a matrix.

e ae xe be

e

�
�+ 0ae+ 1�
�+ 0ae+ 1�

� �
�+ 0ae+ 1�
�+ 0xe+ 1be

� �
�+ 0ae+ 1�
�+ 0xe+ 1be

� �
�+ 0ae+ 1�
�+ 0be+ 1e

�
ae

�
�+ 0xe+ 1be
�+ 0ae+ 1�

� �
�+ 0xe+ 1be
�+ 0xe+ 1be

� �
�+ 0xe+ 1be
�+ 0xe+ 1be

� �
�+ 0xe+ 1be
�+ 0be+ 1e

�
xe

�
�+ 0xe+ 1be
�+ 0ae+ 1�

� �
�+ 0xe+ 1be
�+ 0xe+ 1be

� �
�+ 0xe+ 1be
�+ 0xe+ 1be

� �
�+ 0xe+ 1be
�+ 0be+ 1e

�
be

�
�+ 0be+ 1e
�+ 0ae+ 1�

� �
�+ 0be+ 1e
�+ 0xe+ 1be

� �
�+ 0be+ 1e
�+ 0xe+ 1be

� �
�+ 0be+ 1e
�+ 0be+ 1e

�
:

To read this array, suppose that the intersection ae ^ be is to be calculated.
Then from the row ae; column be we see from (�; �) that the node is not terminal,
that 0 leads from (ae; be) to (xe; be) and that 1 leads from (xe; be) to (be; e). If
further links are traced onward from these, a diagram with eight nodes is obtained,
but none of them is a terminal state. Thus this intersection is empty, ae^be = �; a
conclusion which is con�rmed by observing that ae always contains an even number
of 1's, while the number of 1's in be is always odd. Since the node (be; e) occurs in
the same diagram with (ae; e) we can also conclude that that intersection is empty.

It is evident from the de�nition of xe that e � xe: The diagram for (ae; e) reads

(ae; e) = (�; �) + 0:(xe; ae) + 1:(be; �)

(xe; ae) = (�; �) + 0:(xe; xe) + 1:(be; be)

(xe; xe) = (�; �) + 0:(xe; xe) + 1:(be; be)

(be; be) = (�; �) + 0:(be; be) + 1:(e; e)

(e; e) = (�; �) + � � �

These equations can be solved by inspection to obtain

ae ^ e = 0 + 00xe+ 01be (= 0ae);

ae ^ xe = 0xe+ 1be (= ae):

The only triple intersection not deducible from the foregoing results is

e ^ ae ^ xe = 00xe+ 01be (= 0ae);
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�nally giving us all the possible right factors. By examining canonical forms for the
derivatives these results can be somewhat simpli�ed to the forms shown in paren-
theses. As was to be expected, they all involve incomplete segments of the basic
unit in e: All told, including the null intersection ��; they are seven in number|�;
��; ae; be; xe (= ae + �); 0ae; and e (= 0ae+ �):

By repeating essentially the same calculation with y = e(f + �); the left factors
are found to be �; ��; ef; eg; ey (= ef + �); ef0; and e (= ef0 + �):

In general, the n-fold intersections can be deduced from a table of n-tuples,
and in each case a diagram can be made up and solved to determine the regular
expression corresponding to each intersection. The only slight doubt that might
remain is whether the diagram could be reduced, due to the unsuspected equality of
some of its nodes. Sometimes this is evident from inspection; as when two di�erent
nodes solve the same equation, or when the expression is fairly short with a clear
interpretation. Otherwise it might be necessary to resort to testing the diagram for
equivalence classes.

Having developed this theory to a fair degree of elaboration, the question nat-
urally arises as to its applicability. For studying in�nite or cyclic systems formed
from symmetric rules, it does not seem likely that there will be a useful distinction
between left factors and right factors; they seem more related to starting up or
ending a �nite expression, as the analysis which we have made for Rule 18 shows.
They are also likely to be of importance for rules which admit fuses or gliders.

On the other hand, it cannot be denied that the combination of Arden's lemma
and the calculus of regular expressions yields a very concise and elegant way to
describe diagrams symbolically.

6.5 A geometrical representation

Regular expressions represent sequences of symbols|letters taken from some al-
phabet. When the sequence is relatively short, the sequence is readily perceived
and its properties may be examined. The notation is especially nice for summa-
rizing cycles which can be repeated an arbitrary number of times, since a single
star signi�es this in�nite collection of alternatives. When the regular expression is
complicated, and particularly when it subsumes several distinct cycles at the same
time, it rapidly becomes more complicated, both to write down completely and to
comprehend once it has been written.

Although di�cult of typography, the diagram representing a regular expression
is preferable for expressions of moderate complexity, although eventually the many
crossing lines and increased density of nodes take their toll, and the �gure can no
longer be comprehended.

Another representation has some advantages, although it is typographically even
more di�cult to deal with. To begin with, suppose that the symbols are chosen
to be consecutive numbers, just as we are accustomed to assuming when dealing
with automata. If a decimal point were to be placed in front of a �nite sequence,
it could be interpreted as a number with a positional representation in base k if
there were k symbols running from 0 to k � 1: Finite sequences would be �nite
decimals, in�nite sequences could be interpreted after the fashion of real numbers.
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The principal di�erence is that in base 10 :10000 : : : and :09999 : : : are ordinarily
considered to be the same real number; but have to be understood to be distinct
regular expressions|10� in the �rst case and 09� in the second.

The advantage of this representation is that every regular expression, no matter
how complicated, is a point in the interval 0 � x � 1; and so is represented in a
�nite region of space. The counterbalancing penalty is that this region can be �lled
more densely than is convenient, often too densely for a clear presentation, since
the individual points are always fairly bulky and can never be presented visually
with the mathematical precision of occupying zero area.

We are interested in regular expressions describing con�gurations of cellular
automata, but these are sequences in�nite in both directions. To capture both
directions in such a string, break it at some point, then write the left hand side
backwards. Inserting a �gurative decimal point as before now produces two intervals
of unit length; the natural thing is to treat them as two coordinates generating a
unit square. The vertical, or y-coordinate represents the left half of the sequence,
the horizontal or x-coordinate represents the right half.

Shifting, or changing the decision as to where to break the sequence, will natu-
rally change the point which represents the sequence; in any event it is a geometric
operation whose general nature can be described. Indeed this is a fundamental
operation on sequences: a right shift splits the unit square into k horizontal strips
and reassembles them into k vertical strips after stretching them in one direction
and compressing them in the other.

The numerical value associated with each sequence de�nes a distance, and con-
sequently the distance between two sequences is just the sequence of di�erences. At
this point the di�erence between this representation and that of the real numbers
manifests itself; although di�erent terms are included in the sum in the normal way,
there are no carries from one term to another and so there is no confusion that a
number may have two di�erent representations as a repeating decimal.

In mathematical terms, suppose that there are two sequences

a�n; a�n+1 : : : ; a�1; a0; a1; : : : ; an�1; an

b�n; b�n+1 : : : ; b�1; b0; b1; : : : ; bn�1; bn

Their distance is de�ned as

ka� bk =
nX

i=�n

jai � bij
kjij

:

The distance is small, or the sequences are close, when their central regions agree;
the closer they are, the longer the matching core must be.

To have an idea of how this representation works, let us consider Rule 18 for a
moment. We have seen that the sequence 111, amongst others, is excluded from the
second generation. If we divide the interval 0 � x � 1 into eighths, any sequence
:xyz : : : beginning with .111 will occupy some position in the last eighth of this
interval. This interval will include sequences of the form :1111 : : :, but sequences of
the form :0111 : : : will occupy the last eighth of the interval 0 � x � 1

2
. Recursively,

the last eighth of any binary subdivision of the unit interval is excluded. Similar
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comments apply to sequences extending to the left, so that as the unit square
represents various doubly in�nite sequences the excluded sequences will come to
resemble a Scotch plaid.

Additionally it is necessary to consider sequences whose central point lies amongst
the three excluded 1's. For example 1.11 will refer to points within the upper half of
the square, but in the rightmost quarter; 11.1 to the upper quarter but right half.
These regions have to be added to the plaid, as well as the further subdivisions
implied by further decimals. Thus the same basic pattern is repeated recursively
in each quadrant, 16-ant, and so on of the unit square.

Sequences of three 1's are not the only con�guration excluded from the second
generation, since it is also impossible to encounter a single 1 in a sequence bounded
by pairs of 1's. Taking into account all of the excluded sequences simply gives an
even �ner structure to the plaid. In general the plaid is a two dimensional version
of the classical Cantor set, which is the residue remaining after the middle thirds
of the unit interval and surviving subintervals have been removed. In arithmetic
terms, the Cantor set is the set of all decimals in the unit interval which contain
no 1's when they have been displayed with respect to the base 3; which is one of
the simplest possible examples of an excluded sequence.

The plaid can be used as the starting point for further discussions. For example
the third generation must occupy a subset of the permitted portion of the second
generation plaid, and so on as the automaton evolves through further generations;
it is even meaningful to think of a limiting set which consists of just those points,
if any, which remain after an in�nite number of generations. The limiting set will
include all the points representing cycles of whatever period, as well as gliders, fuses,
and a variety of structures which may have no �nite or cyclical representation.

Metrizing regular expressions, and �� in general, has the advantage of creating
a topological space, to which the whole machinery of analysis may be applied.
As a compact topological space, even stronger conclusions, such as the necessary
existence of certain limits, can often be drawn. An extensive literature concerns
the application of these ideas to probability and symbolical dynamical systems; but
there is no reason that it cannot be broadened to include regular expressions as
well. In particular, the interaction between probability measures and linear cellular
automata can be studied through this model, to the mutual enlightenment of both
disciplines.



Chapter 7

Probabilistic de Bruijn

matrix

The reduced evolutionary matrix and the de Bruijn diagram have probabilistic ver-
sions, in which the zeroes and ones which enable links in the diagram are replaced
by probabilities that the links are to be used. This does more than express the like-
lihood that one thing or another will occur; it allows some quantitative comparisons
to be made.

Since the reduced evolution matrix enumerates the numbers of (n + 2r)-block
ancestors of n-blocks, the probabilistic evolution matrix can be used estimate the
likelihood that the ancestors actually occur, and thus to develop self-consistent
estimates for their probabilities. Probabilistic de Bruijn matrices are useful for
studying correlations between cells or strings of cells situated at a distance from
one another because its matrix elements could describe the probability that one
n-block will overlap the next; powers of the matrix would relate blocks through a
chain of overlaps.

7.1 Block probabilities

The rules of probability are widely known and frequently employed in a wide variety
of contexts; nevertheless it is a probability which assumes such things as indepen-
dent events and the lack of correlation. Under those conditions probabilities of
alternatives are summed and probabilities of coincidences are multiplied. Some-
times it seems reasonable that the justifying hypotheses are valid, other times it is
simply assumed so with the hope that the calculations will still be reliable.

When the evolution of cellular automata is treated probabilistically, it does not
seem reasonable that the evolution of neighboring cells is independent, inasmuch
as they share a common portion of their neighborhood and evolve according to
deterministic rules. Nevertheless the rules are complicated, and the overlapping
segment of the neighborhoods enters di�erently into the evolution of each cell, so
the coupling between the two evolutions might not be all that strong.

85
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Going ahead with naive probabilistic calculations for cellular automata produces
results which are neither very good nor very bad. Tendencies are evident and the
general conclusions seem to be reliable, but the results are clearly defective as soon
as any accuracy is required.

One way to get better results is to work out the rules for more complicated
combinations of probabilities, as is routinely done to get the probabilities for the
values of all kinds of mathematical functions in terms of the probability distributions
of their arguments and the fundamental arithmetic operations. This approach does
not work well for cellular automata because of the complicated way that the rule of
evolution would have to be expressed as an arithmetic function of a real variable.

A more tractable approach seems to be to work with probabilities for sets of
cells rather than with individual cells; in particular, with the linear sequences of
cells from which linear cellular automata are already composed. Thus correlations
between cells are seen in the di�erences in the probabilities of di�erent pairs of cells,
which do not necessarily have to be the products of probabilities for the individual
cells. Further correlations can be deduced by studying the probabilities of triples
of cells, quadruples, and so on. The extreme logical limit to this approach would
be to assign probabilities to each and every possible sequence, no matter how long.

Sequences of cells will be called blocks, to emphasize their linear arrangement;
the term n-block will be used when its exact length is required. Some blocks form
parts of others; indeed the best way to describe (n+ 1)-blocks is by systematically
extending n-blocks in all possible ways; since they are linear, the extension can be
made to the left or to the right. Insertions could be made in the middle, but that
will be regarded as a compound extension.

The assignment of probabilities to blocks ought to respect the process of ex-
tension. Since there are more extensions than bases, each of them should have a
smaller probability than its base; moreover the probability of the base could be
expected to be the sum of the probabilities of all its extensions. In this way a con-
stant amount of probability will be subdivided more and more �nely as the blocks
grow longer.

When formalized, these restraints are called the Kolmogorov consistency con-
ditions. For linear sequences there are two such conditions, according to the hand-
edness of the extension. Thus, if abc were a 3-block, �; the collection of cell states,
the requirements are

p(abc) =
X
x2�

p(xabc)

p(abc) =
X
x2�

p(abcx)

By repeated application of the consistency conditions the probabilities of all m-
blocks for m � n are determined once all the n-block probabilities are known. But
because there are two consistency conditions, the choice of n-block probabilities is
not completely arbitrary. For example, in a binary alphabet, 1 extends to the left to
become 01 or 11, to the right to become 10 or 11. This implies that p(01)+p(11) =
p(10)+p(11) or in short that p(01) = p(10), which is a restraint on the assignments
of probabilities to 2-blocks.
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7.2 Kolmogorov conditions in matrix form

Block probabilities for linear chains can be de�ned and their properties described
by an extremely elegant matrix formulation. Binary sequences already illustrate
the principles quite clearly, as we can see by writing the equations de�ning block
probabilities up to length two. Generally it is understood that p(�) = 1:

p(�) = p(0) + p(1)

p(0) = p(00)+ p(01)

p(1) = p(10)+ p(11)

p(0) = p(00)+ p(01)

p(00) = p(000)+ p(001)

p(01) = p(010)+ p(011)

p(10) = p(100)+ p(101)

p(11) = p(110)+ p(111)

: : :

Concentrating on the last group of equations, four 2-block probabilities are
written as linear combinations of eight 3-block probabilities:

2
664
p(00)
p(01)
p(10)
p(11)

3
775 =

2
664
1 1 : : : : : :
: : 1 1 : : : :
: : : : 1 1 : :
: : : : : : 1 1

3
775

2
66666666664

p(000)
p(001)
p(010)
p(011)
p(001)
p(001)
p(001)
p(001)

3
77777777775
:

If U = (1; 1) is a row vector, I a unit matrix, the matrix in the above equation
can be written as a tensor product, I 
 U:

However, there is another way that the same system of equations can be written,
which is:

2
64
p(00)
p(01)
p(10)
p(11)

3
75 =

2
64
p(000) p(001) : : : : : :

: : p(010) p(011) : : : :

: : : : p(100) p(101) : :

: : : : : : p(110) p(111)

3
75

2
666666664

1
1
1
1
1
1
1
1

3
777777775
:

Next, we partition the rectangular matrix of probabilities into two square matri-
cesA andB, and partition the column of eight 1's correspondingly into two identical
columns. Then, in terms of submatrices, the right hand side of this equation takes
the form AV +BV = (A+ B)V:
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Finally the equations relating 2-blocks to 3-blocks become2
664
p(00)
p(01)
p(10)
p(11)

3
775 =

2
664
p(000) p(001) : :
: : p(010) p(011)

p(100) p(101) : :
: : p(110) p(111)

3
775
2
664
1
1
1
1

3
775 :

in which the matrix (A+B)will be recognized as having the form of a three-stage
de Bruijn matrix, but with probabilities as non-zero elements.

The interesting point is that this entire derivation can be repeated, with slight
variations, for left extension rather than right extension, to obtain the 2-block
probabilities as sums of 3-block probabilities. The same \de Bruijn" matrix will
make its appearance if we write the 2-block probabilities as a row vector rather
than a column vector:

�
p(00) p(01) p(10) p(11)

�
=
�
1 1 1 1

�
2
64
p(000) p(001) : :

: : p(010) p(011)
p(100) p(101) : :

: : p(110) p(111)

3
75 :

In this form, the Kolmogorov consistency conditions require that the row sums
of the \de Bruijn" matrix match the column sums. The reason that the adjective
`de Bruijn' has been enclosed in quotes is that this is not quite the matrix which we
intend to honor by such a description; the term is reserved for a slightly di�erent
matrix for which the consistency conditions will be met.

7.3 Probabilistic de Bruijn matrix

A de Bruijn diagram is a basic structure which can be applied in various ways.
It describes all the possible ways that two sequences of symbols, or windows, can
overlap if they are displaced with respect to each other; just the relationship between
the neighborhoods of two successive cells in a linear cellular automaton. Selecting
a subset of the diagram by retaining or discarding selected links discloses states of
a given period, gliders, and other information. An intermediate approach would
assign probabilities to the links rather than selecting them. As an extreme case, a
probability of zero would exclude a link, a probability of one would surely include
it, giving other values in the same interval intermediate interpretations.

