LCAU.DOC

Harold V. McIntosh
Departamento de Aplicacion de Microcomputadoras,
[nstituto de Ciencias, Universidad Autonoma de Puebla,
Apartado postal 461, 72000 Puebla, Puebla, México.
E-mail:mcintosh@servidor.unam.mx

April 8, 1988
revised October 12, 1992

Abstract

Previous collections of cellular automata programs have grown, both as the anal-
ysis of new aspects of their behavior has continually been included, and as the range
of parameters of the automata has increased. During all this time, the programs
have lacked an operation manual, which is the substance of the present document.
Previously, it has been necessary to rely on the source code, which has always been
made available along with programs, but whose commentary has never been expos-
itory. A set of lecture notes, Linear Cellular Automata accompanies the programs,
and explains most of their features.

The first collection, LCA, covered a small range of radii and state numbers, with
supplementary programs to calculate cycles and de Bruijn diagrams. Most of the
rules were required to be totalistic.

The second collection, LCAU, contained three principal extensions:

1. General rules, not just totalistic rules, could be analyzed.

2. Cell densities and block probabilities were calculated according to mean field
theory and local structure theory using options in a new submenu.

3. The option to produce de Bruijn diagrams was incorporated in a submenu.

Consequently a more detailed and convenient analysis of (k,1), k=2,3.4 and (2,2)
automata could be made than previously.

The current revision, LCAU (second series), extends the range of the parameters
k and [considerably, including half-integer values for r. An entirely new submenu,
for the calculation of ancestors, has been introduced, based on de Bruijn diagrams.
Configurations deduced from the de Bruijn diagrams can now be transferred back to
the main menu, so that their full screen evolution can be observed.

The programming language REC has been included, whose principal application
lies in organizing demonstrations, but it will eventually allow storing and retrieving
demonstrations from disk.

Finally, extensive provision has been made for random and partially random con-
nections of the cells. To study a related phenomenon, the Chaté-Manneville effect,
higher dimensional homologues of many of the automata can be studied.

Some slight provision has been made for a mouse.

Contents

1

Introduction

1.1 LCA.C

1.2 LCAU.C
1.2.1 General rules
1.2.2 Demonstrations
1.2.3 Block probabilities
1.2.4 de Bruijn diagrams

1.3 LCAU.C: SECOND SERIES
1.3.1 Ancestors, Garden of Eden
1.3.2 REC programs.
1.3.3 Randomly connected cells .
1.3.4 Chaté-Manneville automata
1.3.5 Mouse buttons

Interdependence of submenus
Copyright notice

Main menu

4.1 Ruleediting
4.1.1 Fullrules
4.1.2 Totalistic rules
4.1.3 Semitotalistic rules

4.2 Lineediting
4.2.1 Line editing menu

Full screen evolution

Probabilistic menu

6.1 Binary automata
6.2 Trinary automata.
6.3 Quaternary automata
6.4 More than four states
6.5 More than one dimension
The de Bruijn menu
7.1 (2,1) de Bruijn diagrams
7.2 Other de Bruijn diagrams
7.3 Sample periods
74 Cycleso o0
Ancestor menu
81 Generalmenu
8.2 Survey options
8.2.1 Variance histogram
8.2.2 Classification by length . .

il

19
20
21
21

8.2.3 Enumeration of reversible rules L o000
9 Undocumented commands
9.1 Field preparation and analysis. oL
9.2 Generating a demonstration oL 0oL
9.3 Selecting a video display modeo
9.4 Productrules
9.5 Reversiblerules e
9.6 special commands for rule designo Lo L
9.7 options within rule minimenus 0 e
10 REC programs
10.1 The language 0 e e e
10.2 Defining programso o
10.3 Operators and predicates L oo
10.4 The REC menu for PROBKR . . .« .« v v v v vt v v i et e e e e
11 Design of rules
11.1 The counteritself e
11.1.1 Infrastructure Lo e
11.1.2 Binary arithmetic e
11.1.3 Packing bistable cells. oo oL
11.1.4 Carry generator. v vttt b e e e e
11.1.5 Protecting the components
11.2 Table of transitions o . Lo e e
11.3 Using the line editor o o e
11.3.1 Position cursor« . v v v i i i e e e e
11.3.2 Enter state e
11.3.3 Maintainance of the line panel
11.3.4 Defining transitions oL
11.3.53 Trial evolution L
11.3.6 Consistency v v v v it e e e e e
11.3.7 Prescribed evolution Lo oo
12 Chaté-Manneville automata
12.1 Using these programs oo
12.2 Keyboard options o v v v i e e e e e e e e e e
12.3 Analysis of the options L o
12.3.1 Palette selection o
12.3.2 Select dimension and randomness
12.3.3 Help, information, housekeeping
12.3.4 Mean field probability
12.3.5 Iterated mean field oL Lo
12.3.6 Sample evolution L
12.3.7 Frequencies in succeeding generations
12.3.8 Synthesizing areturnmapo
12.3.9 Block probabilities e

iii

21

22
22
22
22
23
23
24
24

24
25
25
26
26

27
28
28
28
29
30
30
31
32

12.3.10Random rule 43

12.3.11Random line Lo 43
12.3.12Hiplot serviceso Lo e 43
12.3.13Miscellanieouso e 44

12.4 Function keys o o v 0 i e e e e e e e e e e e e e 44

13 Acknowledgements 44

iv

1 Introduction

As often happens with program collections, LCAU has grown from year to year; three stages
of development can probably be distinguished. The first began with an article in Byte
magazine which described a four state automaton suitable for use with microcomputers
having a color monitor.

As the range of automata covered and the number of characteristics analyzed increased,
a more elaborate manual was prepared and the structure of the individual programs was
given a more elaborate organization. The collection remained fairly constant for a while,
but within the past year several new facilities have been added. These include the addition
of disk storage, the incorporation of the REC programming language, and the provisions
which were made to work with automata of the Chaté-Manneville class.

1.1 LCA.C

The disk LCA.C was released in the summer of 1987, 9 programs written in “C” for
calculating and displaying the evolution of linear cellular automata. Both source code and
a separate disk of EXE files are provided. Although the programs represented a point in
the evolution of the course Fortran III offered regularly during several preceding semesters
at the Universidad Auténoma de Puebla, and were promoted at the XVI Feria de Puebla,
they had their principal inspiration in an article in the December, 1986, issue of Byte
magazine which explained how cellular automata could lead to intricate and complicated
designs, with a certain aesthetic appeal.

Kenneth E. Perry,
Abstract Mathematical art,
Byte, December 1986, pages 181-192

The programs in the LCAKR.C set ran through the k-range of 2, 3. and 4 states per
cell, as well as interactions between first, second, or third neighbors (the r-range). The
combinations (4,1) and (4,2) are surely the most colorful, but the binary first neighbor
version (2,1) is more amenable to an exhaustive analysis.

1.2 LCAU.C

Programs in the second series were named LCAU to distinguish them from members of the
first series. In the original series, in all cases except for (2,1), only totalistic rules were
considered. Totalistic rules are those for which the transition depends only on the number
of cells of different kinds in each neighborhood, but not on their precise arrangement.
More exactly, each state gets assigned an integer in the range 0 to kK — 1 as a weight, the
actual transition being a function of the weighted sum of all the neighbors (including the
evolving cell). The artistic effects arise from assigning colors to each of cell values.

1.2.1 General rules

Although the use of totalistic rules serves to reduce the enormous number of possible
automata greatly, it excludes many interesting possibilities arising from a more detailed
specification of the evolutionary rules. When k., the number of states per cell, is small,

there is not too much which is possible in the way of design, but once it reaches 4 or
beyond some interesting constructions become possible.

1.2.2 Demonstrations

Several interesting demonstrations become possible at the level of a (4, 1) automaton with
a general rule.

Binary counter LCAU41.Cin particular, contains enhanced rule and line editing menus
which allow experimentation with the design of rules. Certain of the demonstrations in
LCAU41 show how the design process can be used. There is an example of a “binary
counter” which consists of a glider gun together with bistable targets. In one state the
target absorbs the glider and changes to the other state. In the second state the target
passes the glider, reverting to the first state. Thus half the gliders are lost to each target,
whose state forms a binary counter whose carry is represented by the gliders which are
allowed to pass.

Glider gluon demonstration Another demonstration shows how a bouncing glider
may shuttle between two obstacles - still lifes - drawing them ever closer together. Just
as the glider is about to be crushed, the walls coalesce but the glider escapes to one side,
seeking new walls to conquer. Multiple gliders may go about their business, competing for
the wall if they lie on opposite sides or hastening to squeeze if they lie on the same side.

Jumping bean A third demonstration shows a slow glider propelled by an internal
glider or gliders bouncing back and forth - a sort of Mexican jumping bean. When a fast
glider overtakes a slower glider, they coalesce, producing an even slower glider.

Gliders of two velocities A fourth demonstration shows gliders of two different veloc-
ities, which can be used to set up a remote still life whose reaction to further gliders gives
it a life of its own.

Such constructions can be used to generate interesting patterns, but they also serve
theoretical ends as well. For example, the binary counters establish the existence of struc-
tures with both exponentially long transients and exponentially long cycles. Since they
still use several cells to establish the basic components and their spacings, they still do not
reach theoretical maxima; but they do lie within certain factors of such maxima. When
k becomes larger still, universal Turing machines can be programmed, but this probably
requires a k of at least 6 or 8.

1.2.3 Block probabilities

Another extensive addition which has been made to the programs is to be found in the
series PROB.C, which can be invoked by typing t in the main menu (the old totalistic rule
number can still be utilized by typing T); in fact their inclusion more than doubles the
size of the programs. These new programs permit a statistical survey of the properties of
the automaton.

Originally they calculated simple probabilities on the basis of ideas which go by the
name of “mean field theory,” whose results were plausible but not entirely convincing. At

about the time the programs were being updated, two interesting articles appeared in the
literature:

W. John Wilbur, David J. Lipman and Shihab A. Shamma,
On the prediction of local patterns in cellular automata,

Physica 19D 397-410 (1986).

Howard A. Gutowitz, Jonathan D. Victor and Bruce W. Knight,
Local structure theory for cellular automata,
Physica 28D 18-48 (1987).

These articles, from differing points of view, showed how to take correlations between
cells into account by calculating the probabilities of strings of cells. Rather than taking
individual probabilities as fundamental and deducing the probabilities of combinations, the
process is inverted; self consistent probabilities for strings (or blocks) of a certain length
are found from which the probabilities of individual cells are obtained by an averaging
process.

The calculations of these articles were then included among the options of the t sub-
menu, so that probabilities derived from blocks of length up to 6 could be compared with
simpler estimates and with the actual performance of the automaton.

1.2.4 de Bruijn diagrams

A third feature of the second series was the incorporation of the de Bruijn diagrams within
the main program, together with a visual representation in terms of chords of a circle. It
was still not possible to transfer the cycles obtained back to the main program without
copying them on paper and editing the initial line with the option 1.

Limitations of space and time severely restrict the lengths of periods which can be
analyzed. Although interesting gliders and cycles are found within the accessible range of
the program, there are many others of longer periods which manifest themselves experi-
mentally when the evolutions are run. It would be nice if the exhaustive analysis afforded
by the de Bruijn diagrams were feasible for the longer periods that show up on the screen,
but they would really require a faster computer, more memory, and probably programs
incorporating finer details of the algorithins used.

The programs contained a bare minimum of help facilities, in the sense that menus of
one type or another were presented at various stages in the evolution of the programs, and
others are sometimes available by typing a question mark, just as a slash often cleared
portions of the screen.

A manual consisting of the lecture notes for Fortran III is in preparation, for which
chapters are planned describing by accompanying programs. As is well known, the prepa-
ration of manuals always lags the evolution of the programs which they are supposed to
describe.

There are still some interesting problems of presentation — recall that Fortran III is
supposed to be dedicated to graphical techniques. Presentation of simple evolution is easily
solved, since the resolution and velocity of the graphics controllers included as standard
equipment in IBM PC’s and their clones is adequate. Unfortunately color monitors and
their controllers are sometimes seen as premium equipment which was not included in

a given installation, so that a monochromatic rendering of the color displays must be
endured.

Even so, the speed and screen resolution which is available in the present generation of
equiptent is only marginally satisfactory, having only a fraction of the resolution of pen
and ink plotters which have been commonly available. Once statistics pertaining to the
evolution of automata are to be presented, it is found that there are many more parameters
than are comfortable, which leads to the use of shading, complex surface representations,
even stereographic view. It is in this area that some interesting results can be obtained,
but mostly ones which whet one’s appetite for the next generation of equipment.

Likewise the use of the de Bruijn diagram and the reduced evolution diagram, even
without their probabilistic versions,requires line drawings of a complexity which quickly
surpasses the capability of the present generation of graphical displays. Although the
complexity of these diagrams increases exponentially making even modest values of
parameters permanently inaccessible; still, even moderately better graphics equipment

will permit an instructive display of the simplest cases.
Although the menus vary slightly from program to program, they generally conform
to a uniform pattern, whose constituents are described below.

1.3 LCAU.C: SECOND SERIES

The third stage, .CAU: SECOND SERIES, incorporates still more major improvements.

1.3.1 Ancestors, Garden of Eden

For those automata where the space and time requirements are not excessive, an entirely
new submenu has been included, which provides for the calculation of ancestors, and the
detection and calculation of Gardens of Eden. Implicit in the lack of a Garden of Eden is
reversibility, which can also be checked.

1.3.2 REC programs

The difficulty of preparing good demonstrations (Recall the presentation of the LCA pro-
grams at the Feria de Puebla) motivated the incorporation of a REC compiler in the pro-
grams, with its menu of operations. In turn this permitted a reorganization of the scheme
for incorporating sample rules in the programs, and the provision for reading collections
of prepared rules from disk.

1.3.3 Randomly connected cells

Just before the involvement with the Chaté-Manneville automata, the programs had been
modified to handle a certain number of random connections between the cells, in addition
to the perfectly regular connections arising from the lattice structure. Indeed, it was orig-
inally conjectured that the collective behavior of these automata was due to an increasing
randomness in the evolution function with increasing dimension; but that proved not to
be the most important effect.