The connectivity matrix of a graph is readily adapted to show the probabilities
of the links; one has only to de�ne

Mi;j =

�
p(i! j) i! j

0 otherwise

The rules of matrix multiplication coincide with the rules for compound proba-
bilities if it is desired to calculate the probability of forming chains of several links.
Even the de Bruijn matrix itself is readily converted into a probability matrix by
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replacing its non-zero elements by the value 1=k, making the choice of all paths
equally likely.

Just as probabilities can be associatedwith the links of a de Bruijn diagram, they
also can be associated with the nodes; to conserve the probabilistic interpretation of
matrix multiplication the nodal probabilities might be used to form a vector, with
matrix equations describing the linkages between nodes. A vector of probabilities
would have non-negative real components|with a unit sum, if it happens that all
the di�erent components comprise a complete set of alternatives.

Any matrix intended to preserve each and every such column vector must nec-
essarily have columns of unit sum, as can be seen by testing the matrix on unit
vectors. Such a matrix is called a stochastic matrix. Likewise the preservation of
unit row sums would require the matrix to have unit row sums. Sometimes the con-
ditions for rows and columns must be met simultaneously, for which the adjective
doubly stochastic would be used.

In terms of the de Bruijn diagram, if the incoming probabilities at a node
were required to have a unit sum, the probabilistic de Bruijn matrix would have
to be column-stochastic. This property would refer to the rows if the outgoing
probabilities were constrained. Expressing either constraint in matrix form guar-
antees a unit eigenvalue, with a probability vector as the equilibrium eigenvector
of opposite handedness. These and certain other conclusions characterize stochas-
tic matrices, all of which information can be found in any one of several recent
textbooks[41, 13, 103] which can be consulted for descriptions and proofs of the
results.

If the links in an n-stage de Bruijn matrix are replaced by their corresponding
n-block probabilities, the row or column probabilities do not sum to 1, but rather
to the (n� 1)-block probabilities; this suggests dividing each column by its column
sum to get a stochastic matrix; alternatively the rows could be divided by the row
sums. Generally these are two distinct choices and result in two di�erent de Bruijn
matrices. For right extension, we de�ne

p(ab! bc) =
p(abc)P
x p(xbc)

=
p(abc)

p(bc)
;

for left extension,

p(ab bc) =
p(abc)P
x p(abx)

=
p(abc)

p(ab)
;

Among other things, these denominators compensate for the overlapping between
blocks when de Bruijn matrices are multiplied.

A stochastic de Bruijn matrix (of either handedness) can be used to generate
a set of n-block probabilities which will satisfy the Kolmogorov consistency condi-
tions. Suppose that the rows are indexed by the (n � 1)-block sequences, so that
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writing one of the non-zero matrix elements as m(axb) identi�es it as belonging
to the axth row and the xbth column. Suppose further that the matrix is column
stochastic. Then the row (1; 1; : : : ; 1) is an eigenvector belonging to unit eigenvalue,
and we may call p(xb) the components of the corresponding column eigenvector.
By rewriting

p(ax) =
X
b

m(axb)p(xb)

in the form

p(ax) =
X
b

(m(axb)p(xb))� 1;

we see that the elements p(ax) are row sums of a new matrix whose elements are
de�ned implicitly by the equation

m(axb) =
p(axb)

p(xb)
:

Since we have only renamed the elements m(axb), the matrixM is still column
stochastic; since p(axb) has the same denominator throughout a given column we
have

1 =
X
a

p(axb)

p(xb)
;

when rewritten in the form

p(xb) =
X
a

p(axb)

we have the other half of the consistency condition.

7.4 Some properties of n-block probabilities

The stochastic de Bruijn matrices suggest one way to obtain a set of n-block prob-
abilities satisfying the Kolmogorov consistency conditions, at least for (n�1)-block
probabilities in terms of n-block probabilities. All that is required is to �ll in the
matrix elements of the de Bruijn matrix with positive numbers, taking care not
to exceed, say, the unit column sum. The choice is relatively arbitrary until the
selection of the �nal element of the column, which must be chosen to complete the
sum. For k symbols, this means that only kn�1 of the kn non-zero elements lack
any freedom of choice; the remaining (k � 1)kn�1 elements are then parameters to
be chosen.

Once this is done, the equilibrium eigenvector is to be determined and each of
the columns of the stochastic matrix is to be multiplied by the corresponding com-
ponent, to produce the n-block probabilities. The components of the eigenvector
are the (n� 1)-block probabilities; the probabilities for smaller blocks follow from
summing longer blocks.

It is interesting to observe that once consistency has been established for (n�1)-
block probabilities relative to n-block probabilities, the consistency of all smaller
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blocks follows. Starting with n-blocks, the inductive step consists of verifying con-
sistency for (n� 2)-blocks:

p(a) =
X
x

p(ax)

=
X
x

X
y

p(axy)

=
X
x

X
y

p(yax)

=
X
y

X
x

p(yax)

=
X
y

p(ya);

and to arrive at successively shorter blocks. In similar fashion it follows that the
probability of any block up to length n is simply the sum of the probabilities of all
the possible extensions which can be derived by the same route; for example,

p(0) =
X
x

X
y

p(x0y):

Given the interrelation between n-blocks and all the shorter blocks, some con-
sideration can be given to using the probabilities of short blocks as parameters. It
is not possible to use only the probabilities of short blocks as parameters; were it
otherwise there would be no need to to build up a theory of block probabilities.
Nevertheless it is possible to attempt the maximum usage of the probabilities of
short blocks. For example, p(1); p(2); : : : ; p(k � 1) can all be chosen before the
value of p(0) is �xed in order to make the complete sum equal to 1|a total of k�1
parameters. Or, of a total of k parameters, one{p(0){has been excluded.

Then, among the 2-blocks, p(x1); p(x2); : : : ; p(x(k � 1)) can be chosen before
p(i0) is needed to complete a sum of p(x): Alternatively, we can consider that p(x0)
is excluded as a parameter, as is p(0x) when the left extensions are considered.
Going on to 3-blocks, we see that all the probabilities p(0xy) or p(xy0) are ex-
cluded. Continuing through n-blocks, the total number of parameters comprising
probabilities in which 0 is neither an initial nor a terminal symbol is

(k � 1) + (k � 1)(k� 1) + (k � 1)k(k� 1) + � � � + (k � 1)kn�2(k � 1)

which can be summed to give the value (k � 1)kn�1; just the same as the number
of parameters required to make a stochastic de Bruijn matrix.

Even when full use is made of the short blocks to de�ne parameters the fraction
of parameters which are n-block probabilities is

(k � 1n�2k (k � 1)

(k � 1)kn�1
;

which reduces to (k�1)=k; 1/2 for a binary sequence, larger and approaching 100%
for others.
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7.5 Some simple examples

The generic form of a 2� 2 matrix with unit column sum is�
a b

1� a 1� b
�
;

whose eigenvalues are
� = 1; a � b;

whose matrix of left eigenvectors is�
1 1

1� a b

�
;

and whose matrix of right eigenvectors is�
b=(1 + b� a) 1

(1� a)=(1 + b� a) �1
�
:

The eigenvalue 1, whose eigenvector has components proportional to the o�
diagonal elements of the matrix, represents an equilibrium probability. The second
eigenvalue lies in the range �1 � � � 1; with an eigenvector suitable for probability
di�erences. Indeed it is the factor by which the disequilibrium decreases in each
generation; if it is zero equilibrium is reached in one step, otherwise there will be
an exponential approach to equilibrium. Depending on the sign, there may be
oscillations about equilibrium, or a uniform approach to equilibrium. However, if
the second eigenvalue is as large as one, there will either be a degeneracy by which
any probability is in equilibrium, or the probabilities for zeroes and ones will be
exchanged with each other and alternate forever after.

A doubly stochastic one-stage de Bruijn diagram would have a probability ma-
trix

P1 =
�
p q
q p

�

with q = 1 � p, whose eigenvalues would be � = 1; p � q; being symmetric, the
matrix of both left and right eigenvectors would be

1

2

�
1 1
1 �1

�
:

The probability matrix of a two stage diagram is a little more complicated.

P2 =

2
664
p1 q2 : :
: : p3 q4
q1 p2 : :
: : q3 p4

3
775

with qi = 1� pi; and the characteristic polynomial



7.6. DETERMINANT AND INVERSE 93

(�4 � �
3(p1 + p4)� �

2(p1p4 � p2p3) + �(p2d34 + p3d12)� d12d34:

with two determinants de�ned by

d12 = (p1p2 � q1q2)
d34 = (p3p4 � q3q4)

The determinant of the de Bruijn matrix is the product of two smaller determi-
nants corresponding to the evident blocks in the de Bruijn matrix; in this we have a
special case of a quite general result. The p's and q's were de�ned as they are with
the thought of equating the subscript pairs (1,2) and (3,4) to get a doubly stochas-
tic matrix, but the best interpretation of the vanishing of the small determinants
is that the biases of the probabilities in their submatrices are equal.

The constant term in the characteristic equation will be zero, giving a single
zero root, if either determinant is zero. The coe�cient of � will also be zero if both
are zero, producing a double zero root. In order to get three equal roots and thus
open up the possibility of the Jordan normal form, requires some similarity between
the two submatrices in addition.

7.6 Determinant and inverse

The representations of the de Bruijn matrix as sums and products need very little
change to apply to the probabilistic versions as well. The factorizations give im-
mediate formulas for determinants; when they do not vanish, the block diagonal
form of of one of the factors, together with the fact that the other is a permutation
matrix quickly reveals a form for the inverse matrix. Taking as an example the
matrix of the last section, we have

P�12 =

2
664

p2
d12

: �q2
d12

:
�q1
d12

: p1
d12

:

: p4
d34

: �q4
d34

: �q3
d34

: p3
d34

3
775 :

The Gerschgorin limit of this matrix requires its maximum eigenvalue to be less
than the greatest reciprocal determinant 1=d12 or 1=d34 (all with respect to absolute
values). Generalizing, this means that every eigenvalue of Pn must be greater than
the lesser of these determinants. Of course, if one of them is zero, we know that
the lower bound is reached and Pn is singular.

In the other direction, unless some pi or qi is zero, every matrix element of
Pnn will be strictly positive, although in the probabilistic case no two of them
have to be equal. This ensures that the maximum eigenvalue, � = 1, will be
unique. Conversely, if some probability or coprobability vanishes, the possibility of
degeneracy exists (but is not obligatory).
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7.7 Characteristic equation

Unfortunately information about the other eigenvalues, particularly the second
largest of them, is not so readily available|either directly or from the factored
forms. However, formulas for the coe�cients of the characteristic equation can be
derived from the symbolic form of the de Bruijn matrix elements; their expression is
even more elegant if a new rule of composition is introduced for regular expressions,
particularly for sequences of symbols.

7.7.1 merged product

Let us suppose a and b are letters, and that x is a sequence, possibly null and
possibly empty. We de�ne the merged product of the sequences s and t, denoted
s _ t; by

s _ t =
�
axb s = axandt = xb
� otherwise

Likewise, de�ne the overlap, s ^ t; by

s ^ t =
�
x s = axandt = xb
� otherwise

These are just the combinations of indices required to work with the de Bruijn
matrices. For example, the 2n � 2n column-stochastic matrix is de�ned in terms of
n- and (n+ 1)-block probabilities by the formula

[Cn]ax;yb =
(

p(ax_yb)
p(ax) p(ax) 6= 0

0 otherwise

Correspondingly the row-stochastic matrix is de�ned by

[Rn]ax;yb =

(
p(ax_yb)
p(xb) p(xb) 6= 0

0 otherwise

Unless stated otherwise, we will assume that a probabilistic de Bruijn matrix is
column-stochastic. Since it is not always convenient to show the matrix elements
as a quotient, but it is essential to know which of them intrinsically vanish, let us
write

[Cn]ax;yb = m(ax; yb)

and note that it vanishes unless x = y; or alternatively when ax _ yb = �:

7.7.2 trace

The trace of Cn; which is the coe�cient of �n�1 in the characteristic equation,
satis�es

Tr(C) =
X
ax

m(ax; ax)
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=
X

ijax=xi

m(ax; xi)

=
X
i

m(i�; i�)

The essential element in all of these calculations is to factor the column index
in such a way that it can match a row index and yet produce a non-zero merged
product.

7.7.3 second coe�cient

a2 =
X
ax�by

(m(ax; ax)m(by; by)�m(ax; by)m(by; ax))

=
X

ijax=xi

X
jjby=yj

m(ax; xi)m(by; yj)�
X

ijby=xi

X
jjax=yj

m(ax; xi)m(by; yj)

=
X
i�j

m(i�; i�)m(j�; j�)�
X
i�j

m((ij)�)m((ji)�)

In essence, this sum runs over all cycles of length 2 in the de Bruijn diagram.
The solution to the requirements that by = xi and ax = yj is that y = (ab)� insofar
as this notation can be respected on account of the fact that y might not have even
length.

7.7.4 principal minors

Striking out rows and columns intersecting on a diagonal will always leave some
surviving elementary determinants, until so many have been stricken out that it is
no longer possible to form a complete determinant. The coe�cient of the elementary
determinants will depend on how much of the remaining elementary determinant
can be salvaged.

In general, the determinant of the de Bruijn jm(ix; yj)j factorizes, so that

jm(ix; yj)j =
Y
x;x

jm(ix; xj)j;

where the factors are k � k determinants obtained by varying the indices i and j
with �xed x: To get the minor of the hz; hz diagonal element, we need to consider
two cases. If this pivot does not belong to any subdeterminant, it can be ignored.
If it does, we drop the z; z term from the product, replacing it by the internal minor
from within the omitted factor. Thus

a1 =
X

hz=wh

cofactor(m(hz; hz))
Y
x6=z

jm(ix; xj)j:
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7.7.5 determinant

Although we already have the determinant of the probabilistic de Bruijn matrices
from their factored forms, it is worth observing that it can be calculated directly
by following the symbolic procedure.

jm(ix; yj)j =
Y
x;x

jm(ix; xj)j;

7.8 Correlations

One application of the probabilistic (n+1)-stage de Bruijn matrix is to �nding the
probability of encountering one n-block in the vicinity of another; depending upon
the direction, the basic probabilities are obtained by multiplying a vector of n-block
probabilities by the matrix of the corresponding handedness to get the probabilities
of a shifted block. Powers of the matrix would then yield blocks shifted to greater
and greater distances, giving some importance to knowing about the behaviour of
such powers. The degeneracy of the largest eigenvalue and the size of the second
largest eigenvalue are the quantities which determine the limiting behaviour of
powers and how rapidly their limits are reached.

If the largest eigenvalue is non-degenerate, which will be assured if none of the
links has zero probability, then both the dominant eigenvalue and its normalized
eigenvector will be unique. The second largest eigenvalue governs the exponential
approach to equilibrium, which will be the more rapid the smaller the eigenvalue.
In general a slow approach to equilibrium is associated with a large bias. Unfortu-
nately the commonest estimators of eigenvalues tend to estimate either the largest
eigenvalue, or else the smallest by �rst inverting the matrix, but not any of the
others.

There is a certain informal expectation that if a block is long enough, probabil-
ities will not be much a�ected by dropping the �nal cell, especially if comparative
probabilities are considered. Illustrating this concept with a fairly short sequence
of three cells, we might expect to �nd

p(abc)

p(ab)
=
p(bc

p(b)
:

There is no real justi�cation for such an assumption, but it gives an alternative
viewpoint to the equivalent equation

p(abc) =
p(ab)p(bc)

p(b)
;

which says that we should multiply the probabilities for the two sequences ab and
bc because the presence of both is required to form the sequence abc; but that the
probability of b should be divided out because it is common to both sequences and
thus counted twice when they are joined.

As yet, the source of the block probabilities which enter into the formation of an
actual probabilistic de Bruijn matrix has not been discussed; only the fact that that



7.8. CORRELATIONS 97

they ought to satisfy the Kolmogorov consistency conditions. One way to obtain
them would be to to look for probabilities which were self consistent with respect to
evolution; the context in which to do this is the probabilistic version of the reduced
evolution matrix.
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Chapter 8

Probabilistic evolution

matrix

Empirically it has been noted that automata go through three phases of evolution. If
a ring is started out with an arbitrary initial con�guration the randomness decreases
fairly rapidly, followed by a longer period with a fairly constant density of states,
and a �nal period which will be reached after a time depending on the length of
the ring, in which the evolution is completely periodic.

Paying closer attention to the intermediate phase, it is seen that the density
of states is not constant but that it uctuates, and that there may be short range
correlations between the states. Nevertheless, these densities, correlations, and
even standard deviations can be calculated and they seem to agree fairly well with
experience.

8.1 Regularities and anomalies

There are both temporal and spatial correlations; we have seen how the latter can
be estimated by the probabilistic version of the de Bruijn diagram. It is interesting
that the most serious logical discrepancy in probabilistic estimates arises from the
excluded states which can be determined from the subset construction. Exclusion
amounts to assigning a probability of zero, but zero probabilities cannot arise in
probabilistic calculations. which involve only sums and products of positive quanti-
ties. Thus calculations based on the probabilities of individual cells will not su�ce,
and strings of cells must be taken into account from the outset.

Since there are arbitrarily long strings which are excluded for the �rst time
(which is to say that none of their shorter segments is excluded, but that they are)
it would seem that no theory based on the extrapolation of probabilities from �nite
strings could be mathematically exact. Nevertheless it can be hoped that there is
a degree of approximation which is su�cient for practical purposes, but still not so
complicated as to be beyond reasonable access.

For example, 10101001 is an excluded word for Rule 22, but it would have a
probability of 1=256 = 0:004 if zeroes and ones were considered equally probable.

99
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This is not the worst distortion which Rule 22 su�ers, because the distribution of
frequencies for other short sequences of is by no means uniform, much less a simple
function of the number of zeroes and ones they contain. For example, segments of
the form (01)� are generally hard to come by, inasmuch as that is a sequence which
it is its only ancestor. Most rules have their own excluded words, some of them
even shorter than the eight letters which form the shortest excluded words for Rule
22.

In its probabilistic version, the de Bruijn diagram serves to predict the proba-
bilities of the possible sequences comprising a shifting window in a long chain of
states, and thus the correlations between such a sequence and a similar one occur-
ring somewhere else in the chain. The conclusion a�orded by the Frobenius-Perron
theory is that there will always be an equilibrium vector of probabilities, that under
certain circumstances will be unique. The particular form of the de Bruijn matrix
shows that the lack of any extreme bias is su�cient to make the equilibrium unique;
also that any zero biases will result in zero eigenvalues. We even know that the
equilibrium probabilities are the n-block probabilities if the de Bruijn matrix is
derived from (n+ 1)-block probabilities.

Although the disequilibrium eigenvalues and eigenvectors do depend in detail
upon the transition probabilities of each particular diagram, the general conclusion
is that the greater the bias the slower the approach to equilibrium, the node with the
least bias establishing an upper limit to the speed. Zero bias results in an immediate
equilibrium which may be accompanied by degenerate eigenvectors, while extreme
bias o�ers the only possibility of alternate equilibria.

Whatever may be the spatial correlations of the moment, it is time evolution
which drives the statistics of a linear automaton, continually challenging any cor-
relations or lack thereof which may be found in the spatial distribution of the cells.
Consequently we should look for probabilities, either of single cells or correlated
probabilities of sequences of cells, which are consistent with the rule of evolution of
the automaton.

8.2 Mean �eld theory

There are two approaches to this computation in the literature. One is called mean
�eld theory and begins by assigning probabilities to each of the k states of the
automaton, and then calculates the probabilities in the next generation on the basis
of the usual combinatorial rules of probability, assuming that the probabilities for
each of the cells in a neighborhood are independent. It is then possible to solve for a
set of self consistent probabilities for each state. The results of such calculations are
generally plausible but do deviate signi�cantly from empirical observations. The
suspect element in the calculation is the assumption of independence.

To see how this works, let us once again recall the transitions de�ning Rule 22:

111 110 101 100 011 010 001 000
0 0 0 1 0 1 1 0

:

Five neighborhoods evolve into zeroes, three into ones; thus one might predict
37.5% ones would be found each generation on the basis of the number of ancestral
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neighborhoods. This is a better estimate than saying that 50% of the cells ought
to be ones because there are only two di�erent values they can have, but we have
no reason to believe that all neighborhoods are equally likely either.

Taking the probability of �nding a one as p, its coprobability as q, we could
estimate p0 = 3pq2 for the probability of �nding a one in the following generation,
based on the makeup of the three neighborhoods that evolve to one. Mean �eld
theory takes the �xed point of this estimate as the equilibrium density of ones for
this rule. The self-consistent values for p are 0 and 1 � 1=

p
3; or approximately

42%.
A slightly more detailed approach to the same information would be to set

up an evolution matrix, in which the probabilities of each of the cell values are
components of a vector, while the elements of the matrix describe the probabilities
that one value of the cell evolves into another.�

q
p

�
0 =

�
p2 + q2 p2 + 2pq
2pq q2

� �
q
p

�
:

The eigenvalues of this column stochastic matrix are � = 1; q(2q� 1); A matrix
of column eigenvectors is

U =

�
p2 + 2pq 1
2pq �1

�
Self-consistency is judged as before, with the same equation for p0 = p; but

now additional information about the rate of decay of disequilibrium is available.
Disequilibrium is very long lived for the self-consistent value p = 0; and vanishes
for p = 50%:

8.3 More re�ned theories

Dresden and Wong[35] showed how to write the rule of evolution of Conway's Life in
an algebraic from to which the rules for combining probability distribution functions
could be applied. Schulman and Seiden[102] proceeded to obtain an explicit form
for the evolution of probability, �nding the cummulants hard to deal with, but
nevertheless worked out an approximation and applied it to Life.

Wilbur, Lipman, and Shamma[116] decided instead to work with the proba-
bilities of chains or blocks of cells rather than individual cells, including a survey
of the self-consistent probabilities of triples of cells according to Wolfram's thirty
two \legal" (2; 1) automata in their article. They obtain self-consistency from esti-
mating the probabilities of the di�erent ancestors in the reduced evolution matrix.
They use the the same chains they are studying to estimate the probabilities of
the extensions required as ancestors, treating the extensions as though they were a
Markov process.

That is, starting with n-block probabilities, they use the quotient

p`(a; x) =
p(ix)P
i p(ix)

as the probability that the (n � 1)-block chain x can be extended to the n-block
chain ax; in terms of the notationwe have already introduced, they assume p`(ax) =
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p(ax)=p(x): A similar result, pr(xa) = p(xa)=p(x) is supposed to hold for right
extensions. Their working hypothesis is that the same relation serves to extend an
n-block probability to an (n+ 1)-block probability; making two extensions, one on
each side, to get the ancestor of a given block, their equations for self-consistent
block probabilities read

p(z) =
X

'(abxcd)=z

p(abx)

p(bx)

p(xcd)

p(xc)
p(bxc):

All terms refer to n-block probabilities or their sums.

8.4 Local structure theory

Perhaps the most extensive pursuit of this theme is to be found in Gutowitz, Victor,
and Knight's[51] local structure theory. It di�ers from the approach of Wilbur et.al.
by their use of the theory of probability measures to justify the derivation of their
equations for the probabilities of the blocks, even though the �nal equations are the
same. Both groups of authors survey several classes of rules, comparing the the-
oretical results with empirically observed frequencies. There is general agreement
that the probability of a block in one generation should equal the probability of
its ancestor in the previous generation; di�erences arise both from the philosophies
and the actual techniques used to obtain the required probability.

To derive their equations, Gutowitz et.al. require 2r+1 consecutive overlapping
n-blocks to build up the n + 2r-block ancestor of a given n-block from other n-
blocks. The choice of a notation in which to express the equations is important; we
shall explore certain alternatives. To begin with, suppose that B and X are words,
the remaining symbols single letters. The equations for self consistent probabilities
then read

p(ABC) =
X

VWXYZ"'�1(ABC)

p(VWX)p(WXY )p(XYZ)

p(WX)p(XY )

As Gutowitz et.al. demonstrated, these equations reduce to the mean �eld equa-
tions for 1-block probabilities, making their local �eld theory a plausible extension
of mean �eld theory. Since the 1-block, or mean �eld theory, denominators reduce
to the constant value p(�) = 1; the mean �eld theory equations are polynomial
equations, whereas the general local structure theory equations involve rational
fractions. As a result it is much harder to establish the existence, uniqueness, or
stability of their solutions.

Nevertheless, the local structure theory approach makes contact with a very
general framework within probability theory, and also presents the basic equations
in a symmetrical form admitting a greater variety of interpretations. In particular
we can recover the point of view of Wilbur et.al. , interpreting the equations as a
set of linear equations whose matrix of coe�cients depends on the same solutions
which it de�nes. The nonlinearity of the equations is thus of a very special form,
reminiscent of the Hartree equations or the Hartee-Fock equations of quantum
mechanics, which are generally solved by an iterative process.
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Numerically, the equations of Gutowitz et.al. can be solved exclusively by it-
eration. Diagonalizing the coe�cient matrix might accelerate convergence, but
at the cost of the time expended on diagonalization. It is of greater importance
that the form of the equations reveals particular properties of the solution and its
convergence that are not otherwise evident.

The ostensible variables are not manifest in the denominators of the equations,
but they are readily obtained by using the Kolmogorov consistency conditions.
Since the terms of the numerators are associatedwith links in the de Bruijn diagram,
and the denominators with nodes, the whimsically minded might fancy that they
see a resemblance to the propagators and Feynman diagrams of �eld theory. In any
event we are going to take up a slightly di�erent interpretation.

8.5 Hartree-Fock approach

The Hartree-Fock-like assumption is to de�ne

�V =
p(VWX)

p(WX)

�Z =
p(XY Z)

p(XY )

both these quantities are positive numbers less than 1; if any numerator is zero,
the entire fraction is taken to be zero, even in those cases where the denominator
might also be zero.

In fact � and � are probabilities which can be used in various ways, such as
constructing the Markov matrix for spatial correlations; in an `-stage de Bruijn
diagram they give the relative probabilities for the di�erent entering or emerging
symbol during a shift.

The self-consistency equations can now be written

p(ABC) =
X
WXY

X
V;Z

�(VWXY Z;'�1(ABC))�V �Zp(WXY )

which presents the appearance of being a system of linear equations if one overlooks
the fact that the �'s and �'s are not constants, but depend upon the very same
unknown probabilities for which one is solving. The function � is a set-theoretic
Kronecker delta, 1 when its arguments coincide, zero when they do not.

The inner sum de�nes a matrix (writing all indices as arguments, not subscripts):

H(ABC;WXY ) =
X
V;Z

�(VWXY Z;'�1(ABC))�(V )�(Z);

mapping one vector of probabilities for the `-blocks into another.
For symmetry we have linearized the equations of Gutowitz et.al. by taking

p(WXY) as the vector component, but we could just as easily have taken one of
the other numerator terms; the Kolmogorov conditions are exible enough to permit
� and � to retain the same form in either case. Should the occasion arise to do
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so, we could distinguish the three di�erent de�nitions of H by the adjectives left,
central, or right.

To implement the theory of Gutowitz et.al. , recall the reduced evolution matrix
En. For n-chains of cells i and j, it is de�ned by

[En]i;j =

�
1 i�'�1(j)
0 otherwise

:

The probabilistic version of E is justH de�ned above, at least for one particular
way of estimating the probabilities of ancestors. In any event, many essential
properties of H are determined by E, since both matrices have the same block
diagonal structure, no matter whether the nonzero matrix elements are determined
self-consistently from the nonlinear local structure theory or otherwise. En, which
is always fairly crowded for low values of n, becomes sparser and sparser as n
increases. One hopes that it tends toward a stable form which could be described
analytically; and which might also describe the full matrix Hn.

8.6 Kolmogorov consistency conditions

The motivation for working with block probabilities rather than cell probabilities
is the hope that a better agreement with empirical observations can be obtained,
supposing that up to some point longer blocks can better account for correlations
between cells than short blocks can. Nevertheless, the empirical quantity which
is usually calculated is the probability of individual cells. Sometimes variances or
pair probabilities may also be calculated, but it is the density of cells which is the
primary concern.

2
4 p(00)

p(01)
p(10)
p(11)

3
5 =

2
4 1000001100010111

0100000000101000
0001010010000000
0010100001000000

3
5

2
66666666666666666666666664

p(0000)
p(0001)
p(0010)
p(0011)
p(0100)
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p(0110)
p(0111)
p(1000)
p(1001)
p(1010)
p(1011)
p(1100)
p(1101)
p(1110)
p(1111)
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p(1110)
p(1111)

3
77777777777777777777777775

Figure 8.1: Two-block probabilities summed from four-block probabilities.



8.6. KOLMOGOROV CONSISTENCY CONDITIONS 105

Cell density can be inferred from block probabilities by summing up the prob-
abilities of blocks in various ways, all of which are guaranteed to give consistent
results by virtue of the Kolmogorov consistency conditions. It is thus worthwhile
to investigate whether the iterative solution of the local �eld theory equations con-
serves the consistency conditions. We have shown that if the de�nition of (n� 1)-
block probabilities in terms of n-block probabilities is consistent, the de�nitions for
all shorter blocks will also be consistent. Thus it su�ces to show that one cycle of
iteration conserves consistency at the the highest level|the one which is anyway
involved in de�ning the denominators for H.

Wilbur et.al. included a proof in their article, so the only practical question
remaining is one of stability|whether numerical errors arising during the course of
an iterative solution of the equations could prejudice the consistency of the results.

It is in any event instructive to write the �eld equations in a very extended
explicit matrix form, shown here for 2-blocks evolving by Rule 22. We begin with
equations (set aside in Figure 8.1 due to their bulk) expressing the probability of a
block as the sum of the probabilities of its possible ancestors.

Either Wilbur et.al. 's theory or Gutowitz et.al. 's equations written in Hartree-
Fock form estimate the probability of each 4-block ancestor in terms of the proba-
bilities of the 1- and 2-block segments into which the ancestor can be decomposed.
The matrix form of this estimate, in which the precursor of the de Bruijn format
is quite apparent, is shown in Figure 8.2.

2
66666666666666666666666664

p(0000)
p(0001)
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p(0011)
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p(0110)
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p(1101)
p(1110)
p(1111)
p(1100)
p(1101)
p(1110)
p(1111)

3
77777777777777777777777775

=

2
666666666666666666666666666664

p(00)
p(0)

p(00)
p(0) : : :

p(00)
p(0)

p(01)
p(0)

: : :

:
p(00)
p(0)

p(10)
p(1) : :

:
p(00)
p(0)

p(11)
p(1)

: :

: :
p(01)
p(1)

p(00)
p(0) :

: :
p(01)
p(1)

p(00)
p(0) :

: : :
p(01)
p(1)

p(10)
p(1)

: : :
p(01)
p(1)

p(11)
p(1)

p(10)
p(0)

p(00)
p(0) : : :
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p(01)
p(0)

: : :

:
p(10)
p(0)

p(10)
p(1)

: :

:
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p(1) : :
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p(00)
p(0) :

: :
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p(0) :

: : :
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: : :
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3
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Figure 8.2: Four-block probabilities estimated from two-block probabilities.
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Consolidating these two equations produces a 4� 4 matrix of coe�cients

H2 =

2
6666664

00 01 10 11

00 p(00)
p(0)

p(00)
p(0)

p(10)
p(0)

p(11)
p(1)

p(11)
p(1)

p(01)
p(0) 1

01 p(00)
p(0)

p(01)
p(0)

p(10)
p(0)

p(10)
p(1)

p(11)
p(1)

p(00)
p(0) 0

10 p(10)
p(0)

p(00)
p(0)

p(00)
p(0)

p(11)
p(1)

p(01)
p(1)

p(01)
p(0) 0

11 p(10)
p(0)

p(01)
p(0)

p(00)
p(0)

p(10)
p(1)

p(01)
p(1)

p(00)
p(0) 0

3
7777775
;

in which it can be veri�ed by inspection that p(0) is consistently de�ned by either
p(0) = p(00)+ p(01) or by p(0) = p(00)+ p(10); or that equivalently p(10) = p(01)
on the right hand side implies the same relation for the new values on the left hand
side of the equation.

It is easier to give the general proof in symbolic form, having �rst written the
�eld equations in terms of the merged product:

p(Q) =
X

'(X_Y _Z)=Q

p(X)p(Y )p(Z)

p(X ^ Y )p(Y ^ Z)

If it is intended to write Q = AB so as to obtain

p(B) =
X
A

p(AB)

we need to know that

'�1(AB) = '�1(A)_ '�1(B);

If '�1(A) is incorporated into X we introduce W

X = '�1(A)_W

and note that X
A

'�1(A)_W = X ^ Y;

so that

p(B) =
X

'(Y _Z)=B

p(Y )p(Z)

p(Y ^ Z) :

Since an entirely symmetrical expression results when Q is factored into Q =
BC; comparing the two establishes the consistency of p(B) after iteration, supposing
that it was consistent before. The essential points in the proof are, �rst, that
running through all initial letters in the sum for p(B) guarantees a traversal of
all the initial letters in the ancestors, and second, that the denominators in the
probabilities are cancelled by the sums in the numerators as a consequence of the
consistency hypothesis.
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8.7 The vector subset diagram

If �(x) is the number of ancestors of x, we have

0 � �(xy) � �(x)�(y);

because the 2r cells at which the ancestors of x overlap the ancestors of y when x
and y are joined must coincide. Moreover, there can be no ancestor of xy which
does not begin with an ancestor of x, nor which does not terminate with an ancestor
of y.

The overlapping of neighborhoods which must be taken into account in calcu-
lating ancestors can be summarized very concisely by the relation

'�1(ax) = '�1(a)_ '�1(x)

when a is a letter and x is a word (or the reverse). If both are words a similar
relation holds, but the merged product was not de�ned with quite the generality
required to restrict the overlap involved.

Since the determination of the ancestors of a given word plays an important
role in all aspects of the calculation of evolutions, it is fortunate that the subset
diagram used to locate excluded words can be generalized slightly to a form which
will provide both the number of counterimages of a word and the counterimages
themselves.

The subset diagram was derived from the 2r-stage de Bruijn diagram whose
links were labelled for the neighborhoods of a (k; r) automaton because the links
also correspond to the cells that evolve from the neighborhoods which the links
represent. Thus following out a path according to the evolved cells automatically
yields the ancestor involved; the subset construction was invoked because of a need
to obtain all the possible paths, and moreover to obtain them systematically.

Links were the only information recorded in the subset diagram because interest
in the diagram was limited to knowing which combinations, or subsets, of nodes
could be linked to get a given evolution. However, if each node is assigned a 22r-ple
(quadruple for a (k; 1) automaton), the exact linkage of neighborhoods could be
shown, not just the mere indication that such a linkage exists.