1.3.4 Chaté-Manneville automata
The most extensive part of the third revision was precipitated by the article

H. Chaté and P. Manneville
Evidence of Collective Behavior in Cellular Automata,

Europhysics Letters 14 409-413 (1991),

and several events following its publication. The principal item of interest is a cyclic
overall behavior of the probability densities as one of these automata evolves; the automata
themselves are multidimensional.

Automata of different dimensionalities can have neighborhoods of the same size, de-
pending on the number of ways that the size can be factored. Such differences have to
affect the correlations between different cells of the neighborhood when calculating proba-
bilities, providing a motivation for using different neighborhoods within the same program.
Their adjunction of a program set emphasizing one-dimensional automata was due to the
elaborate facilities for displaying probabilities which already existed.

1.3.5 Mouse buttons

There is next to no necessity at all to use a mouse in any of the LCAU programs, but
there are one or two occasions in which there is a movable cursor present. Either the four
keyboard arrows, or some of the older equivalents such as space and backspace, can be
used to move the cursor.

No mouse drivers are included in LCAU, but there are many “external” mice (mouses?)
on the market which work by inserting characters into the input buffer of the computer
to which they are attached.

Such a mouse can be programmed to create arrows corresponding to its movements,
CONTROL ARROWSs for the two buttons, and ESCAPE for a double button press. It will
then be compatible with the option assignments in L.CAU.

2 Interdependence of submenus

Given that each LCAU program can calculate many quantities related to the performance
of an automaton, the general programs have been organized into submenus, each of which
is described in detail in its own section.

Figure 1 shows the interrelationship of all these submenus, most of which are adjuncts
of the main menu.

The initial screen in all programs bears a copyright notice and a very short description
of the program. While the inexperienced user is busy reading the screen, a random number
generator is wasting time, so that there will usually be a different display every time the
program is run; likewise a different sequence of random rules and initial lines. No effort
has been made to see how much this initial idling degenerates the performance of the
random number generator.

As a general practice, return from all submenus, at every level but the highest, results
from typing a carriage return. The top level is treated as an exception to prevent the
overenthusiastic use of CARRIAGE RETURN. An unintended exit to DOs would result in the

loss of several option settings; to avoid this inconvenience, the program must be terminated
via the option gq. It is also possible to quit by typing n in response to the query in the
evolution panel.

Although considerable effort has been expended to keep the notation uniform through-
out all the LCAU programs, and throughout all the submenus within an individual program,
there are exceptions. This is almost unavoidable if a large number of options exist, all of
them designated by single letters.

4\'

. y
sign-on | any mam — . |evolution
g
q n
t
y d
probability
ancestor de Bruijn

Figure 1: Interdependence of L.cAU submenus. All unlabeled returns are generated by
typing CARRIAGE RETURN.

3 Copyright notice

The user gets only one chance at the copyright notice, mainly because it hides a random
number generator which ensures that different demonstrations will be proffered every time
the program is executed.

Whereas the authors reserve commercial rights to the programs, they place no restric-
tion on copying for private use or study, save for insisting that the programs be copied in
their entity, without any alterations whatsoever.

Naturally the availability of the source code will allow interested persons to correct
errors or adapt the programs to their own requirements; general usage suggests that the
code be annotated accordingly, and treated with the same respect as the original. The
authors will, of course, appreciate being informed of errors, suggestions for improvement,
or ideas concerning the coverage of additional topics.

The apparent conflict between “no alterations” and “make your own corrections” is
easily resolved. Sometimes the only change made to a program is to remove or to change

Copyright (C) 1987, 1988 H.V.McIntosh, G. Cisneros S.
**x*% LIFE in One Dimension **x*

Three States - Black(0), Cyan(1l), Magenta(2).

First neighbors - one on each side, three altogether.

Complete tramnsition rule - random, edited, or stored.

Totalistic transition rule - random, edited, or stored.

Initial Cellular Array - random, edited, or patterned.

Some rules are fragile and require several tries before

manifesting and interesting evolutionary pattern.

Use any key to terminate a display in progress.

now, press any key to continue.....

Figure 2: copyright notice.

the attributions concerning its origin; this is not considered fair, and should be avoided
when reproducing any program.

4 Main menu

The Main Menu Figure 3 generally offers the following selection, whose details vary slightly
from one automaton to another:

r - edit the general rule

1 - edit the line

g - graph the evolution

x - generate a random rule

y - generate a random line

u - generate a sparse line

T - edit a totalistic rule

S - edit a semitotalistic totalistic rule

- execute stored rule number nn

@nn - execute totalistic rule number nn

$ - execute 12 totalistic rules starting with number nn
wnn - execute Wolfram rule number nn (LcAu21 only)
t - enter probabilistic submenu

d - enter de Bruijn submenu

q - quit

Most of the options lead into further submenus; some of which still deal with infor-
mation visible within the main menu, such as r, which edits the rule, or 1, which edits
the line. Others invoke full screen displays of their own, notably the option g, which

-

general rule

main menu options

line in ascii form

Figure 3: main menu, showing rule panel, option list, and line panel.

displays the evolution of the automaton line by line. The interrelationship of the different
full-screen displays is shown in Figure 1.
Each of these options is described in further detail below.

4.1 Rule editing

Insofar as space permits, a panel for the general rule is always displayed in the upper
left hand corner of the main menu. Selecting the option r will place the cursor on the
bottom line of the rule panel, where the values of the transition function may be entered
by typing the appropriate digit. The cursor may be positioned by space, backspace, and
the horizontal arrows.

Some programs have tabs, and movement to the ends of the line; others do not. Like-
wise, the neighborhood may be marked and unmarked in some programs — those which
allow extensive line editing, for the most part.

Space for totalistic rules or semitotalistic rules is allocated in various portions of the
main menu, according to space requirements and competing information which may have
to be displayed.

4.1.1 Full rules

To edit a rule, either general or totalistic, one may move the cursor and insert values
for the cell above the cursor. Some programs have a more elaborate cursor, with tabs,
wraparound, and the possibility of flagging values which will not be altered by using the
random rule generator x (X overrides the flags). Again these features are experimental,
and may possibly be confirmed in future versions of the programs. Later on the special
commands which apply to Lcau4l are shown.

4.1.2 Totalistic rules

Totalistic rules are those for which the transition depends only upon the sum of the states
of the cells in the neighborhood, but not upon their arrangement. Only a small fraction of
the possible rules have this form, nevertheless just that reduction makes it possible to select
rules for very large neighborhoods or large state sets. Otherwise too many transitions have
to be specified to fit on the screen, or for their definition to be conveniently remembered.

Depending on the space available, the totalistic rule will either appear in the upper
left hand corner of the main menu, or in the right central portion, to one side of the line
panel. Cursor movements and state definitions are available in all such mini-menus; other
options vary from automaton to automaton.

4.1.3 Semitotalistic rules

A slight generalization of totalistic rules is to make the transition depend explicitly upon
the state of the central cell, but otherwise only on the state sum of the remaining cells;
the combination is called a semitotalistic rule. Neighborhoods of even length do not have
a central cell, so the concept may be extended still further to include partitioning the cells
into two groups, then using the pair of state sums to define the transition.