If we use Rule 126 as an example, we need the table of transitions

111 110 101 100 011 010 001 000
0 1 1 1 1 1 1 0

:

In other words all neighborhoods evolve into ones with the exception of 111 and
the quiescent neighborhood 000.

The de Bruijn diagram for this rule is

node 0 leads to 1 leads to

A A C

C � D; F

D � A;C

F F �



108 CHAPTER 8. PROBABILISTIC EVOLUTION MATRIX

while the vector subset diagram will have the form

subset 0 leads to 1 leads to

fACDFg (A; �; �; F ) (D;A+D; C + F;C)
fAFg (A; �; �; F ) (�;A; F; �)
fCDg (�; �; �; �) (D;D;C;C)
fg (�; �; �; �) (�; �; �; �)

The shortest excluded word for this rule is 010; generally any sequence ending
in 010 is excluded. To determine the subset to which a quadruple leads we have
only to determine its non-� components. To obtain the number of ancestors for
any sequence, say 1101, we begin with the quadruple (1,1,1,1), and apply the for-
mula within the quadruple belonging to each digit in turn. Finally we sum the
components.

node count

ACDF (1; 1; 1;1) (00;01;10;11)
1 ACDF (1; 2; 2;1) (100;001+ 101;010+ 110;011)
1 ACDF (2; 3; 3;2) (0100+ 1100;1001+ 0101+ 1101;0010+ 1010+ 0110;0011+ 1011)
0 AF (2; 0; 0;2) (01000+ 11000;�; �; 00111+ 10111)
1 CD (0; 2; 2;0) (�; 010001+ 110001;001110+ 101110;�)

Thus we conclude that there are 4 ancestors of 1101 according to Rule 126. If we
wanted the actual ancestors, we should have performed the arithmetic symbolically,
as shown in the last column of the table.

8.8 Estimating the number of ancestors

Instead of working with formula bearing quadruples, we could have represented
the links in the vector subset diagram by square matrices; most of them would be
singular, but calculations involving them could be carried out entirely in terms of
matrix algebra. Moreover, it would be possible to ask selective questions about an-
cestors by examining individual matrix elements of the product; a multiple product
is already indexed by the 2r letters with which the ancestor commences and the 2r
letters with which it ends.

Even more useful is to construct the connection matrix of the vector subset
diagram; links to the empty set can be omitted because of the triangular form of
the full matrix. For the example of Rule 126, this matrix has the form

: 1 : : 1 : : : : : : :

: : 1 1 : : : : : : : :

1 1 : : : : : : : : : :

: : 1 : : : : 1 : : : :

: : : : 1 : : : : 1 : :

: : : : : : : : : : : :

: : : : : : : : : : : :

: : : : : : : 1 : : 1 :

: : : : : : : : : : : :

: : 1 1 : : : : : : : :

1 1 : : : : : : : : : :

: : : : : : : : : : : :
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This matrix contains four distinct non-zero submatrices

� =

2
4 : 1 : :

: : 1 1
1 1 : :

: : 1 :

3
5 ; � =

2
4 1 : : :

: : : :

: : : :

: : : 1

3
5 ;  =

2
4 : 1 : :

: : : :

: : : :

: : 1 :

3
5 ; � =

2
4 : : : :

: : 1 1
1 1 : :

: : : :

3
5 :

which are the matrix representations of the quadruples of the vector subset diagram.
It is convenient to regard them as hypercomplex numbers formed from a basis
consisting of the following 8 4� 4 matrices

� =

2
4 1 : : :

: : : :

: : : :
: : : 1

3
5 ;  =

2
4 : 1 : :

: : : :

: : : :
: : 1 :

3
5 ; � =

2
4 : : : :

: : 1 :

: 1 : :
: : : :

3
5 ; � =

2
4 : : : :

: : : 1
1 : : :
: : : :

3
5 ;

� =

2
4 : : 1 :

: : : :

: : : :
: 1 : :

3
5 ; � =

2
4 : : : 1

: : : :

: : : :
1 : : :

3
5 ; � =

2
4 : : : :

: 1 : :

: : 1 :
: : : :

3
5 ; � =

2
4 : : : :

1 : : :

: : : 1
: : : :

3
5 ;

according to the de�nitions

� =  + � + �

� = � + �:

These basis elements obey the multiplication table

� � � �  � � �

� � � � �  � � �
� � � � � �  � �
� � � � � � � � �
� � � � � � � � �
 � �  � � � � �
� � � �  � � � �
� � � � � � � � �
� � � � � � � � �

In general it is probably easier to work with the connection matrix and its
powers than to deal with the algebra of hypercomplex numbers. Sometimes special
properties of the algebra manifest themselves, as they do here. Every basis matrix
has an even element sum, and likewise an even trace. This shows that there must
always be an even number of ancestors of whatsoever open chain, and also of every
ring. Thus there can be no orphan periods among the rings, in which no transients
lead into the ring.

The following table shows the numbers of ancestors, of both open sequences,
and rings, of three cells. To count open sequences all the elements of the �nal
product matrix are to be summed; for rings only the trace is involved because the
the ring cannot close unless the loose ends coincide.

cells 000 001 010 011 100 101 110 111

matrix ��� �� �� �� ��� �� ��� ���

product �  � � + � � � �+ � � + � +  + �+ 2�+ � + �

total 2 2 0 4 2 2 4 16
ring 2 0 0 0 0 0 0 6
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8.9 Trivial solutions

It would be surprising if the equations for self consistency had unique solutions. In
fact, even for one-block equations, the quiescent rules will always have a solution
for the quiescent state. Generally there is another solution (except for Wolfram's
classes i and ii, which practically exclude additional solutions by de�nition.) If
there is more than one solution it will be found that some of them are stable while
others are unstable; in fact there is a whole theory surrounding the existence and
properties of the �xed points of nonlinear equations.

Whatever may be the nature of the solutions of the local �eld theory equa-
tions in general, there are some solutions which can be foreseen. If the length of
the block corresponds to the length of a cycle for a given automaton, then the
members of the cycle can be assigned equal probabilities and other blocks can be
assigned probability zero. We have two cases to consider|the blocks obtained by
symmetry but belonging to the same phase of evolution, and the blocks belonging
to di�erent phases. All the phases of the same block will form a cyclic submatrix of
the local structure matrix, while di�erent symmetry images will generate additional
diagonal blocks. In any event, a given block has exactly one counterimage within
the sequence of evolution, and everything has been assigned equal probabilities.

There are some patterns of cyclic evolution which have no other ancestors than
their immediate predecessors in the cycle of evolution|the still life of alternating
zeroes and ones in Rule 22 for example, as well as the cycles of period seven amd
eleven. Presumably they represent unstable �xed points in the parameter space
of blocks. Other cycles may be the endpoint of various transients, and thus be
somewhat more stable. Generally the self-consistent probabilities for blocks will not
correspond to the actual densities of cells for any particular pattern of evolution,
but rather will be formed from a composite of all of them.

It is also not excluded that there will be probabilities which are not self-
consistent, but rather which alternate between a �nite number of values. This
behaviour tends to occur for rules which do not have quiescent states, so that
alternation between two or more backgrounds can occur.



Chapter 9

Positive matrices

Starting with the evolution and de Bruijn matrices, and continuing with their prob-
abilistic versions, we �nd that we are dealing with a specialized class of matrices
all of whose elements are positive|or more accurately, non-negative. The �rst two
of these classes of matrices is more restricted, inasmuch as their elements must be
integers, but it is not especially easy to obtain much advantage from that particular
characteristic. However, positive matrices|including those with integer elements|
enjoy two properties which can be exploited to considerable advantage. Avoiding
some limiting cases arising from unfavorable groupings of zero matrix elements,
these properties are:

� there is a unique maximum eigenvalue, whose value is bracketed by the row
sums of the matrix (as well as the column sums), and

� whose eigenvector can be normalized so that all its components are strictly
positive. That is, all have the same sign and none are zero.

9.1 Gerschgorin's disks

The fundamental tool for estimating the size of eigenvalues is the eigenvalue equa-
tion itself, written out in terms of components of the eigenvectors. Thus, from the
matrix equation MX = �X there follows

�xi =
nX
j=1

mijxj:

Since the zero vector is never considered to be an eigenvector, there is at least
one component xi which is not zero; let us select the largest among the non-zero
components, move the corresponding diagonal element to the left hand side of the
equation, and apply the triangle inequality. If there is any ambiguity in selecting
the largest component, any one of them will do. Then

j� �miijjxij �
X
j 6=i

jmij jjxj j:

111
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The purpose of selecting the largest component and ensuring that it was non-
zero was to allow division of this equation by jxij to obtain the factors jxj j=jxij
which are all less than, or equal to, 1 (even when i = j). Thus

j� �miij �
X
j 6=i

jmij jjxj
xi
j:

Since the inequality can only be enhanced by making the terms on the right hand
side larger by dropping their small multipliers, we �nally obtain the basic result

j� �miij �
X
j 6=i

jmij j;

which applies even for complex matrices or for real matrices with complex eigen-
values. The complex setting allows a picturesque description of the results with
respect to the geometry of the plane. Regarding the column sum excluding the
diagonal element as a radius and the diagonal element as a center, we have found
a circle which surely contains the eigenvalue.

In general, without having actually found an eigenvector, which would be its
largest component would be rarely be evident; but if all the di�erent disks were
joined together, no eigenvalue could escape the collection. There is even some
choice of the precise disks to be used, according to whether the diagonal element
is taken as part of the radius or as part of the center; the procedure shown yields
the smallest disks but, at times a common center might be preferable. Of course,
the smallest disks are centered on the diagonal elements.

This estimate is due to Gerschgorin, whose name is associated with the disks.
Generally the disks all intersect, and there is no correspondence between eigenvalues
and disks because of the uncertainty as to which would be the largest component of
any given eigenvector. Sometimes there will be disjoint clusters of disks for which
continuity arguments give each cluster its quota of eigenvalues. That is, if the
diagonal elements are retained and the remainder multiplied by a small parameter,
continuity of the eigenvalues with respect to the coe�cients of the matrix will
locate the eigenvalues within small disks surrounding the diagonal elements. As the
parameter is increased, eigenvalues can only wander amongst disks which overlap,
but the number within a given cluster must remain constant.

Using the origin as a common center for the Gerschgorin disks leads to expressing
the bounds directly in terms of row sums:

j�j �
nX
j=1

jmij j;

since the inequality must hold for at least one row, we could always select the worse
case with full con�dence that it expresses a valid bound.

9.2 Eigenvalues on the boundary

The approximations used to derive the Gerschgorin limits would seem to be fairly
generous. If any one of the eigenvalues actually lies on the circumference of a
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Gerschgorin disk, the implied equality for that one equation could presumably be
used to draw additional conclusions; even close proximity to the boundary might
possibly be a source of further information.

Consider the point in the derivation at which the ratios jxj j=jxij were replaced
by 1, and recall that i was the index of the largest component of the eigenvector; this
substitution would surely alter the sum unless the matrix element mij multiplying
it were zero. If all the remaining o�diagonal matrix elements were zero, we could
stop and think about reducing the matrix; otherwise we have forced a number of
components of the eigenvector to be equal in absolute value. But this means that
there are other equations in which this same largest component occurs, but with
other indices.

The same argument forces equality for any further components related through
non-zero matrix elements, and we arrive at the eventual conclusion that all the
components of the eigenvector have the same absolute value, and that all the Ger-
schgorin disks intersect at least in the eigenvalue in question. The only exception
would arise from a matrix whose diagram were not connected, so that either the
class of matrices involved must be restricted, or the conclusion must be con�ned to
the components belonging to connected parts of the matrix.

Bearing this restriction in mind, we conclude that the Gerschgorin bounds can
only be realized for matrices having uniform row sums, and thus any nonuniformity
is certain evidence that the limits cannot be reached. Nevertheless, we have only
derived a necessary|not a su�cient|condition, and it may well happen that the
eigenvalues of matrices with uniform row sums lie well within the Gerschgorin
disks. Examining simple 2 � 2 matrices with elements of mixed signs will quickly
con�rm this statement. The lack of su�ciency results from not yet having taken
into account the liberalizing inuence of the triangle inequality on Gerschgorin's
inequalities; but if all matrix elements were positive, the uniformity of the row sums
would immediately establish the vector with unit components as an eigenvector and
the row sum as its eigenvalue.

Given that our arguments are insensitive to scalar multiplication of the whole
matrix by a complex factor, we cannot postulate that we are working with a positive
matrix. However, if we note that a collection of vectors of �xed lengths cannot reach
their maximum sum unless they are all parallel, we see that the only way that the
natural eigenvalue equation and the one resulting from inserting absolute values
can hold simultaneously is for all the terms to have a common phase.

We can begin by removing phase factors from the components of the eigenvector
by performing a similarity transformation via diagonal matrices bearing the phase
factors. The rows of the resulting matrix must then have constant phase, which
is necessarily the phase of the eigenvalue. If the eigenvalue were not zero, this
would be the phase of the whole matrix, and could be discarded by treating it as a
constant factor.

Thus non-uniform row sums guarantee that the largest row sum is not an eigen-
value, but even uniformity will only make the common row sum an eigenvalue when
the matrix is e�ectively a positive matrix.

Even though we did not assume that a possible boundary eigenvalue was the
largest eigenvalue, that conclusion seems inescapable, inasmuch as we have seen
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that a connected matrix possessing a boundary eigenvalue is essentially positive,
for which summing row elements with anything other than equal weights will nec-
essarily produce a smaller sum and with it a smaller eigenvalue. Likewise, we seem
to be led to the uniqueness of this eigenvalue since only one eigenvector can be
associated with it.

9.3 Minimax principle

Using Dirac's notation for row and column vectors, the equations

� � <xjM jy>
<xjy> ;

used in deriving the Gerschgorin disks would arise directly from the so-called
Rayleigh quotient, were it not for the fact that an inequality can only be stated for
real quantities. However the necessary absolute values entering the equations could
be avoided, given an assurance that all the terms were real, as perhaps might be
anticipated for the largest eigenvalue of a real matrix.

It is generally understood that eigenvalues and eigenvectors satisfy a variational
principle; for symmetric or hermitean matrices this leads to bounds involving the
Rayleigh coe�cient or to the the Courant minimax principle. If we suppose that
<x+�xj and jy+�y> are vectors deviating slightly from <xj and jy> respectively,
and ignoring quantities of second order we know that

<x+ �xjM jy + �y>

<x+ �xjy + �y>
=

<xjM jy>
<xjy> +

<�xj
�
M jy> �<xjM jy>

<xjy> jy>
�
+�

<xjM� <xj<xjM jy>
<xjy>

�
j�y> +

: : :

Requiring the vanishing of the �rst order terms independently of <�xj and j�y>
establishes the Rayleigh quotient as an eigenvalue, providing that <xj and jy> are
its corresponding eigenvectors. However it would be preferable to work directly
from explicit inequalities and not have to extrapolate from extremals to bounds.

Consequently, without yet specifying P and Q, de�ne

r = max
y"Q

min
x"P

<xjM jy>
<xjy> :

s = min
y"Q

max
x"P

<xjM jy>
<xjy> :

If P were the set of coordinate vectors and Q were the set of vectors with positive
components, the Rayleigh quotient would correspond to the right hand side of
the Gerschgorin equations. Interchanging the roles of P and Q in these same
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equations would produce results for column sums equivalent to those which we
would otherwise obtain for row sums.

With these choices of P and Q, it is easy to follow the rationale behind the
de�nition of r; vector by vector, we decide which component su�ers the least mag-
ni�cation, even if it is very, very small. At least we know that the vector as a
whole will receive at least that much magni�cation. Noone can blame us for �nally
choosing the vector with the greatest overall magni�cation, the value of which is r.

Nevertheless, the conservatism involved in singling out the component with the
least magni�cation means that the entire vector will always be magni�ed slightly
more then the worst case estimate unless in fact each and every component is mag-
ni�ed by the same amount|in which case we have an eigenvector on our hands.
Likewise, supposing the magni�cation is not uniform for all components, we could
construct another vector whose minimum magni�cation was slightly larger by sim-
ply reducing the size of the minimally ampli�ed component relative to the others.
However, this latter procedure would de�nitely fail for the vector of maximum
minimal ampli�cation, so it would just have to be an eigenvector.

Similar considerations apply to the de�nition of s, since we would be estimating
the maximum magni�cation thatM could possibly impart to a transformed vector,
and examining the vector whose estimate was the least extravagant, only to discover
that the estimate was quite valid throughout the whole vector, and so to conclude
once again that we had an eigenvector and that s was its eigenvalue.

To be certain of our conclusions we need to be assured that zero matrix elements
do not occur in inconvenient places, and also that the limits involved in assuming
the existence of maxima or minima over sets of vectors exist; the reason that the
Rayleigh quotients contain the denominators which they do is to allow us to con�ne
our attention to vectors of �xed norm, and thus to compact sets. The question of
the possible con�gurations of zeroes does indeed reward more careful consideration,
because of the possibility of �nding disconnected portions or cyclic structures within
M . Nevertheless, the central role is played by those matrices whose elements are
strictly positive.