The placement of the semitotalistic rule follows the same general principles as that of
the totalistic rule, the same also to be said about the variety of options.

4.2 Line editing

general rule

main menu options

line in ascii form

Figure 4: line editing menu. The line editor works on the line of cells, which is divided
into 8 lines of 40 cells.

4.2.1 Line editing menu

(Figure 4) - Lines are edited by essentially the same procedures that the rules are, but
the long line of 320 cells is broken down into 8 lines 40 cells, to make movement across
the line using the up and down arrows more rapid. LCAU41, which corresponds to one of
the simplest automata for which rules may be designed to order, has many additional line
editing options, all experimental, which can be used to facilitate the design. No doubt
more will be added before the existence of all of them is officially announced.

0,1,2,3, ... - enter state
MOD- move cursor downward
MOU- move cursor upward
MOR- move cursor forward
MOIL- move cursor backward

< - move cursor to left margin

> - move cursor to right margin

z - clear single row

Z - clear full array

" - repeat the line just above the cursor’s line
x - unmark transitions

q - clean up the area

= - insert transition

+ - set marker for transition in auxrule

- - remove marker for transition from auxrule

* - Insert transitions for the whole line

point evolution

? - evolution of the whole line

/ - conditional evolution

c - test consistency everywhere

C - test consistency for marked neighborhoods
m - try to match a given evolution

5 Full screen evolution

Figure 5 shows a typical screen of evolution. Evolutionary screens may be interrupted
at any line by pressing any key; alternatives will then be offered to continue the display
(CARRIAGE RETURN), exit the program (n), or return to the main menu (nominally y, but
it is the default). It is a general principle in all parts of the program, that they keystroke
which interrupts any activity is discarded. Therefore a new activity cannot be initiated
by simply typing its letter, although typing it twice in succession will usually work.

10

rule number

evolving automaton

Figure 5: A screen of evolution.

6 Probabilistic menu

The probabilistic menu contains all the options pertaining to the statistics of automaton
evolution. The greatest variation between programs results form differences in graphical
treatment of different sets of probabilities.

For binary automata, only one probability is required, since the probability of the other
state is the complement of the first. Consequently, simple two- dimensional graphs suffice
to show how probability changes from one generation to another; for instance through mean
field curves. Binary automata are also simple enough that contour maps can represent
block probabilities for pairs.

Trinary automata have two independent probabilities, for which contours in triangular
coordinates suffice; beyond three states simplices of at least three dimensions are required.

Stereopairs showing sections through a pyramid can be used to display the probabilities
of quaternary automata. Since a certain amount of practice and training are necessary
to visualize stereopairs, or else special optical equipment, many people fail to appreciate
stereopairs. Other representations are possible, including dynamic displays with rotation,
but they do not form part of the LCAU program set.

Beyond four states it becomes increasingly difficult to represent probabilities, although
most of the programs contain vestiges of the quaternary treatment. These are due to a
certain laziness in programming, and will gradually be eliminated from the programs.

6.1 Binary automata

The layout of the probability menu varies with the number of states; to a slight extent the
options also vary, according to the necessities of the presentation. For binary automata,
the layout is shown in Figure 6.

11

| Panel R: rule number, date, time |
| Panel E: sample evolution |

Panel M: information, bar charts

Panel A Panel B Panel C

Figure 6: A typical screen within binary probabilistic submenus, showing the placement
of the different options. Typing 7 will summon the menu.

By typing t in the main menu, one arrives at a separate display, implemented in the
programs PROB.C, which will perform several statistical analyses of their automata. The
programs vary considerably with the number of states, since they attempt to represent
the relative probabilities as points within a simplex. For two states, the results are trivial,
for three states the diagrams are planar and interesting, for four states the graphical
capabilities of the screen are strained; for five and beyond some other representation
would be required.

The generic options are:

a - a priori estimates

m - evolution of cells and pairs

M - 50 generation evolution of cells and pairs
g - 50 generation evolution of single cells

G - 200 generation evolution of single cells

s - graph probabilities in stereo

t - graph probabilities, show contours in simplex
1 - 1-block local structure theory iterations
2 - 2-block local structure theory iterations
3 - 3-block local structure theory iterations
4 - 4-block local structure theory iterations
5 - 5-block local structure theory iterations
6 - 6-block local structure theory iterations
+ - select blue-cyan-white

- - select red-green-yellow

12

e - show 16 lines of evolution
/ - clear screen

? - show menu

carriage return - exit

Options 5 or 6 may not be available if they require too much time or space, t shows
two-block probabilities for k£ = 2 automata, and there may be variants on s. For k = 2, the
commands x, y, z, w, v, 1, and j produce graphs for self-consistent 1-block probabilities
for varying numbers of generations and numbers of iterations.

6.2 Trinary automata

rule number, date, time

left stereo right stereo contour map

information, bar charts

| sample evolution |

Figure 7: A typical screen within trinary probabilistic submenus, showing the placement
of the different options. Typing ? will summon the menu.

The principal difference between the binary and the trinary probability layouts consists in
moving the sample evolution and bar charts to the bottom of the screen, to leave space for
a trilinear diagram at the top. In particular, Panels A, B, and C no longer exist, although
there is a similar apportionment of space. For most purposes only the rightmost panel
is used, to hold a contour map of the vector difference in probability between the two
successive generations.

Stereopairs representing this difference can be shown in the other two panels, one for
the left image, the other for the right image, which are designed for crosseyed viewing.

It is also possible to view the differences of probabilities of the individual states.

6.3 Quaternary automata

13

rule number, date, time

Left Stereoimage Right Stereoimage

information, bar charts

| sample evolution |

Figure 8: A typical screen within the quaternary probabilistic submenu, showing the
placement of the different options. Typing ? will summon the menu.

The quaternary probability layout is similar to the trinary layout, with the noticeable
difference that a large stereopair occupies the top half of the screen.

The probability contour map is three dimensional, so it is represented by plane sections
through the simplex, or unit tetrahedron. The option u selects one family of planes, the
option v selects a family whose members interpolate the first; between the two one can
locate prospective minima more accurately.

Likewise, the tetrahedron may be represented in two ways. The first, sitting on its
base, which is the default selection, may be chosen through the option 0. The second
alternative is to think of the tetrahedron suspended between a pair of opposite, mutually
orthogonal edges; E gives the corresponding presentation.

6.4 More than four states

Beyond four states the layout for the probability panels is very poorly developed, and
generally misleading. This state of affairs is a candidate for correction in future editions
of the programs.

6.5 More than one dimension

There are interesting coincidences of neighborhood size between one dimensional automata
and various multidimensional automata; mostly such coincidences occur for automata of
fairly large radii. Those combinations for which dual, treble, or higher dimensionality is
appropriate have their own lists of operators, most all of which are to be found in the
probability submenu.

The LCAUKR programs with K = 2 and R in the range from 3 to 6 are primarily

designed to explore automata of the kind described in the article of Chaté and Manneville,
previously cited.