9.4 Largest eigenvalue

Whereas it is clear that the de�nition of r in the last section yields the largest
eigenvalue with a positive eigenvector, we would like to know that it is the largest
possible eigenvalue, and that it is unique. This information can be obtained some-
what indirectly by noticing that any eigenvector lacking zero components de�nes
an invertible diagonal matrix R, containing those same components on its diagonal.
Let X be the eigenvector, U the vector with unit elements. Then X = RU , so that
the eigenvalue equation

MX = �X

is equivalent to
R�1MR U = �U

which means that � is the common row sum of the matrix R�1MR. Since the
properties of boundary eigenvalues of Gerschgorin disks establish the desired result
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for the equivalent matrix R�1MR they establish it for M as well.
Since M does not necessarily have uniform row sums, we are now interested in

relating � to the row sums, the largest of which we know to be an upper bound to
�, yet unequal to it. Here the variational de�nition of r is useful; let us write r(M)
to acknowledge the dependence of r onM , and increaseM in any way whatsoever,
even by increasing one single matrix element. Then each quantity <xjM jy> must
strictly increase, and with it both the minima and maxima, leading to a strictly
increased maximum eigenvalue.

At this point we could alter some of the matrix elements of M to obtain a
new matrix A, whose row sums were uniformly the minimal row sum of M . It is
important to do this exclusively by reducing matrix elements in M . Conversely,
we could selectively increase the elements of M to obtain a matrix B whose row
sums were uniformly the row sums ofM , but we already have the result which this
would imply.

Applying the theorem on boundary eigenvalues to the matrices A, M , and B,
we obtain both upper and lower bounds to �, de�ned as r above:

min
i

nX
j=1

mij � � � max
i

nX
j=1

mij:

However both inequalities are strict unless the bounds coincide. Although an esti-
mate of the gaps would be useful, often the assurance that they exist is su�cient.

9.5 Second largest eigenvalue

The largest eigenvalue of a positive matrix is unique and belongs to eigenvectors
with positive components, both the row eigenvector and the column eigenvector.
Thus any other eigenvectors must have mixed signs both in their real and possible
imaginary parts. Knowledge of the relative magnitude of the second eigenvalue
of a matrix is often convenient, for example in judging the rate of convergence of
most procedures for diagonalizing the matrix. The traditional way to obtain this
information is to subtract the contribution of the largest eigenvalue from the matrix,
followed by an estimate of the largest eigenvalue of the remaining matrix. There
will often be a pair of second largest eigenvalues, complex conjugates on account of
belonging to a real matrix; if so they must be considered together.

Removal of the largest eigenvalue requires an explicit knowledge of both the
largest eigenvalue and its eigenvectors. It is convenient to avoid this explicit knowl-
edge by supposing the matrix to have been previously transformed to stochastic
form; if it is already stochastic, then no preparation is required. The transforma-
tion to a column stochastic matrix is accomplished by incorporating the elements
of its row eigenvector into the matrix itself by column divisions and row multipli-
cations, �nally dividing the entire matrix by its eigenvalue.

Even so, we would still need to know the components of the column eigenvector
to achieve the traditional reduction. By substituting a more readily available vector
for the unknown column eigenvector we can still obtain useful estimates. If the
matrix were stochastic to start with, no additional knowledge would be required.



9.6. AVERAGING AND CONVERGENCE 117

A plausible choice, which would still leave matrix elements of uniform sign, would
be to form a vector by taking the least element in each row, or alternatively, the
greatest element in each row.

To recapitulate, suppose that M is a column stochastic matrix so that 1 is its
largest eigenvalue, with UT , the row of ones, as its eigenvector. We are seeking an
upper bound for �, which is another eigenvalue with column eigenvector X, and we
have formed the column C by taking the least element from each row of M . Since

UTX = 0

we know that both
MX = �X

and
(M �CUT )X = �X:

Either of these two matrices can be used to obtain bounds for � since it is an
eigenvalue of each. Taking Gerschgorin disks from the column sums, we see that
the column sums of M are unity and those of C are all equal and equal to the sum
of the minimal elements of each row. Thus

j�j � 1�
nX
i=1

n

min
j=1

mij :

If maximal elements were utilized, there would be a reversal of sign and

j�j �
 

nX
i=1

n
max
j=1

mij

!
� 1:

Obviously one would choose the more restrictive of the two bounds.
If there is a considerable discrepancy in the sizes and an unfavorable distribution

of matrix elements of M , the bounds provided by these two inequalities may not
be very useful; for example the probabilistic de Bruijn matrices generally contain
zeroes in every row and column so that the minimal inequality is vacuous. Like-
wise, the concentration of nonzero elements makes them so large that the maximal
inequalities give worse limits than the knowledge that the matrices are stochastic.
Nevertheless, powers of the de Bruijn are better behaved, and are more suitable for
estimates.

9.6 Averaging and convergence

The fact that the largest eigenvalue of a positive matrix is isolated means that
powers of the matrix should converge to a multiple of the idempotentmatrix formed
from the corresponding eigenvectors. By normalizing the eigenvalue and one of the
eigenvectors, as has already been done for stochastic matrices, the limiting form
of high powers is even further simpli�ed. The rate of convergence depends on the
ratio between the largest and second largest eigenvalue, or directly on the second if
the matrix is stochastic. Conversely, one way of estimating the second eigenvalue
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is to study the behaviour of matrix powers, preferably already having transformed
the matrix to stochastic from.

This can be done by commencing with a positive vector X(0) and de�ning
recursively

X(k+1) = MX(k)

�+k = max
i

x
(k+1)
i

x
(k)
i

��k = min
i

x(k+1)
i

x
(k)
i

:

Then it will be found that the largest eigenvalue satis�es

��0 � ��1 � : : : � � � : : : � �+1 � �+0 ;

which con�nes the eigenvalue to a succession of ever smaller intervals. The out-
ermost, widest, interval follows from the minimax characterization of the largest
eigenvalue. So do each of the others, by specializing the choice of the column vec-
tor in the same characterization, but the important part of this result is that the
intervals are nested.

Nesting is a consequence of multiplying successive vectors by M , but it is su�-
cient to see how multiplication by M2 relates to multiplication by M . Moreover it
will be more understandable to write the de�nition of �+k in terms of

MX � �+kX;

the vector inequality being understood as holding for each component, and �+k
being understood as the greatest constant for which the inequality holds. Then we
would have

�MX �M(MX) � �+kMX � (�+k )
2X;

the �rst inequality holds since � itself serves for a general vector such asMX. Given
that � � �+k , we conclude that �

+
k+1 � �+k , since it is the factor which applies to

this �nal equation.
There is a corresponding convergence of vectors which is interesting, especially

since the arguments apply equally well to any product of stochastic matrices and
not just to powers of a single matrix. For simplicity suppose that the family of
matrices is column stochastic, which means that UT , the row of 1's, is a uniform
eigenvector for the family. Then the dominant part of such a matrix would be the
vector product of some column X with the row UT . The action of UT its action in
multiplying any column would be to \average" the components of the column, just
as its action on a matrix would be to form a new row of column averages. Strictly,
an average would also include division by the number of terms summed.

One of the outstanding properties of averaging is its tendency to reduce vari-
ance. In the present context this would mean that the product of a large number
of positive stochastic matrices would tend to a matrix with uniform rows, inde-
pendently of whether the same matrix or di�erent matrices were being multiplied.
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In the particular case of powers of a single matrix, including an additional factor
would not change the limit, which would have to be a matrix of eigencolumns.

In verifying the details of the averaging process it is found that certain estimates
are required for the size of the matrix elements. In particular, permitting very
small or zero elements would be nice for certain applications, but would either
complicate or invalidate the proofs. Here we only present one of the preliminary
theorems, which describes the reduction in range of the elements of a vector with
real components when multiplied by a stochastic matrix.

Suppose thatM is the matrix, thatX is a real vector whose algebraically largest
and smallest components are A and a respectively, and that the corresponding
extreme elements of MX are B and b, respectively. We also require the smallest
element ofM , which we might call ". For the purpose of argumentationwe introduce
another vector Y constructed from X by replacing all of its elements save one of
the smallest by A. Starting from the evident inequality

X � Y

we obtain
MX �MY

and a requirement to estimateMY . Each component will have the form �a+ (1�
�)A, which can be rewrittenA��(A�a). The value of � will vary from component
to component, but it is always greater than ", so

B � A� "(A� a):

The easiest way to get an estimate for b is to repeat the same argument for �X,
which reverses all comparisons. Combining the result,

�b � �a� "(�a+A):

with the bound for B, we �nd

B � b � (1� 2")(A� a):

By its nature, we have " � 1=2, so the range of variation of the components of
MX is necessarily less than the corresponding range for X.

If we could rely on a �xed lower limit to " for an entire family of matrices, it is
clear that X would gradually be reduced to a multiple of U if it were multiplied by
increasingly larger numbers of matrices of the family.

9.7 Non-negative matrices

The presence of zeroes in an otherwise positive matrix complicates the derivation
of its properties. The sporadic presence of zeroes does not greatly complicate the
derivations nor change the results; on the contrary certain systematic patterns of
zeroes can alter the conclusions considerably. Fortunately it is relatively easy to
predict the inuence of zeroes, and to state the correct conclusions. Displaying the
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graph associated with the matrix leads to one of the most concise descriptions that
seems to be possible.

The essential point is that zero elements are tolerable in a matrix if they disap-
pear from a power of the matrix. Since powers of a matrix have the same eigenvec-
tors as the original, and powers of the original eigenvalues, the necessary details of
proofs can be worked out for the matrix power and then attributed to the matrix
itself. Such circumvention could fail in two evident ways: either the zeroes persist
through all the powers, or they simply keep shifting around. Both circumstances
are fairly evident from an inspection of the graph of the matrix.

In the former case, there are nodes in the graph which are not accessible from
one another, so that the basic requirement is for a connected graph. If the nodes
are grouped according to their accessibility, inaccessible nodes are reected in a
triangular structure of the matrix which can be handled by partitioning the matrix
and applying the relevant theorems to the resulting submatrices. Thus the solution
to the problem is to treat disconnected portions of the graph separately, just as it
is well to separate out transient parts of the graph and treat them separately from
the others.

Even if the graph is connected, it may result that links of only certain lengths
may exist; consider for example a graph with two subsets of nodes such that the only
direct links occurred between nodes of di�erent sets, none between two nodes of the
same set. This structure signi�es a partitioned matrix whose diagonal submatrices
are zero. Its square would have diagonal submatrices but zero antidiagonal sub-
matrices, while its cube would once again have the original form. But no power at
all would be free of blocks of zeroes. Fortunately this alternative has a particularly
elegant solution.

For example, the example cited refers to a matrix of the form

M =

�
O A
B O

�
;

but there exists another matrix

J =

�
I O
O �I

�
;

for which MJ = �JM . If

X =

�
U
V

�
is an eigenvector of M belonging to �, then JX is another belonging to the eigen-
value ��, as the use of the anticommutation relation readily shows. Thus all
nonzero eigenvalues occur in negative pairs, with eigenvectors partitioned so that
corresponding components di�er at most in sign, in appropriate places.

The squared matrix M2 is block diagonal, of the form

M2 =

�
AB O
O BA

�
;

but the diagonal components AB and BA = A�1(AB)A are equivalent as long as
A is square and non-singular. If it is not, a subspace belonging to eigenvalue 0 can
be partitioned o�, and the conclusions applied to the complementary space.
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Generally M would contain a longer superdiagonal of submatrices, higher roots
of unity would occupy the diagonal of J, and the canonical form would require k
equivalent copies of a matrix of more tractable form. All eigenvalues would occur
in cycles, related by kth roots of unity.
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Chapter 10

Zeta function

The evolution and de Bruijn matrices are sparse, both in their normal and in their
probabilistic versions; that is a consequence of their origins as connectivity matrices
of diagrams of one type or another. It is therefore natural to seek a description
of such matrices in terms of the visual properties of the same diagrams, one of
the most evident of which is the network of cycles or loops which they contain.
It is even more satisfying if the description will accommodate the accumulation of
a variety of matrices into families. A recent article of Cvitanovic [31] reveals the
process, as applied to an analysis of strange attractors.

10.1 Counting loops

It is convenient to begin with matrices with integer elements, and even more pre-
cisely with the connection matrices for diagrams, such as those which form the
evolution matrices or the de Bruijn matrices. There is a mutual relationship be-
tween matrices and diagrams. To begin with, a diagram can be described in various
ways by matrices, one of the most natural being that in which the rows and columns
of the matrix are indexed by the nodes of the diagram. The matrix elements are
then zero or one, according to whether the node indexing the row is linked to the
node indexing the column. Such a matrix need not be symmetric, inasmuch as the
links may be directed and not run in both directions.

It is even possible to accommodate multiple links between nodes, by allowing
the matrix elements to be positive integers rather then con�ning them to just the
two values zero and one. This interpretation is useful because it allows powers
of the connection matrix to be interpreted in terms of the number of composite
paths joining two nodes, the power of the matrix determining the number of links
involved. Whether or not one would want to suppose that negative matrix elements
denote a link in the reverse direction depends upon whether one expects to cancel
a path by retracing it or not, a complication which we shall avoid.

Conversely it is possible to represent a square matrix by a diagram, by setting
up nodes to correspond to the dimensions of the matrix, and then introducing
a link wherever there are non-zero matrix elements. Of course, if none of the

123
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matrix elements is zero, every node will then be linked to every other. Although
the diagrammatic representation would be most interesting for disentangling the
relationships between the elements of sparse matrices, complete mutual accessibility
is nevertheless an important special case. In particular, given a �nite diagram in
which every node can be reached from any other node through a long enough chain
of links, there will be a corresponding power of the connection matrix in which no
zeroes remain.

Diagonal elements of the connectivity matrix represent nodes linked to them-
selves. It might seem at �rst sight that a node would naturally be linked to itself,
but it should be borne in mind that links and nodes are two di�erent things, and
that even null links have to be shown explicitly. Diagonal elements of powers of
the connection matrix are probably easier to understand; aside from possible null
links, they would represent loops in which a node was connected to a succession of
others, the �nal link nevertheless returning to the original node.

Generally, the ijth element of the kth power of the connectivity matrix M
counts the number of paths with exactly k links leading from node i to node j.
The trace, TrfMkg, gives the total number of paths leading back to their point of
origin, but under favorable circumstances each path is counted once for each of the
k nodes which it contains. This is the case for loops which do not retrace a part of
themselves, but not otherwise. Thus

N(k) =
1

k
TrfMkg

is a function which would represent the number of loops of length k in the diagram
whenever the non-redundancy criterion was met.

Sometimes useful information can be gained by constructing a power series
whose coe�cients count some quantity or other, particularly if the count can be
related to a convolution of the coe�cients in some other series. We might begin by
forming the series

m(t) =
1X
k=0

Mktk:

By either ignoring convergence, or hoping for the best, the series is seen to be
equivalent to

m(t) = (I �Mt)�1;

which is a variant form of the resolvent of M. It can be used as a generating function
for the number of random walks through the diagram of M, but a more interesting
generating function results from counting loops rather than random walks. Thus
consider the series z(t) de�ned by

z(t) =
1X
k=1

1

k
TrfMkgtk:

whose coe�cients count loops. Since the trace is a linear operator, we can apply
it after summing the matrix series, which this time is seen to correspond to a
logarithm|the inde�nite integral of the series for m(t). Thus we have

z(t) = Trf� ln(I �Mt)g:
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Since the logarithm is an awkward function to compute for matrices, it is for-
tunate that there is an identity relating exponentials of traces to determinants of
exponentials, namely

exp(TrfXg) = Detfexp(X)g;
which can be used to de�ne the zeta function,

�(t) = exp z(t) = Detfm(t)g:

Because the loop counts are embedded in an exponential they must be evaluated
by forming logarithmic derivatives of the zeta function at the origin, but this is a
small price to pay for working with such a convenient quantity as the determinant
of the \resolvent" (note that t is not in its accustomed place).

Certain properties of the zeta function can be deduced from its representation as
a determinant. Although the determinant of a product is a product of determinants,
the involvement of the variable t in the resolvent precludes resolvents having the
same property. However a matrix will sometimes have a block diagonal structure
allowing the determinant of the matrix to be related to the determinants of the
blocks; an example would be the connection matrix for two independent diagrams.

10.2 Traces, �(t), �(t)

Although the zeta function was not always given that name, there is a classical
relationship between it, the characteristic polynomial, and the traces of the powers
of a matrix, which are simply restatements of certain properties of polynomials.
By convention, the characteristic polynomial of the matrix M is de�ned to be the
determinant

�(t) = jM � Itj
which is equivalent to

�(t) =
nY
i=1

(�i � t);

for eigenvalues �i. Written as a polynomial in powers of t,

�(t) =
nX
i=0

(�1)iaitn�i;

wherein the coe�cients ai can be expressed either as homogeneous products of the
roots �i or as sums of principal minors, both according to well known formulas.

For the transformations which we intend to make, it is more convenient to use
1=t as a variable or, to avoid confusion, to introduce the function

'(t) = jI �Mtj

whose factored form is

'(t) =
nY
i=1

(1� �it):
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As a polynomial it di�ers from � only in attaching the coe�cients ai to ascending
rather than descending powers of t:

'(t) =
nX
i=0

(�1)iaiti:

Both � and ' are �nite polynomials, whose reciprocals could be represented as
power series, even treating them formally and ignoring questions of convergence.
We are interested in � as the reciprocal of ',

�(t) =
nY
i=1

(1� �it)�1;

which can be represented as a single power series by representing each factor in the
denominator as a geometric series, multiplying them term by term, and collecting
coe�cients.

In that case

�(t) =
1X
i=0

hit
i;

where hi is the sum of all possible homogeneous products of �i; when n = 2, for
instance, h2 = �21 + �1�2 + �22.

Of more interest are the coe�cients of z(t) = ln �(t)

z(t) =
1X
i=0

mit
i;

for which

mi =
nX
j=1

�ij ;

in other words, the traces of the powers of M .
The practical situation is that the coe�cients mi are always fairly easy to ob-

tain, while the quantities that are really desired are either the coe�cients ai or hi.
Comparison of the series involved in each of the de�nitions yields equations of con-
volution type relating the coe�cients, typically in the form of single determinants.
Recovering the eigenvalues from the coe�cients is much harder since that is just
the problem of �nding the roots of a polynomial; all the same, the task is hard to
avoid since it is likely that some or all of the eigenvalues will be sought for.

Newton's identities relate the power sums mi to the coe�cients ai of the char-
acteristic polynomial; in the present context they are obtained by di�erentiating
the formula '(t) = exp(�z(t) to obtain '0

(t) = �'(t)z0(t). Comparing coe�cients
yields the convolution (with a0 = 1)

iai =
iX

j=1

(�1)j�1mjai�j ;

which can be solved for either a or m in terms of the other.
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For example, the system of equations2
66664
m1

m2

m3

m4

:

3
77775

2
66664

1 : : : :
m1 �2 : : :
m2 �m1 3 : :
m3 �m2 m1 �4 :
: : : :

3
77775

2
66664
a1
a2
a3
a4
:

3
77775

is readily solved for the a's, to obtain

ai =
1

i!

������������

m1 1 : : : : : : :
m2 m1 2 : : : : : :
m3 m2 m1 3 : : : : :
: : :
mi�1 mi�2 mi�3 mi�4 : : : m1 i � 1
mi mi�1 mi�2 mi�3 : : : m2 m1

������������
:

For example, a2 =
1
2 (m

2
1 �m2), a3 =

1
6(m

3
1 + 2m3 � 3m1m2.

10.3 In�nite de Bruijn matrix

It is rare that we will �nd a matrix which meets the non-redundancy criterion
for all of its cycles, so consideration should be given to the contrary case. The
situation is nicely illustrated for the de Bruijn matrices, which have cycles of all
possible varieties while still retaining a certain amount of systematic order. The
shift-register interpretation of a de Bruijn matrix makes it clear that an n-stage
matrix will have 2n distinct cycles; but those which possess translational symmetry
will be redundant. For example, a cycle of 5 zeroes will show up only once in the
�fth power of a two-stage matrix, whereas the string 11010 will show up �ve times
and be counted as one single loop in evaluating 1

5TrfM5g:
There would appear to be two alternatives: either insist that the name \zeta

function" refer exclusively to the generating function which counts loops although
it might not incorporate the resolvent, or retain the elegance of the resolvent even
though it may not always count loops correctly. It would appear that the latter
alternative is the one that is generally chosen; moreover that such a de�nition was
implicit in classical treatments of the theory of equations even though such a name
was never used explicitly.

Since we know the characteristic equation of a �nite de Bruijn matrix, it is a
straightforward matter to see that they all have the same zeta function

�(t) = (1� 2t)�1

from which we obtain

zk =
2k

k

as the \number of cycles" of length k, although we know that this is in no way a
natural representation of the true state of a�airs. At least for de Bruijn matrices,
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we can get some idea of the discrepancy; using the probabilistic de Bruijn matrix
produces an even more general result.

Beginning with the two stage matrix whose elements incorporate both a prob-
ability and the parameter t (tij = pijt),�

t00 t01
t10 t11

�
;

we have

TrfBg = t00 + t11

TrfB2g = t200 + t211 + 2t01t10

TrfB3g = t300 + t311 + 3(t00 + t11)t01t10

TrfB4g = t400 + t411 + 2(t01t10)
2 +

4(t200 + t00t11 + t211)t01t10:

On the other hand if we work with the three stage matrix,2
664
t000 t001 : :
: : t010 t011

t100 t101 : :
: : t110 t111

3
775 ;

we have

TrfBg = t000 + t111

TrfB2g = t2000 + t2111 + 2t010t101

TrfB3g = t3000 + t3111 + 3t001t010t100 + 3t011t110t101

TrfB4g = t4000 + t4111 + 2(t010t101)
2 +

4t000t001t010t100 + 4t001t011t110t100 +

4t011t111t110t101:

The �rst thing to be observed is that the structure of these matrices is quite
similar, thanks to the fact that the de Bruijn matrices form a very regular family.
In fact the same cycles will reappear in all the trace formulas, the only di�erence
being the length of the overlappable fragment represented in each subscript. For
example, TrfBg will always be the sum of two contributions, one for the string 0�

and the other for the string 1�; likewise a contribution from these two strings and
another from (01)� will always appear in TrfB2g.

Another observation, although it is just barely evident from the small number
of terms that have been written, is that the series can be rearranged to group
the terms belonging to one particular cycle into its own logarithmic series. It is
clear that the terms t00 and t11 in the �rst example can be so arranged. There is
an indication that the term t01t10 would participate in another, since the factor 2
cancels opportunely wherever it occurs.

Recalling the shift register interpretation of de Bruijn diagrams, we see that
every cycle which has no internal translational symmetry will show up k times in
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TrfBkg only to be divided by k in the term 1
k
TrfBkg. If there is an internal

symmetry present, the unit cell will have length `; its cycle will occur to the power
k=`, but will only be ` such terms in the trace. Note how (t01t10)2 has coe�cient
2, not 4, in TrfB4g, or that t400 only has coe�cient 1.

The series for z(t) belonging to the two-stage de Bruijn matrix could then be
rearranged to take the form

z(t) = t00 +
1

2
t200 +

1

3
t300 + : : :

+ t11 +
1

2
t211 +

1

3
t311 + : : :

+ t01t10 +
1

2
(t01t10)

2 +
1

3
t300 + : : :

� ln(1� t00t01t10)�
� ln(1� t01t11t10)�
� : : :

In turn this produces a zeta function

�(t)�1 = (1� t00)(1� t11)(1� t01t10)�
(1� t00t01t10)(1� t01t11t10)�
: : :

This is a very beautiful and elegant formula, and also blatantly at odds with
the fact that B has only two eigenvalues, its characteristic polynomial can only
vanish for two values of t, and that its zeta function should have at most two poles.
Clearly it is a formula which does not meet the requirements for a convergent
in�nite product.

10.4 Cluster expansion

Before feeling unduly discouraged about the discrepancy between the apparent
number of poles of the zeta function and the dimension of its matrix, we should
examine the zeta function more carefully. Since we know the exact zeta function
for the normal de Bruijn matrix B, all of whose non-zero matrix elements have the
form tij = t, we would want to examine

�(t)�1 = (1� t)(1� t)(1� t2)(1� t3)(1� t3)� : : :
= (1� 2t+ t2)(1� t2)(1� t3)(1� t3)� : : :
= (1� 2t+ 2t3 � t4)(1� t3)(1� t3)� : : :
= (1� 2t+ 3t4 � 3t6 + 2t9 � t10)� : : :
= : : :

= (1� 2t):

The limit expression for the zeta function is exactly the one that was expected,
although truncating the product representation or otherwise taking it too literally
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leads to the appearance of spurious poles. Although the algebra is slightly more
complicated for the probabilistic matrix, multiplying out the factors of the zeta
function reproduces the characteristic polynomial for the general case just as well
as it does for the normal case. In principle it must be possible to reconstruct the
factored form of the characteristic polynomial, but to do so directly is little more
than an exercise in going around in circles. Instead we should utilize the fact that
the zeta function has been described in terms of cycles of matrix elements.

The di�erence between primitive and composite cycles is an important one.
A cycle is primitive when its translational symmetry is trivial. Composites are
aggregates of primitive cycles, not necessarily connected to one another. Thus, for
a two stage diagram (t00)(t01t10), joins into one long cycle with repeated nodes;
but in a three stage diagram the analogous (t000)(t010t101) forms two disconnected
cycles. Because their primitive cycles are selfcontained and independent, composites
are commutative, but they never contain repeated factors.

Let c stand for a product of matrix elements forming a cycle, such as t00t01t10
and let C be a composite cycle, such as (t00)(t01t10). Let jCj denote the total length
of the composite, but let 1 be the composite cycle of length 0. Finally, let �(C)
be the parity of the composite cycle, which is required to expand the product of
di�erences.

If a three-valued de�nition of parity is used, making it vanish for composites
with repeated factors; and taking it to be unity for the null composite, � is the
classical M�obius function rede�ned for cycles:

�(C) =

8<
:
�1 odd parity
0 repeated factor
1 even parity

:

Then, according to the distributive law, the product

�(t) =
Y
cycles

(1� c)

can be replaced by a sum

�(t) =
X

composites

�(C)C:

If the composites are grouped by length, the sum presents once again the form
of a polynomial:

�(t) =
1X
i=0

X
jCj=i

�(C)C:

If the dimension of B were �nite, we would expect all the terms of high degree in
this sum to vanish. For example, the terms with jCj = 3 belonging to the two-stage
de Bruijn matrix are

(t00)(t01t10) + (t11)(t01t10)� (t00t01t10)� (t11t01t10);
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which evidently vanishes. The corresponding term for the three-stage matrix is

(t000)(t010t101) + (t111)(t010t101)� (t001t010t100)� (t110t101t110);

which need not.
Thus we have a scheme which is capable of displaying the structure of the

characteristic polynomial of a matrix explicitly in terms of loops formed from the
elements of the matrix. Nevertheless, the same results would also have followed
from a careful analysis of the characteristic determinant, although the assignment
of parity to the terms is phrased in a somewhat di�erent form.

Using subscripts to identify the cycles by their lexicographically ordered repeat-
ing unit, the zeta function for binary de Bruijn matrices takes a form independent
of the number of stages, namely

�(t)�1 = 1� (c0 + c1)� (c01 � c0c1)�
� (c001 + c011 � c0c01 � c01c1)�
� (c0001 + c0011 + c0111 � c0c001 � c011c1 � c0c01c1)�
� : : : :

When it is no longer possible to �nd long cycles which are not composites of
shorter cycles, it may be concluded that the series represents a matrix of a �nite
number of stages; otherwise there is no intrinsic limitation on the series.

The parameters upon which this series depends are no longer the probabilities
of individual links in the diagram, but rather the collective probabilities belonging
to the primitive cycles. There is also a tendency to disguise the contribution of
the block determinants to the zeta function, but this simply means that we have a
complementary approach to its interpretation.

10.5 Reduced evolution matrix

The zeta function approach is useful for determining the characteristic equation
of a matrix, or even of a family of matrices with a similar structure. Its best
application lies in contexts where the parameters associated with all cycles beyond
a certain length are known to be negligible, or at least thought to be so. Information
about eigenvalues and quantities derived from them is available, but eigenvectors
are beyond the scope of the zeta function. Since reciprocal eigenvalues determine
the poles of the zeta function, it would seem to be best suited for determining the
�rst few of the largest eigenvalues of a family of matrices.

The reduced evolution matrix has a constant column sum, so its largest eigen-
value is a foregone conclusion. The equilibrium eigenvector is an object of interest,
but cannot be encountered via the zeta function. The second largest eigenvalue
determines the stability of equilibrium, making it a worthwhile quantity to deter-
mine.

The non-zero elements exy of the reduced evolution matrix are those for which
there are cells i and j for which '(ixj) = y. Diagonal elements must therefore
satisfy

'(ixj) = x
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and therefore are given by the number of ways that x is surrounded by acceptable
neighbors; but in any event are determined by the still lifes.

Diagonal elements of E2 are those for which

'(ixj) = y; '(kyl) = x;

so that if there is a cycle of length two, there will be a corresponding diagonal
element. Continuing the analysis, it is clear that there will be diagonal elements in
the powers of E for all the periods whose cycle is equal to the block length. The
fact that the least pole of the zeta function is known will exercise a certain restraint
on the possible values which the cycle probabilities can assume.

It is in the nature of a reduced evolution matrix that the actual cycles will not
just be counted, but overcounted to the extent that they can be broken open and
embedded in a larger neighborhood whose central segment follows the same cycle;
such is the inuence of the dangling cells in the formulas above. Nevertheless this
discrepancy is expected to diminish as longer blocks are used, or if the reduced
evolution matrix for iterated evolution were used.

Let us work out some of the reduced evolution matrices for Wolfram's (2,1) Rule
#22: Its symbolic de Bruijn matrix is2

664
0 1 : :
: : 1 0
1 0 : :
: : 0 0

3
775 :

giving the two matrices

� =

2
664

1 : : :
: : : 1
: 1 : :
: : 1 1

3
775 ; � =

2
664
: 1 : :
: : 1 :
1 : : :
: : : :

3
775 :

from whose products the number of counterimages of any given con�guration can
be determined. These products give directly the row sums of the reduced evolution
matrix, but the individual matrix elements have to be worked out on their own
account. Evolution matrices describe evolution di�erently, sorting counterimages
by their central strings, rather than by the cells with which they begin and end.

The reduced evolution matrix for 1-blocks is�
2 3
2 1

�
:

The zeta function is

�(t) =
1

(1� 4t)(1+ t)

= 1 + 3t+ 17t2 + : : :

For 2-blocks it is 2
664

1 1 1 4
1 1 1 :
1 1 1 :
1 1 1 :

3
775 :
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with the same zeta function, in which the presence of two zero eigenvalues is not
visible

�(t) =
1

(1� 4t)(1+ t)

= 1 + 3t+ 17t2 + 63t3 + 257t4 + : : : :

For 3-blocks it is 2
66666666664

1 : : 2 1 1 2 4
1 : : : : : 2 :
: 2 1 : : : : :
: 2 1 : 1 1 : :
1 : : 2 : 1 : :
1 : : : : 1 : :
: : 1 : 1 : : :
: : 1 : 1 : : :

3
77777777775
:
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Appendix A

Cycles for Rule 22

A.1 Summary

One of the fundamental conclusions of automata theory is that �nite automata or
those which are e�ectively �nite, such as the cyclic con�gurations of an in�nite
automaton, eventually fall into periodic behavior. Generally the only way to dis-
cover these periods is by exhaustive enumeration, according to which the evolution
of every possible initial con�guration is followed out until the �rst repetition of a
previous con�guration is observed.

The notation �:�means that the con�guration repeats itself after � generations,
but that there are only � di�erent phases, variations of which can occur through
rotation or reection. Accordingly the representative con�guration shown is the
one with a gap of maximal length, which is always placed at the extreme right. If
a shift to the right of � cells is involved, the notation �:�(�) is used; a reective
symmetry is often associated with 2�:�.

On general principles a ring of N cells cannot have a cycle longer than 2N , but in
practice the lengths of the cycles grow at a far slower rate with increasing N . Some
of the longest cycles are a consequence of a shift, whose least common multiple with
N often results in a far longer period than the time required to simply repeat the
pattern.

Likewise, the periods are determined by the lengths of possible loops in a
de Bruijn diagram of 22P nodes, which limits the maximum length of a primi-
tive period to this value. In practice this is also found to be a generous upper
limit.

The results can be summarized in a table of periods versus cycle lengths. The
columns correspond to torii of �xed circumference, the rows to �xed periods, the
values of both of which are stated in the margins. The �rst twenty periods are
shown below.

135
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1
2 : : : 1 : : : 1 : : : 1 : : : 1 : : : 1 : : : 1 : : : 1 : : : 1 : :

3 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

4 : : : : : : : 1 1 2 1 1 : : : 1 1 3 3 5 3 3 1 2 1 4 6 12 13 18 13 13 7 4
5 : : : : : : : : : : 1 1 1 : : : : : : : : 1 1 2 1 1 : : : : : : 1 1
6 : : : : : : : 1 : 1 : : : : : 1 : : : 2 : : : 1 : : : : : 5 : 1 : :

7 : : : : : : 1 : : : : : : 1 : : : : : : 1 : : : : : : 1 : : : : : :

8 : : : : : : : : : : : : : : : : : : : 1 2 1 1 : : : : : : : : : : :

9 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

10 : : : : : : : : : : : : : : : : : : : : : : 1 : : : : : : : : : : 1
11 : : : : : : : : : : 1 : : : : : : : : : : 1 : : : : : : : : : : 1 2
12 : : : : : : : : : : : : : 1 : 2 1 2 1 1 : : : : : : : 1 : : : 2 1 3
13 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

14 : : : : : : : : : : : : : : : 1 : : : : : : : : : 1 : : : 1 : 1 1 :

15 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 : :

16 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

17 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

18 : : : : : : : : : : : : : : : : : 1 : : : : : : : : : : : : : : : :

19 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

20 : : : : : : : : : : : : : : 1 : : : : : : : : : : : : : : 1 : : : :

There is only a single still life, a single con�guration of period two, and none at
all of period three.

From the table above and the continuation below it will be seen that there are
numerous con�gurations of periods 4, 12, and 28. They belong to an extensive
family which is formed by the expansion of isolated live cells, and which contains
many more members besides. Isolated cells, in Rule 22 especially, follow a growth
pattern which resembles a binary counter, or a fractal as the image would be clas-
si�ed nowadays. The boundary of a region �lled with live cells expands into the
gap separating such regions, but periodically the interior of the expanding region
dies out.

Thus if a pair of cells are allowed to expand around a ring, a complementary
con�guration may be created when the expanding frontiers have nearly met but the
expanding region has just become vacant. If the symmetry is just right the com-
plement will repeat the performance to recreate the original con�guration, setting
the stage for a repetitive cycle.