These automata are multidimensional, so each LCAU within the relevant range has been
modified to include several multidimensional neighborhoods having the same volume as
the corresponding one dimensional automaton. Also, for better statistics, an array with
16X cells has been included, even though this interferes with the de Bruijn option d and
with editing the cell array 1.

The only effective submenu for this subset of LCAU programs is t. the probability
option. However, the main menu is still required to define the rule; to do that is so
cumbersome that only totalistic T or semitotalistic S definitions are practical. Random
lines y and random rules x can still be generated, and the evolution can still be viewed
line by line g. The ancestor option e was never implemented for these automata.

Exit from almost everything, especially the submenus, is via CARRIAGE RETURN. To
avoid inadvertently abandoning the main program, its own termination lies with q, as
always.

The function key f1 will produce a list of demonstrations, which is essentially nonex-
istent in these programs. However, £2 will produce a list of REC demonstrations from
which a selection can be made by moving the cursor. These, although not numerous, are
designed to show off the Chaté-Manneville automata, otherwise describable as “electronic
Swiss cheeses.”

The REC program for the selected demonstration may be displayed and edited using
the key £3. Within the £3 option, keys £1 and £2 will display panels giving a concise
summary of REC and its syntax, but this should have been learned separately by having
previously read the appropriate documentation files. Page-up and Page-down will scroll
through all the valid REC symbols; likewise moving the editor’s cursor with arrows or
an external mouse (which has been programmed to transmit the arrows) will gloss the
designated symbol.

REC programs are to be edited from the main menu, but executed from the probability
submenu; this is purely a consequence of changing between the screen modes which are
most convenient for the two activities. A similar remark applies to the way that the rule
number gets defined.

7 The de Bruijn menu

The de Bruijn menus share one characteristic with the probability menus, in that their
layout varies sommewhat according to the number of states. Although the number of vertices
in the de Bruijn diagram is affected by the number of states as well as the size of the
neighborhoods, limits on the range of parameters caused by constraints on the amount of
storage space and length of running time are the main reasons for this variability.

There are two kinds of de Bruijn diagrams that can be computed - those showing
the counterimages of a uniform string,and those which isolate strings satisfying a certain
combination of shifting and periodicity. Letters are assigned to them consecutively, but
the combination of period and displacement varies widely because of the differing number
of combinations that are possible.

Figure 9 shows the general format of the screen according to the de Bruijn submenu;
the arrangement is slightly different for (2,1) automata because of the large number of

15

rule number, date, time

option menu

de Bruiju diagram

sample evolution

Figure 9: de Bruijn menu

combinations which can still be calculated within modest limitations of space and time.
But in all cases, typing ? will cause the option menu to appear, even after it has been
overwritten during the execution of one of the options.

7.1 (2,1) de Bruijn diagrams

The parameters governing the shift-period de Bruijn diagrams are the number of genera-
tions involved and the shifting required; there are usually enough letters in the alphabet
to assign each combination a unique letter. An exception is the case of binary automata
with first neighbors. The layout in Table 1 shows how to specify combinations of period
and shift.

a b ¢ d e f g h 1 j k | m
.oa .
.+ b o+ .

.o+ 4+ o+ + .
o+ o+ o+ d o+ o+
+ 4+ 4+ 4+ e + + + + .
.o+ + + + + f + + + 4+ + .
+ + + + + + g2 + + + + + +

Table 1: Binary de Bruijn menu layout.

First type a letter in the range a to m, for a shift lying between 6 cells to the left and 6
cells to the right. Then type a second letter in the range a to g, for the periodicity. Thus,
ga will yield still lifes, ch designs which shift right one cell every three generations, and
so on.

16

The combinations marked with a . are superluminal patterns, the remainder travel at
the velocity of light or less, and are marked by +.

7.2 Other de Bruijn diagrams

Having entered the de Bruijn submenu by typing d in the main menu, the de Bruijn screen
will appear, having the general form of Figure 9. The left hand side of the screen contains
an option menu, the right hand side a polygon representing the full de Bruijn diagram.
Subdiagrams are shown by altering the colors of the lines. Unfortunately, the diagrams
are usually too congested to be of any use.

1,2,... - generates a de Bruijn diagram of u stages
a,b,c,... - shows cyclic counterimages

4,B,C,... - shows all counterimmages

other letters - show (p,d) cycles

+,- - selects the color palette

?,/ - clears screen, shows menu

CARRIAGE RETURN - exits

To obtain information from the de Bruijn submenu will probably require the use of
pencil and paper, or the use of the screen dump program. Although the program lists
all the links in the de Bruijn diagram, the ring diagram is generally too cluttered to use
directly from the screen and should be redrawn. Usually the resulting diagram can be
further simplified, often it contains many redundant loops. Used casually, it still shows
whether there will be many or few periods of a given type.

7.3 Sample periods

given that the circle representing the de Bruijn diagram is too congested to be of practical
use, some alternatives are provided which deliver the information in a more usable form.
For convenience, they are shown in a small pop-up menu which appears when the de Bruijn
calculation has finished; it occupies the region marked “print” in Figure 9.

The options are

p - Print a list of all the links in the diagram.

r - Show a random walk through the diagram

s - Scan all the random walks according to initial link
CARRIAGE RETURN- return to the de Bruijn menu

As the presence of the option CARRIAGE RETURN suggests, one is dealing with a mini-
mini menu, which allows some exploration before exiting. Unfortunately, one often forgets
the level in which one is operating, and becomes confused.

According to the program and its date of revision, the option p will either display
the links on the screen, or copy them to a disk file. The screen display halts after each
screenfull of information, so that the results can be copied down or saved via a screen
dump. It is a terminal option, returning to the de Bruijn menu on completion.

17

The option s may beinterrupted at any time, although the presentation of the evolution
panel will always be completed. Then, either after finding a satisfactory r or having
halted at an interesting s, two CARRIAGE RETURN’s will return one to the main menu
while retaining the same line image. By proceeding to the main menu option g, the
configuration’s evolution can be followed indefinitely. Usually it begins to degrade, given
the fact that the configuration is rarely compatible with the periodicity of the screen.

7.4 Cycles

Temporal behavior is revealed by the de Bruijn diagrams, but the de Bruijn submenu
also contains a provision for calculating spatially periodic configurations. By using the
cycle option, y, within the limits of memory capacity and reasonable running time, all
the periodic configurations of a given width can be enumerated. They are displayed on a
separate screen which overwrites the de Bruijn screen.

8 Ancestor menu

| rule number, date, time

eigenvalue tensor square

acc

correlations

Figure 10: nominal ancestor screen

The number of ancestors of a configuration can be calculated with the help of matrices
derived from the de Bruijn diagram. The row and column indices of these matrices are the
partial neighborhoods of the automaton; therefore their dimension depends on the number
of states and size of the neighborhood. for this reason, an LCAU program only contains
the ancestor option when this combination is sufficiently small.

Unless a configuration is infinite, evolution always reduces its size; the missing infor-
mation is provided by the indices of the de Bruijn matrix. Thus the row index describes
the slightly larger left margin of the ancestral configuration, the column index describes

18

the right margin. Periodic configurations depend only on the diagonal elements, those
with quiescent support depend ounly on the (g, q) element, ¢ being the quiescent state.