The �nal fourteen periods are shown in the table below; as before columns
correspond to the circumference of the ring, rows to a �xed period.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

21 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

22 : : : : : : : : : : : : : : : : : : : : : 1 : : : : : : : : : : : :

23 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

24 : : : : : : : : : : : : : : : : : 1 : 1 : : : 1 : : : : : : : : : 1
25 : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 : : : : : :

26 : : : : : : : : : : : : : : : : 1 : : : : : : : 1 : 1 : : : : : : 1
27 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

28 : : : : : : : : : : : : : : : : : : 1 : : : : 1 1 3 1 3 : : : 3 3 6
29 : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 : : : : :

30 : : : : : : : : : : : : : : : : : : : : : : : : : : 1 1 1 : : 2 : :

31 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 : : :

32 : : : : : : : : : : : : : : : : : : : : : : : 1 : : : : : : : 1 : :

33 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

34 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 : :

Longer rings might have been attempted were it not for the fact that the com-
puting time required to analyze the ring doubles with every increment in length,
leaving N = 34 as something of a limit of endurance with present equipment and
techniques. A few additional increments could be gained by using faster equipment,
and by proving some \gap theorems" which would render unnecessary the analysis
of a certain fraction of cases.

Nevertheless, in practice the interval 20 � N � 34 provided enough special
cases that it was possible to discover several general families of con�gurations,
�nally leading to the analysis of periods in terms of de Bruijn diagrams.
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A.2 N = 1

� zero

A.3 N = 2

� � zero
� 1:1

A.4 N = 3

� � � zero

A.5 N = 4

� � � � zero
� � 2:1
� � 1:1

A.6 N = 5

� � � � � zero

A.7 N = 6

� � � � � � zero
� � � 1:1

A.8 N = 7

� � � � � � � zero
� � � � 7:1(3)

A.9 N = 8

� � � � � � � � zero
� � � � � � 6:3
� � � � � � 4:2
� � � � 2:1
� � � � 1:1
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A.10 N = 9

� � � � � � � � � zero
� � � � � � � 4:4

A.11 N = 10

� � � � � � � � � � zero
� � � � � � � � 4:4
� � � � � � � � 4:2
� � � � � � � 6:3
� � � � � 1:1

A.12 N = 11

� � � � � � � � � � � zero
� � � � � � � � � 4:4
� � � � � � � 5:5
� � � � � � 11:1(4)

A.13 N = 12

� � � � � � � � � � � � zero
� � � � � � � � 5:5
� � � � � � � � � � 4:2
� � � � � � 2:1
� � � � � � 1:1

A.14 N = 13

� � � � � � � � � � � � � zero
� � � � � � � � � 5:5

A.15 N = 14

� � � � � � � � � � � � � � zero
� � � � � � � � � 12:6
� � � � � � � � 7:1
� � � � � � � 1:1
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A.16 N = 15

� � � � � � � � � � � � � � � zero
� � � � � � � � � � � � 20:4(3)

A.17 N = 16

� � � � � � � � � � � � � � � � zero
� � � � � � � � � � � � � � 14:7
� � � � � � � � � � � � � � 12:6
� � � � � � � � � � � � � � 12:12
� � � � � � � � � � � � 6:3
� � � � � � � � � � � � 4:2
� � � � � � � � 2:1
� � � � � � � � 1:1

A.18 N = 17

� � � � � � � � � � � � � � � � � zero
� � � � � � � � � � � � � � � 12:12
� � � � � � � � � � � � � � 26:13
� � � � � � � � � � � � � 4:4

A.19 N = 18

� � � � � � � � � � � � � � � � � � zero
� � � � � � � � � � � � � � � � 12:12
� � � � � � � � � � � � � � � � 12:6
� � � � � � � � � � � � 18:9
� � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � 4:2
� � � � � � � � � 1:1

A.20 N = 19

� � � � � � � � � � � � � � � � � � � zero
� � � � � � � � � � � � � � � � � 12:12
� � � � � � � � � � � � � � 28:14
� � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � 4:4
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A.21 N = 20

� � � � � � � � � � � � � � � � � � � � zero
� � � � � � � � � � � � � � � � � � 12:6
� � � � � � � � � � � � � � � � � � 24:24
� � � � � � � � � � � � � � � � � � 8:4
� � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � 4:2
� � � � � � � � � � � � � � � � 4:2
� � � � � � � � � � � � 6:3
� � � � � � � � � � � � � � 6:3
� � � � � � � � � � 2:1
� � � � � � � � � � 1:1

A.22 N = 21

� � � � � � � � � � � � � � � � � � � � � zero
� � � � � � � � � � � � � � � � � � � 8:8
� � � � � � � � � � � � � � � � 77:11(3)
� � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � 7:1

A.23 N = 22

� � � � � � � � � � � � � � � � � � � � � � zero
� � � � � � � � � � � � � � � � � � � � 8:8
� � � � � � � � � � � � � � � � � � � � 8:4
� � � � � � � � � � � � � � � � � � 22:2(8)
� � � � � � � � � � � � � � 5:5
� � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � 4:2
� � � � � � � � � � � � 11:1
� � � � � � � � � � � 1:1



142 APPENDIX A. CYCLES FOR RULE 22

A.24 N = 23

� � � � � � � � � � � � � � � � � � � � � � � zero
� � � � � � � � � � � � � � � � � � � � � 8:8
� � � � � � � � � � � � � � � � � � � 138:6(2)
� � � � � � � � � � � � � � � 5:5
� � � � � � � � � � � � � � � � 10:5
� � � � � � � � � � � � � � � � � � � 4:4

A.25 N = 24

� � � � � � � � � � � � � � � � � � � � � � � � zero
� � � � � � � � � � � � � � � � � � � � � � 28:14
� � � � � � � � � � � � � � � � � � � � 32:16
� � � � � � � � � � � � � � � � � � 50:25
� � � � � � � � � � � � � � � � � � � � � � 8:4
� � � � � � � � � � � � � � � � � � � � 80:40
� � � � � � � � � � � � � � � � � � � � 384:32(2)
� � � � � � � � � � � � � � � � � � � 54:9(4)
� � � � � � � � � � � � � � � � � � � � � 24:8(8)
� � � � � � � � � � � � � � � � � � � � 72:6(2)
� � � � � � � � � � � � � � � � � � � � 72:6(2)
� � � � � � � � � � � � � � � � 5:5
� � � � � � � � � � � � � � � � 5:5
� � � � � � � � � � � � � � � � � � � � 4:2
� � � � � � � � � � � � � � � � � � 6:3
� � � � � � � � � � � � � � � � � � 4:2
� � � � � � � � � � � � 2:1
� � � � � � � � � � � � 1:1

A.26 N = 25

� � � � � � � � � � � � � � � � � � � � � � � � � zero
� � � � � � � � � � � � � � � � � � � � � � � 28:28
� � � � � � � � � � � � � � � � � � � � � 55:55
� � � � � � � � � � � � � � � � � 26:26
� � � � � � � � � � � � � � � � � � � � � 150:6(2)
� � � � � � � � � � � � � � � � � � � � � 150:6(2)
� � � � � � � � � � � � � � � � � � � � � 50:2(9)
� � � � � � � � � � � � � � � � � 5:5
� � � � � � � � � � � � � � � � � � � 4:4



A.27. N = 26 143

A.27 N = 26

� � � � � � � � � � � � � � � � � � � � � � � � � � zero
� � � � � � � � � � � � � � � � � � � � � � � � 28:28
� � � � � � � � � � � � � � � � � � � � � � � � 28:14
� � � � � � � � � � � � � � � � � � 28:14
� � � � � � � � � � � � � � � � � � 14:7
� � � � � � � � � � � � � � � � � � � � � � 546:21(3)
� � � � � � � � � � � � � � � � � 90:45
� � � � � � � � � � � � � � � � � � � � � � 78:6(2)
� � � � � � � � � � � � � � � � � � � � � � 78:6(2)
� � � � � � � � � � � � � � � � � � 5:5
� � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � 4:2
� � � � � � � � � � � � � � � � � � � � 4:2
� � � � � � � � � � � � � 1:1

A.28 N = 27

� � � � � � � � � � � � � � � � � � � � � � � � � � � zero
� � � � � � � � � � � � � � � � � � � � � � � � � 30:30
� � � � � � � � � � � � � � � � � � � � � � � � � 28:28
� � � � � � � � � � � � � � � � � � � � � � � 1215:135(6)
� � � � � � � � � � � � � � � � � � � 26:26
� � � � � � � � � � � � � � � � � 459:17(5)
� � � � � � � � � � � � � � � � � � � � � � � 162:6(2)
� � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � 4:4



144 APPENDIX A. CYCLES FOR RULE 22

A.29 N = 28

� � � � � � � � � � � � � � � � � � � � � � � � � � � � zero
� � � � � � � � � � � � � � � � � � � � � � � � 30:30
� � � � � � � � � � � � � � � � � � � � � � � � � � 28:14
� � � � � � � � � � � � � � � � � � � � 25:25
� � � � � � � � � � � � � � � � � � � � � � 28:28
� � � � � � � � � � � � � � � � � � � � � � � � 28:2(10)
� � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � 4:2
� � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � 4:2
� � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � 4:2
� � � � � � � � � � � � � � � � � � � � � � 4:2
� � � � � � � � � � � � � � � � � � 12:6
� � � � � � � � � � � � � � � � 7:1
� � � � � � � � � � � � � � 2:1
� � � � � � � � � � � � � � 1:1



A.30. N = 29 145

A.30 N = 29

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � zero
� � � � � � � � � � � � � � � � � � � � � � � � � 30:30
� � � � � � � � � � � � � � � � � � � � � � � � � 72:36
� � � � � � � � � � � � � � � � � 667:23(3)
� � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � 29:1(8)
� � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � 4:4



146 APPENDIX A. CYCLES FOR RULE 22

A.31 N = 30

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � zero
� � � � � � � � � � � � � � � � � � � � � � 120:60
� � � � � � � � � � � � � � � � � � � � � � � � 240:8(7)
� � � � � � � � � � � � � � � � � � � � � 240:8(7)
� � � � � � � � � � � � � � � � � � � � � � 86:43
� � � � � � � � � � � � � � � � � � � � � � 1070:107(9)
� � � � � � � � � � � � � � � � � � � � � 70:35
� � � � � � � � � � � � � � � � � � � � � � � 14:7
� � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � 20:4
� � � � � � � � � � � � � � � � 40:4(3)
� � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � 4:2
� � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � 4:2
� � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � 4:2
� � � � � � � � � � � � � � � � � � � � � � � � 4:2
� � � � � � � � � � � � � � � � � 6:3
� � � � � � � � � � � � � � � � � 6:3
� � � � � � � � � � � � � � � � � � � � � 6:3
� � � � � � � � � � � � � � � � � � � 6:3
� � � � � � � � � � � � � � � � � 6:1(5)
� � � � � � � � � � � � � � � 1:1



A.32. N = 31 147

A.32 N = 31

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � zero
� � � � � � � � � � � � � � � � � � � � � � � � � � 248:8(7)
� � � � � � � � � � � � � � � � � � � � � � � � � � � � 248:8(7)
� � � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � 31:1(7)



148 APPENDIX A. CYCLES FOR RULE 22

A.33 N = 32

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � zero
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 30:15
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 28:14(16)
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 30:15
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 28:14
� � � � � � � � � � � � � � � � � � � � � � � � � � � � 84:42
� � � � � � � � � � � � � � � � � � � � � 32:16(16)
� � � � � � � � � � � � � � � � � � � � � � � � 34:17
� � � � � � � � � � � � � � � � � � � � � � � � � � � � 28:14
� � � � � � � � � � � � � � � � � � � � � � � � � � 41:41
� � � � � � � � � � � � � � � � � � � � � � � � � � � � 14:7
� � � � � � � � � � � � � � � � � � � � � � � � � � � � 12:6
� � � � � � � � � � � � � � � � � � � � � � � � 15:15
� � � � � � � � � � � � � � � � � � � � � � � � � � � � 12:12
� � � � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � � � 4:2
� � � � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � � � 4:2
� � � � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � � � 4:2
� � � � � � � � � � � � � � � � � � � � � � � � � � 4:4
� � � � � � � � � � � � � � � � � � � � � � � � � � 4:2
� � � � � � � � � � � � � � � � � � � � � � � � 6:3
� � � � � � � � � � � � � � � � � � � � � � � � 4:2
� � � � � � � � � � � � � � � � 2:1
� � � � � � � � � � � � � � � � 1:1



A.34. N = 33 149

A.34 N = 33
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A.36 A pair of isolated cells

Examination of the data sections shows increasingly large numbers of cycles of
period 4, all arising by combining unit cells of the form 10g10G (and thus of indi-
vidual lengths g +G+ 2) in all possible ways to form the circumference N . Some
of these produce con�gurations of period 4, but other periods such as 24 and 28,
which occur frequently, arise the same way. G and g represent gaps|sequences of
zeroes|of the corresponding lengths. There are certain restrictions on combina-
tions of gap lengths; most result in the formation of enneads with di�ering periods,
with a good variety of other combinations. However some mixtures are not periodic,
degenerating into other cycles or even into the quiescent state.

The following table shows the admissible periods as a function of G and g,
but symmetry implies that it is only necessary to consider g � G. Dots indicate
combinations which evolve into cycles from which they are absent. Dashes indicate
combinations outside of the range of our study.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0 : : 2 : : : 6 : : : : : : : 14 : : : : : : : : : : : : : : : 30 : :

1 : : : : 4 4 4 : : : : : 12 12 12 : : : : : 28 28 28 30 : : : : 28 28 28 �
2 : : 6 4 4 4 : : : : 14 12 12 12 : : : : : 28 28 28 30 : : : 30 28 28 � �
3 : : 4 4 4 : : : : : 12 12 12 : : : : : 28 28 28 30 : : : : 28 � � �
4 : 5 5 5 : : 12 : : : 24 : : : 32 : : 30 30 30 : : 30 : : � � � �
5 : : : : 12 12 12 : 8 8 8 : 28 28 28 30 : : : : 28 28 28 � � � � �
6 : : 14 12 12 12 24 8 8 8 : 28 28 28 30 : : : 30 28 28 � � � � � �
7 : : 12 12 12 : 8 8 8 : 28 28 28 30 : : : : 28 � � � � � � �
8 : : : : : : : : : : : : : : : : : � � � � � � � �
9 : : : : 28 28 28 : : : : : 28 28 28 � � � � � � � � �
10 : : 80 28 28 28 : : : : : 28 28 � � � � � � � � � �
11 : : 28 28 28 : : : : : 28 � � � � � � � � � � �
12 : 30 30 30 120 : : : : � � � � � � � � � � � �
13 : : : : 28 28 28 � � � � � � � � � � � � �
14 : : 30 28 28 � � � � � � � � � � � � � �
15 : : 28 � � � � � � � � � � � � � � �
16 : � � � � � � � � � � � � � � � �

Since the antidiagonals of this table contain con�gurations of a �xed circumfer-
ence, the periods arising from these structures can be read o� for a ring of length
N quite directly. It has to be borne in mind that there are many conjugate pairs,
for example the combination (1,6) of period 4 evolves into (2,4) in two generations,
which in turn evolves into (1,6) in two more generations to complete the period.
It is the number of conjugate sets which is given in the tables, not the number of
individual con�gurations.

Exploring the enneads further, their periods are found to have the form 2k � 4,
although the values of k do not necessarily follow in strict numerical succession.
The tables show enneads for k = 3; 4; 5, but there are two distinct enneads with
the last value. The structures �lling the interstices between the enneads follow a
much less evident pattern.

Similar tables can be constructed for other pairs of simple isolated structures,
such as a pairs or triples of cells; indeed some such combinations can be recognized
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in the tables. However, the results obtained are not nearly as comprehensive as for
individual cells. Even the table shown requires further analysis to deduce its general
structure and ensure that it applies equally well for all the cases not determined
empirically.



Bibliography

[1] Milton Abramowitz and Irene A. Stegun (Editors), Handbook of Mathematical
Functions, U. S. Government Printing O�ce, Washington D. C., 1964.

[2] Roy Adler and Leopold Flatto, \Geodesic Flows, Interval Maps, and Symbolic
Dynamics," Bulletin of the American Mathematical Society 25 229-334 (1991).

[3] J�urgen Albert and Karel Culik II, \A Simple Universal Cellular Automaton
and its One-Way and Totalistic Version," Complex Systems 1 1-16 (1987).

[4] S. Amoroso and Y. N. Patt, \Decision Procedures for Surjectivity and Injec-
tivity of Parallel Maps for Tesselation Structures," Journal of Computer and
System Sciences 6 448-464 (1972).

[5] R. C. Backhouse and B. A. Carr�e, \Regular Algebra Applied to Path-�nding
Problems," Journal of the Institute for Mathematics and its Applications 15
161-186 (1975).

[6] Carter Bays, \The game of three dimensional life" (11/20/86) unpublished
(available as a supplement to A. K. Dewdney's February 1987 column).

[7] Carter Bays, \Candidates for the Game of Life in Three Dimensions," Complex
Systems 1 373-400 (1987).

[8] Carter Bays, \Patterns for Simple Cellular Automata in a Universe of Dense-
Packed Spheres," Complex Systems 1 853-875 (1987).

[9] Carter Bays, \Classi�cation of Semitotalistic Cellular Automata in Three Di-
mensions," Complex Systems 1 373-400 (1987).