8.1 General menu

Each state has its own ancestor matrix; products of several ancestor matrices describe the
ancestors of sequences of cells. Consequently, the ancestor menu makes provision for a
matrix accumulator which holds the matrix counting the ancestors of all the cells which
have been entered, running from left to right. Thus, for a binary automaton, a places the
ancestor matrix for state 0 in the accumulator; b does the same for state 1. If there are
more states, additional letters are used to generate their matrices.

Corresponding capital letters multiply the accumulator by the appropriate matrix.
Thus aAABBA would leave a matrix in the accumulator telling how many ancestors the
sequence 000110 had, classified according to the states in the margins. Sumining all the
elements of the matrix gives the total number of ancestors, the trace tells the number of
ancestors in a ring of the given circumference, while the (0,0) element tells how many are
embedded in a field of zeroes.

A very limited amount of matrix arithmetic is provided; for example = saves the accu-
mulator and x recovers it. The operator X multiplies the accumulator by the saved matrix;
Q squares the accumulator. The latter is useful for obtaining high powers quickly.

The second moment of the ancestor distribution yields the distribution’s variance,
so the option t is included to calculate the sum of the tensor squares of the individual
de Bruijn matrices. Since its high powers and their traces are of interest (the power
corresponds to the length of the chain whose ancestor is being sought), the operator T
squares the matrix which it encounters in the tensor square position (the first matrix of
the sequence must be introduced by the operator t).

Ultimately the largest eigenvalue dominates the powers of all these matrices, which are
positive matrices to which the analysis of Frobenius and Perron applies. The options 1
(de Bruijun matrix in the accumulator) and L (tensor square) estimate these eigenvalues
through successive squaring, reporting the result in a little panel of their own.

a - display ancestor matrix for state (

b - display ancestor matrix for state 1

h - generate histogram

- classify ancestors by generation

- estimate largest eigenvalue of matrix

- list reversible rules

- summarize the statistics gathered by S

- generate and display second moment matrix
- calculate variance of eigenvector components
calculate variance of column sums

- print extremals from S

- recover saved matrix

- multiply by matrix a

multiply by matrix b

O W e XK s 9 8 d n B
1

square the matrix

19

S - Survey all rules

T - Multiply by tensor square
X - multiply by saved matrix

= - save matrix in accumulator
/ - clear the screen

refresh panel
? - display help panel
CARRIAGE RETURN- return to main menu

8.2 Survey options

There are two options which result in fairly extensive computations which are presented
on their own individual screeuns.

8.2.1 Variance histogram

The first of these, corresponding to the option S, surveys all of the automata of the class
corresponding to the combination (k,r) of the program, with the intention of displaying
their variances. Various details emerge from such a calculation; for example all the rules
with zero variance are candidates for reversible rules, since zero variance implies that every
configuration has the same number of ancestors. As it happens, this is a necessary but
not a sufficient condition for reversibility.

Sometimes there is an evident gap between rules of zero variance and the others;
unfortunately the gap narrows as the complexity of the automaton increases, so there is
no general “gap theorem.” In any event, the overall shape of the histogram is interesting.

The ancestor matrices do not directly determine the first moment of a distribution,
nor do the sums of their tensor squares determine the second moment. In both cases,
the moments arise from taking the traces of powers of the respective matrices, so the
quantity of principal interest is the largest eigenvalue, which will eventually dominate all
large powers.

8.2.2 Classification by length

The second survey, governed by the option j, lists the number of ancestors in more de-
tail, according to the length of the configuration. The ancestor matrices for the specific
rule chosen in the main menu are constructed, following which the number of ancestors
for configurations of increasing length are calculated. Due to the increasing number of
configurations involved, only the very shortest intervals can be presented.

8.2.3 Enumeration of reversible rules

for the smaller combinations of k and r it is possible to make an exhaustive survey, to

find which rules are reversible, and to ascertain the reversing rule. Given the fact that

the neighborhood length of a pair of inverses does not have to be the same, the surveys
(o]

performed in the ancestor menu will not necessarily be complete.

9 Undocumented commands

Additional commands are present in different programs, but they are not publicized be-
cause they are generally experimental. In future versions of the programs they may be
officially documented. Anyone persisting in a desire to use them at their own risk may
discover them by studying the source code. The following list is fairly reliable, although
the options do not appear on any of the screens presented to the user:

9.1 Field preparation and analysis

. - the line evolves for one generation
= - repeat the first 40 cells 8 times

- repeat the first 20 cells 16 times
D - display all stored rules in sequence
Y - symmetrize the rule
Z - (sometimes) clear the line

The instruction . is particularly useful when an interesting structure has been found
on the general screen, but it is evolving too fast or it is hard to pick out fine details clearly
at the resolution of the screen. By returning to the main menu (using any keystroke
followed by y) the evolution can be followed one generation at a time, and then recorded
by a screen dump or noted by hand on a scrap of paper.

Similarly it is possible to transfer the results of the de Bruijn diagram or any other
interesting string to the line menu, then return to the main menu to follow their evolution
closely with the dot command.

The instruction which repeats the initial segment of the line can be used to increase
the variance in some of the probabilistic studies, and to force the automaton to enter a
cycle sooner than otherwise. Nevertheless, for most rules a ring of 20 cells is still much
too long to reach a cycle within a thousand generations.

9.2 Generating a demonstration

In contrast to the old programs, the new programs contain very few sample rules. By
recompiling, one could add further examples that seemed worth preserving in any event
the command D allows the samples to be reviewed and thus is useful for presenting demon-
strations. No doubt some future edition of these programs will allow rule files to be read
from disk, as well as allowing the storage of interesting rules which have been found during
the course of execution of a program.

9.3 Selecting a video display mode

To ensure a common denominator, the LCAU programs have been written for PC and pc-
clone type microcomputers with a ¢GA video controller. They will work without further
alteration on all the compatible video controllers, such as EGA and VGA, of course with
neither increased resolution nor additional colors.

A complication arises while working with cellular automata of half-integral radius,
which means to say, those whose neighborhoods are of even length. To align the new

21

generation with the old, it should be shifted by half a cell width. With a given (low)
resolution there is no alternative to shifting the line, but with higher resolution, two
consecutive pixels can be alloted to each cell. Shifting is accomplished by changing the
parity of the assigniment.

The representation of automata with five or more states likewise presents a problem,
given that CGA can only show four colors, including black. Using larger pixels with com-
posite colors reduces the number of cells in a video display which does not bear close
scrutiny.

A video controller which goes under the trade name of PLANTRONICS offers doubled
resolution with sixteen colors, amongst its other options. In most of the LCAU series,
provision has been made for the PLANTRONICS mode. Options in the main menu provide
for switching modes.

! - enter PLANTRONICS mode

* _ return to cGA mode

For binary automata, where additional colors are not needed, and where monochro-
matic pixels can still be split by going to higher resolution, a different selection of options
exists, yielding different color schemes.

* _ white cells on red background
+ - white cells on black background
- - blue cells on black background (normal)

As yet, no reconciliation has been made between the PLANTRONICS mode and either
EGA or VGA. PLANTRONICS mode is implemented by setting a flag at the same time that
the mode assignment is loaded into the output port of the controller, which is the only
element of hardware involved. The TURBO C functions PEEK and POKE are used to deposit
information in the video memory area when the PLANTRONICS mode is active.

9.4 Product rules

Unless the number of states of an automaton is a prime number, the possibility exists of
defining a product automaton. Although such automata occur naturally amongst all the
rules of a given type, it is convenient to be able to generate them directly from the rules
defining their factors.

P a b - direct product of Wolfram rules a and b

9.5 Reversible rules

Edward Fredkin has proposed a type of direct product automaton which is reversible.
Provision exists in the appropriate LCAU programs for generating the rule table for such
automata, as well as the tables for their inverses.

m a - Fredkin automaton using rule a and XOR
M a - Inverse automaton using rule a and XORr

n a - Fredkin automaton using rule a and XNOR
N a - Inverse automaton using rule a and XNOR

[N
W]

9.6 special commands for rule design

Some special commands, are likely to be discarded in future versions of the programs in
which they appear.

U - push rule and flags

V - pop rule and flags

G - fetch rule and flags without popping

x - random values for unflagged transitions
X - random values for all transitions

1 - some particular transitions

2 - other particular transitions

9.7 options within rule minimenus

Besides cursor placement and state definition, the minimenus involved with rule definitions
sometimes have additional options. When the rule is very long, tabs and margin seeking
options are convenient,.

0,1,2.3, ... - define transition

tab - next quad = cursor fast advance
space - advance cursor

backspace - retract cursor

In situations where incremental definition is convenient, markers are useful to distin-
guish between transitions that have been fixed and those which are still under considera-
tion.

up arrow (MOU) - set flag
down arrow (MOD) - remove flag

Another, although related, use for markers is to protect the marked states from the
random number generator, so that the consequences of varying only a portion of a rule
can be studied.

10 REC programs

First, REC stands for reqular expression compiler, a rather fanciful term created one day
when the program had to be given a name quickly. Anyway the idea was to make pro-
grams follow the style of regular expressions, using elements of concatenation, selection
of alternatives, and iteration. It was created for the purpose of completing an acceptance
test for a PpP-8 (and consequently had to be very compact) on the basis of earlier work
with “operator predicates” in LISP.

10.1 The language

The essence of REC is the use of four symbols of control (the two parentheses, colon,
and semicolon) together with operators and predicates. Operators are just subroutines;
predicates have a truth value in addition.

As usual, a pair of balanced parentheses is used for delimiting groups of symbols, but
the group is also to be regarded as a predicate whose truth value depends on how its
execution was terminated. Execution proceeds from left to right in the normal manner of
reading English text, although the sequence can be interrupted by predicates, colons, and
semicolons; all REC programs must be parenthesized.

A colon signifies repetition from the opening left parenthesis of any given level, being
the embodiment of iteration in REC . On the other hand a semicolon implies proceeding
at once to the closing right parenthesis, while assigning the value “true” to the process
just completed. In point of fact one does not include the right parenthesis as part of the
departure, but continues from the symbol just beyond it; meeting a right parenthesis as
a normal part of a sequence also terminates the subexpression, but assigns it the value
“false.”

This leaves the role of predicates in a REC expression to be explained. Regular expres-
sions themselves are indeterminate, since they describe the whole class of strings obtained
through arbitrary choices of alternatives and iterates; a computer program requires a con-
crete choice at each juncture. Predicates provide the decision; when true the sequence
of symbols continues without interruption, but falsity implies skipping to a new program
segiment.

The new segment is the one which immediately follows the nearest colon, semicolon or
right parenthesis at the same parenthesis level. In the case of the parenthesis, the value
“true” is assigned; this is the mechanism through the boolean complement of a truth value
may be achieved. In other words, if p is a predicate, (p) is its logical negative. Likewise,
when p and q are predicates, (p;q;) corresponds to p or q and (pq;) to p and q.

Arbitrary boolean combinations are possible; for example exclusive or corresponds to
(p(q);q), but one must beware that ¢ could get executed twice without being reproducible
(for example, by reading the keyboard twice). Such dilemmas are not frequent, but they
do occur and lead to schemes for preserving information, defining variables, and what not;
none of these are dealt with at the level of skeletal REC programming.

10.2 Defining programs

Within the basic skeleton the programmer must provide for the individual operators and
predicates, generally through a symbol table indexed by ASCII characters. REC is not
required to work with single character symbols, but the complexity of parsing a program
in the compiler is increased by a whole order of magnitude if anything but the simplest
variants on this restriction are allowed.

Over the years extensions to REC have occurred, and specialized applications have
developed. The most important extension provides for creating new subroutines. They
are designated by a composite symbol such as @s; “at sign” joins the list of reserved
letters. Subroutines are defined by enclosing a list of definitions (followed by a main
program) within braces:

in fact such a braced list may be included anywhere in a REC expression that operators,
predicates, or subexpressions can occur. The scope of the definitions lies exclusively within
the braces; the same symbols can be reused elsewhere or even recursively.

Certain additional features have proved convenient, but are common to most program-
ming languages. One is to ignore space, tabs, and so on unless they are an actual part
of quoted data; the other is to permit comments. In REC , comments are enclosed recur-
sively within square brackets, which permits disabling debugging or trial segments without
removing them completely.

It is hard to work with programs which are incapable of providing data to themselves;
some form of quotation usually has to be provided. In some contexts, recognizing numbers
as such and transforming them into a binary representation is essential; in others quoted
character strings suffice.

A counter, written Inl, is a useful predicate, true n times and then false; (112!x:;) would
perform the operation x a dozen times.

The two most important levels of specialization that we have worked with include,
first, introducing a pushdown list and, second, introducing a workspace.

The whole mechanism of numerical processing goes well with the first; one predefines
arithmetic operations, comparisons, input and output conversion, and so on, as appropriate
operators and predicates. Fixed subroutines attend to such things as square roots or
trigonometric functions, just as is done in other programming languages. When specific
calculations are required, they are performed by writing programs.

Dealing with arbitrary arrays requires further machinery; consequently an arithmetic
REC has a closer affinity to APL than to FORTRAN. Nevertheless fixed arrays are convenient,
from which a matrix version of REC can be devised.

The second extension really produces an exotic structure, suitable for editors, compil-
ers, and the like. However, both of these versions of REC are much more ambitious than
what is included in LCAU.

10.3 Operators and predicates

Part of the need for something like REC comes from the proliferation of options in a pro-
gram, and in finding some way to deal with them. As written, most programs already
contain options to perform the simple and basic actions. To combine them requires careful
attention from the keyboard; so REC serves pretty much in the role of a universal macro
implementation. It contains all the control structure which is required, wherein the pre-
viously existing options can serve as the operators. Predicates must be introduced; these
can take the form of counters, responses to pressing a key, or some internal condition
within the program such as a vanishing field.

10.4 The REC menu for PROBKR

The menu of REC operators, predicates, and control symbols is defined within the header
file RECTBL.H; it is similar to the keyboard menu except for being more concise, and
including the REC control characters.

" Space "
"1 - counter in form !'n!