[10] Richard Bellman, Introduction to Matrix Analysis, McGraw-Hill Book Com-
pany, New York, 1960.

[11] I. S. Berezin and N. P. Zhidkov, Computing Methods, volume 1, Pergamon
Press, Oxford, 1965.

[12] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy, Winning Ways
for your Mathematical Plays, Academic Press, 1982 (ISBN 0-12-091152-3) vol.
2, chapter 25.

185



186 BIBLIOGRAPHY

[13] Abraham Berman and Robert J. Plemmons, Nonnegative Matrices in the
Mathematical Sciences, Academic Press, New York, 1979 (ISBN 0-12-092250-
9).

[14] R. Bidaux, N. Boccara, and H. Chat�e, \Order of the transition versus space
dimension in a family of cellular automata," Physical Review A 39 3094-3105
(1989).

[15] George D. Birkho�, Dynamical Systems, American Mathematical Society,
Providence, Rhode Island, 1927.

[16] David B. Brown, \Competition of cellular automata rules," Complex Systems
1 169-180 (1987).

[17] Janusz A. Brzozowski, \Derivatives of regular expressions," Journal of the
Association for Computing Machinery 11 481-494 (1964).

[18] David J. Buckingham, \Some facts of life," Byte vol. 3, no. 12 (December,
1978), pp. 54-67.

[19] Arthur W. Burks (editor), Essays on Cellular Automata, University of Illinois
Press, Urbana, 1970.

[20] Noam Chomsky, \Three models for the description of language," IRE Trans-
actions on Information Theory bf IT-2 113-124 (1956).

[21] Noam Chomsky and George A. Miller, \Finite state languages," Information
and Control bf 1 91-112 (1958).

[22] Noam Chomsky, \On certain formal properties of grammars," Information and
Control bf 1 137-167 (1958).

[23] Noam Chomsky, \Formal properties of grammars," in Handbook of Mathemat-
ical Psychology, volume 2, John Wiley and Sons, New York, 1963, pp. 323-418.

[24] Gerardo Cisneros and Harold V. McIntosh, Notas sobre los lenguajes REC y
Convert (Spanish), Universidad Autonoma de Puebla, 1986.

[25] E. F. Codd, Cellular Automata, Academic Press, New York, 1968.

[26] J. H. Conway, Regular Algebra and Finite Machines, Chapman and Hall, Ltd.,
London, 1971 (ISBN 412-10620-5).

[27] P-. J, Courtois and P. Semal, \Bounds for the Positive Eigenvectors of Non-
negative Matrices and for their Approximations by Decomposition," Journal
of the Association for Computing Machinery 31 804-825 (1984).

[28] Karel Culick II, \On Invertible Cellular Automata," Complex Systems 1 1036-
1044 (1987).

[29] Karel Culick II and Sheng Yu, \Undecidability of CA Classi�cation Schemes,"
Complex Systems 2 177-190 (1988).



BIBLIOGRAPHY 187

[30] Karel Culick II, Jan Pachl, and Sheng Yu, \On the Limit Sets of Cellular
Automata," SIAM Journal on Computing 18 831-842 (1989).

[31] PredragCvitanovic, \Invariant measurementof strange sets in terms of cycles,"
Physical Review Letters 24 2729-2732 (1988).

[32] A. K. Dewdney, \Computer Recreations - Building computers in one dimension
sheds light on irreducibly complicated phenomena," Scienti�c American, May
1985, pp. 10-16.

[33] A. K. Dewdney, \Computer Recreations - The game Life acquires some suc-
cessors in three dimensions," Scienti�c American, February 1987, pp 8-13.

[34] A. K. Dewdney, The Armchair Universe, W. H. Freeman and Company, New
York, 1988. (ISBN 0-7167-1939-8 pbk)

[35] M. Dresden and D. Wong, \Life Games and Statistical Models," Proceedings
of the National Academy of Sciences (U.S.A.) 72 956-960 (1975).

[36] Michel Dubois-Violette and Alain Rouet, \A Mathematical Classi�cation of
the One-Dimensional Deterministic Cellular Automata," Communications in
Mathematical Physics 112 627-631 (1987), \Addendum," 118 529 (1988).

[37] Manfred Eigen, \Abstract: The Hypercycle: A Principle of Natural Self-
Organization," International Journal of Quantum Chemistry, Quantum Bi-

ology Symposium 5 219 (1978).

[38] Samuel Eilenberg, Automata, Languages, and Machines, Volume A, Academic
Press, New York, 1974. (ISBN 0-12-234001-9 (pt. A.))

[39] Samuel Eilenberg, Automata, Languages, and Machines, Volume B, Academic
Press, New York, 1976. (ISBN 0-12-234002-7 (pt. B.))

[40] William Feller, An Introduction to Probability Theory and its Applications,
volume 2 (second edition), John Wiley and Sons, New York.

[41] F. R. Gantmacher, The Theory of Matrices, volume 2, Chelsea Publishing
Company, New York, 1959.

[42] Martin Gardner, \Mathematical Games - The fantastic combinations of John
Conway's new solitaire game Life, " Scienti�c American, October 1970, pp.
120-123.

[43] Martin Gardner, Wheels, Life, and Other Mathematical Amusements, W. H.
Freeman and Company, New York, 1983. (ISBN 0-7167-1589-9 pbk)

[44] Solomon W. Golomb, Shift Register Sequences, Holden-Day, Inc., San Fran-
cisco, 1967.

[45] Walter Helbig Gottschalk and Gustav Arnold Hedlund, Topological Dynamics,
American Mathematical Society, Providence, Rhode Island, 1955.



188 BIBLIOGRAPHY

[46] J. M. Greenberg and S. P. Hastings, \Spatial patterns for discrete models
of di�usion in excitable media," SIAM Journal on Applied Mathematics 34
515-523 (1978).

[47] J. M. Greenberg, B. D. Hassard, and S. P. Hastings, \Pattern formation and pe-
riodic structures in systems modelled by reaction-di�usion equations,"Bulletin
of the American Mathematical Society 84 1296-1327 (1978).

[48] J. M. Greenberg, C. Greene, and S. Hastings, \A combinatorial problem arising
in the study of reaction-di�usion equations," SIAM Journal of Algebra and
Discrete Mathematics 1 34-42 (1980).

[49] P. Guan and Y. He, \Upper bound on the number of cycles in border-decisive
cellular automata," Complex Systems 1 181-186 (1987).

[50] Howard A. Gutowitz and Jonathan D. Victor, \Local structure theory in more
than one dimension," Complex Systems 1 57-68 (1987).

[51] Howard A. Gutowitz, Jonathan D. Victor, and Bruce W. Knight, \Local struc-
ture theory for cellular automata," Physica 28D 18-48 (1987).

[52] Howard A. Gutowitz and Jonathan D. Victor, "Local structure theory: cal-
culation on hexagonal arrays, and interaction of rule and lattice," Journal of
Statistical Physics 54 495-514 (1989).

[53] Fred Hapgood, \Let there be Life," Omni, vol. 9, no. 7 (April 1987) pp. 40-46,
116-117.

[54] Brian Hayes, \Computer Recreations - The cellular automaton o�ers a model
of the world and a world unto itself," Scienti�c American, March 1984, pp.
10-16.

[55] Tom Head, \One-Dimensional Cellular Automata: Injectivity from Unambi-
guity," Complex Systems 3 343-348 (1989).

[56] G. A. Hedlund, \Endomorphisms and automorphisms of the shift dynamical
system," Mathematical Systems Theory 3 320-375 (1969).

[57] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages,
and Computation, Addison-Wesley, Reading, Massachusetts, 1979.

[58] Lyman P. Hurd, \Formal Language Characterizations of Cellular Automaton
Limit Sets," Complex Systems 1 69-80 (1987).

[59] Lyman P. Hurd, \The Non-wandering Set of a CA Map," Complex Systems 2
549-554 (1988).

[60] Oscar H. Ibarra and Tao Jiang, \On one-way cellular arrays," SIAM Journal
on Computing 16 1135-1154 (1987).

[61] Hiroyuki Ito, \Intriguing properties of global structure in some classes of �nite
cellular automata," Physica D 31 318-338 (1988).



BIBLIOGRAPHY 189

[62] Erica Jen, \Scaling of preimages in cellular automata," Complex Systems 1
1045-1062 (1987).

[63] Erica Jen, \Cylindrical Cellular Automata,"Communications in Mathematical
Physics 118 569-590 (1988).

[64] Kunehiko Kaneko, \Attractors, basin structures and information processing in
cellular automata" in Theory and Applications of Cellular Automata (Stephen
Wolfram, ed.), World Scienti�c, Singapore, 1986. pp. 367-399.

[65] Youichi Kobuchi and Hidenosuki Nishio, \Some regular state sets in the sys-
tem of one-dimensional iterative automata," Information Sciences 5 199-216
(1973).

[66] Zvi Kohavi, Switching and Finite Automata Theory (second edition), McGraw-
Hill Book Company, New York, 1978 (ISBN 0-07-035310-7).

[67] A. N. Kolmogorov, Foundations of the Theory of Probability, Chelsea Publish-
ing Company, New York, 1950.

[68] K. B. Krohn and J. L. Rhodes, \Algebraic Theory of Machines,"Mathematical
Theory of Automata, Polytechnic Press, Brooklyn, New York, 1963. pp. 341-
384.

[69] Christopher G. Langton, \Self-reproduction in cellular automata" Physica D
10 135-144 (1984).

[70] Christopher G. Langton, \Studying arti�cial life with cellular automata,"
Physica D 22 120-149 (1986).

[71] Christopher G. Langton, \Computation at the edge of chaos: phase transitions
and emergent computation," Physica D 42 12-47 (1990).

[72] Stephen Levy, Hackers: Heroes of the Computer Revolution, Anchor Press/
Doubleday, Garden City, New York, 1984 (ISBN 0-385-19195-2), chapter 7.

[73] Wentian Li, \Power spectra of regular languages and cellular automata,"Com-
plex Systems 1 107-130 (1987).

[74] Wentian Li, Norman Packard, and Christopher G. Langton, \Transition phe-
nomena in cellular automaton rule space," Physics D 45 77-94 (1990).

[75] G. G. Lorentz, Bernstein Polynomials, University of Toronto Press, Toronto,
1953.

[76] Barry F. Madore and Wendy L. Freedman, \Computer simulations of the
Belousov-Zhabotinsky reaction," Science 222 615-616 (1983).

[77] O. Martin, A. Odlyzko, and S. Wolfram, \Algebraic aspects of cellular au-
tomata," Communications in Mathematical Physics 93 219-258 (1984).

[78] Marvin L. Minsky, Computation: Finite and In�nite Machines, Prentice-Hall,
Englewood Cli�s, New Jersey, 1967.



190 BIBLIOGRAPHY

[79] W. S. McCulloch and W. Pitts, \A logical calculus of the ideas immanent in
nervous activity," Bulletin of Mathematical Biophysics 5 115-133 (1943).

[80] Henryk Minc, Nonnegative Matrices, John Wiley and Sons, New York, 1988
(ISBN 0-471-83966-3).

[81] Edward F. Moore, \Gedanken Experiments on Sequential Machines," in C. E.
Shannon and John McCarthy (eds), Automata Studies, Princeton University
Press, Princeton, New Jersey, 1956.

[82] Edward F. Moore, \Machine models of self reproduction," American Math-
ematical Society Proceedings of Symposia in Applied Mathematics 14 17-33
(1962).

[83] Edward F. Moore, \The �ring squad synchronization problem," in Edward F.
Moore (ed), Sequential Machines: Selected Papers, Addison-Wesley, Reading,
Massachusetts, 1964. pp. 213-214.

[84] Edward F. Moore, \Machine models of self-reproduction," in A. Burks (ed),
Essays on Cellular Automata, University of Illinois Press, Urbana, 1970.

[85] Scott Morris, \Games - The game of Life," Omni, vol. 7, no. 1 (October, 1984),
pp. 188-189.

[86] Masakazu Nasu, \Local Maps Inducing Surjective Global Maps of One Di-
mensional Tessellation Automata,"Mathematical Systems Theory 11 327-351
(1978).

[87] Masakazu Nasu, \Indecomposable Local Maps of Tesselation Automata,"
Mathematical Systems Theory 13 81-93 (1979).

[88] Masakazu Nasu, \An Interconnection of Local Maps Inducing Onto Global
Maps," Discrete Applied Mathematics 2 125-150 (1980).

[89] Masakazu Nasu, \Uniformly �nite-to-one and onto extensions of homomor-
phisms between strongly connected graphs," Discrete Mathematics 39 171-197
(1982).

[90] John von Neumann, Theory of Self-reproducing Automata (edited and com-
pleted by A. W. Burks), University of Illinois Press, 1966.

[91] Mark D. Niemiec, \Life Algorithms," Byte vol. 4, no 1 (January, 1979) pp.
90-97.

[92] Norman H. Packard and Stephen Wolfram, \Two-Dimensional Cellular Au-
tomata," Journal of Statistical Physics 38 901-946 (1985).

[93] Asher Peres, \Reversible logic and quantum computers," Physical Review A
32 3266-3276 (1985).

[94] M. Perles, M. O. Rabin, and E. Shamir, \The Theory of De�nite Automata,"
IEEE Transactions on Electronic Computers EC-12 233-243 (1963).



BIBLIOGRAPHY 191

[95] Kenneth E. Perry, \Abstract mathematical art," Byte, vol. 11, no. 13 (Decem-
ber 1986), pp. 181-192.

[96] William Poundstone, The Recursive Universe, William Morrow and Company,
New York, 1985 (ISBN 0-688-03975-8).

[97] Kendall Preston, Jr., and Michael J. B. Du�, Modern Cellular Automata,
Plenum Press, New York, 1984 (ISBN 0-306-41737-5).

[98] Anthony Ralston, \De Bruijn Sequences|AModel Example of the Interaction
of Discrete Mathematics and Computer Science," Mathematics Magazine 55
131-143 (1982).

[99] D. Richardson, \Tessellations with local transformations," Journal of Com-
puter and System Sciences 6 373-388 (1972).

[100] D. R. Rutherford, Substitutional Analysis, Edinburgh, at the University Press
(1948).

[101] Tadakazu Sato and Namio Honda, \Certain Relations between Properties of
Maps of Tesselation Automata," Journal of Computer and System Sciences 15
121-145 (1977).

[102] L. S. Schulman and P. E. Seiden, \Statistical mechanics of a dynamical system
based on Conway's game of Life," Journal of Statistical Physics 19 293-314
(1978).

[103] Eugene Seneta, Non-Negative Matrices, John Wiley and Sons, New York,
1973 (ISBN 0-470-77605-6).

[104] Claude E. Shannon and John McCarthy (editors), Automata Studies, Annals
of Mathematics Studies #34, Princeton University Press, Princeton, 1956.
(ISBN 0-691-07916-1).

[105] J. A. Shohat and J. D. Tamarkin, The Problem of Moments, American Math-
ematical Society, Providence, Rhode Island, 1943.

[106] Sven Skyum, \Confusion in the Garden of Eden," Proceedings of the American
Mathematical Society 50 332-336 (1975).

[107] Alvy Ray Smith III, \Simple computation-universal cellular spaces," Journal
of the Association for Computing Machinery 18 339-353 (1971).

[108] Shinji Takesue, \Reversible Cellular Automata and Statistical Mechanics,"
Physical Review Letters 59 2499-2502 (1987).

[109] Tommaso To�oli, \Computation and Construction Universality of Reversible
Cellular Automata," Journal of Computer and System Sciences 15 213-231
(1977).

[110] Tommaso To�oli and Norman Margolus, Cellular Automata Machines, The
MIT Press, Cambridge, Massachusetts, 1987. (ISBN 0-262-20060-0).



192 BIBLIOGRAPHY

[111] Stanislaw Ulam, \On somemathematical problems connectedwith patterns of
growth of �gures," in A. Burks (ed.) Essays on Cellular Automata, University
of Illinois Press, 1970.

[112] Richard S. Varga, Matrix Iterative Analysis, Prentice Hall, Inc, Englewood
Cli�s, New Jersey, (1962).

[113] Robert T. Wainwright (editor), Lifeline, a quarterly newsletter with 11 issues
published between March 1971 and September 1973.

[114] A. Waksman, \An optimum solution to the �ring squad synchronization prob-
lem," Information and Control 9 66-78 (1966).

[115] Norbert Wiener, Cybernetics, John Wiley and Company, New York, (1948).

[116] W. John Wilbur, David J. Lipman, and Shihab A. Shamma, \On the predic-
tion of local patterns in cellular automata," Physica 19D 397-410 (1986).

[117] Stephen J. Willson, \Growth rates and fractional dimensions in cellular au-
tomata," Physica 10D 69-74 (1984).

[118] Stephen Wolfram, \Statistical mechanics of cellular automata," Reviews of
Modern Physics 55 601-644 (1983).

[119] Stephen Wolfram, \Universality and complexity in cellular automata," Phys-
ica 10D 1-35 (1984).

[120] Stephen Wolfram, \Computation theory of cellular automata," Communica-
tions in Mathematical Physics 96 15-57 (1984).

[121] Stephen Wolfram (Ed.), Theory and Applications of Cellular Automata,
World Scienti�c Press, Singapore, 1986 (ISBN 9971-50-124-4 pbk).

[122] Takeo Yaku, \The constructibility of a con�guration in a cellular automaton,"
Journal of Computer and System Sciences 7 481-496 (1973).