[N)
(33

&
I

Subroutine "
"# - Integer parameter
"$ - Double parameter "
"% - 10% T predicate "
50% T predicate "

&
I

"(start of expression
") end of expression "
- repeat the subexpression
; — exit subexprn with value T
"O0x - call the subroutine x "
"A - strip of 3 plane sections
"B - define cell density (mils) "
"E - show one plane section "
"G - point of return map in color "
"K - contours of rand-totl match "
"0 - select dimension of automaton"
"Q - generate cubical checkerboard"
"R - empirical mean field w/delay "
"T - #n# T for totalistic rule n "
"[- start of comment "
"] - end of comment
"_ - panic exit "
"a - a-priori probabilities "
"b - create random line (pl mils) "
"d - insert diagonal in graph "
"f - place frame around graph "
"g - one point of return map "
"i - iterate 2d gen mean f. curve "
"k - keyboard interrupt request "
"'n - totalistic sum frequencies ",
"o - degree of randomness (nbrhd) "
"p - show cell density in panel B "
"t - contour of s.c. 2-block freq "
"x - show nth gen mean field curve
"z - clear one of the panels "
"{ - start of program

"} - end of program
" - show parameter panel "

11 Design of rules

To get an idea of how to use some of the features of the .CAU programs, consider the
exercise of designing a binary counter for a (4,1) automaton. The reason for choosing a
quaternary automaton is that the two states of the counter, “0” and “1”, can occupy two
states of the automaton, the quiescent background another, with one more state left over

26

to represent a carry; this state can be mobile—a glider.
This automaton can be devised using the line editing portion of the main menu, in
interaction with the rule display occupying its niche in the same menu.

11.1 The counter itself

Let us first discuss the design of the counter.

11.1.1 Infrastructure

To begin with, a quiescent background must be established, against which ZEROES, ONES,
and CARRIES can be distinguished.

quiescent background

©(0,0,0)=0
first bistable state - ZERO

1 »(1,0,0) =0
1 ©(0,1,0) =1
1 ©(0,0,1) =0

left running glider - CARRY
2 ©(2,0,0)=0
.2 ©(0,2,0)=0
2 ©(0,0,2) =2

second bistable state - ONE
3 ©(3,0,0) =0
3 7:(0.3.0) =3
3 ©(0,0,3) =0

Up to this point, ten transitions have ensured that desired movement or lack of move-
ment thereof takes place; also that spurious growth or expansion does not take place
around isolated cells.

11.1.2 Binary arithmetic

The next group of definitions shows the glider interacting with the bistable cell as a carry
would propagate through a counter. In half of the cycle, ZERO absorbs a carry, changing
to a ONE. In the second half ONE reverts to ZERO, generating a carry.

[N
=~

flip ZERO, absorb CARRY

1 2
1 2 ©(1,0,2) =2
1 2 ©(0,1,2) = 3
3 ©(1.2,0) =0
3

flip ONE, propagate CARRY

3 2 ©(3,0,2) =2

3 . 2 ©(0,3,2) =2

3 2 ©(3,2,0) =3

.23 ©(0,2,1) =0
.21 ©(2,0,1) =0
.2 1 ©(0,2,3) =1
2 1 9(2,3,00=0
1 . . . e(21,0)=1

Eleven more transitions have been fixed, but it is still not known how close together
the bistable cells can be placed; the critical distance is separation by a single cell, which
should certainly remain quiescent. Consecutive placement requires an altogether different
design.

11.1.3 Packing bistable cells

If the gap between two ONEs looks no different to a traversing glider than its approach to
an isolated ONE, a carry will propagate as far as necessary without any special treatment.

Gap between like cells

3 3 2 .
3 3 2 ©(3,0,3) =0
3 3 2 ©(3,2,1) =3
3 2 3 ©(2,3,1)=0
3 21 ©(3,1,0) =1
.2 31 ¢(1,0,1) =0
o201 1
.2 1 1
2 1 1
Gap between unlike cells
1 3 .2 .
1 3 . 2 ©(1,0,3) =0
1 3 2 ©(1,2,1)=0
1 . 2 3 ©(3,0,1) =0
1 21 ©(0,3,3) =2
3 1
3 1

In total, twenty nine transitions suffice to simulate a binary counter, but there is still
no source for the carries which operate it. Isolated bistable cells form its body; packed
at their densest, quiescent cells must still separate them. Four generations are required
to pass on a carry; therefore one glider every fourth cell is the closest feasible packing for
gliders.

Thirty five transitions were not used in defining the basic counter, leaving them free
to form an operating environment. Isolated cells and quiescent regions having been pre-
empted by the counter, the remaining transitions necessarily describe the evolution of
clusters.

11.1.4 Carry generator

A glider gun will exercise a counter which accompanies it; to obtain a stream of gliders
requires exposing the glider cell at the left margin of its cluster from time to time. Some
trial and error yields a period four gun constructed from a pair of cells, but there must
surely be other viable combinations, as well as guns with longer periods.

a glider gun

202 0(0,2,2) =1

D211 0(2,2.0) =1

.2 13 e(2,1,1) =1

2 3 3 ©(1,1,0) =3

2 202 ©(0,1.3) =3

2011 ©(1,3.0) =3

.2 1 3 ©(3.3.0) =2
.2 3 3
2 2 2

11.1.5 Protecting the components

The glider requires only eight additional transitions in its definition, and tolerates crowding
by the bistable cells. Nevertheless, the bare gun is susceptible to interference from gliders
striking it from the right. Wraparound resulting in the evolution of a cyclic ring will
practically guarantee that the glider gun will shoot itself down. Moreover, if there are
several glider guns, each will surely attack its neighbor. Defenses can be constructed with
the help of transitions as yet undefined.

protection of phase 22

o2 1 3 o2
.2 3 3 2 .
2 2 2 2 ©(2,2,2) =1
2111 o(1,1,1) =2
L2 1 2 3 ©(1,2,3) =3
2 3 3

protection of phase 13

.22 .2
2 11 . 2 .
o2 1 3 2 ©(1,3,2) =3
2 3 3 3 ©(3,3,3) =2
2 2 2 2 2
protection of phase 11
2 2 2 2 .
211 2 ©(2,0,2) =2
.2 1 3 3 ©(1,1,2) =3
2 3 3

These final adjustments leave a self-consistent mixture of counter arrays and glider
guns, inasmuch as the guns are protected from the gliders which they generate, or which
can reach them across a field of bistable cells. Eighteen transitions remain to be assigned,
which can be used for complications not yet foreseen, such as closely spaced glider guns or
a barrage of gliders denser than can be fired from the guns. A complete solution to this
problem in neither necessarily possible not unique should it exist; searching for one would
be an interesting exercise.

some additional protection

0(2,3.2) =1 ©(3.3,1)=2 £(3.1,3)=3
0(1,1,3) =2 £(0.1,1)=1 £(2.0,3)=0
0(1,2,2)=3 ©(3,1,1) =2 £(2,3,3) =2
0(2,23)=1 ©(3.2,2)=0 ©(3,3,2)=2

Specific details of these last transitions have not been shown because they are not
critical to the operation of the counter, nor they as well defined nor unambiguous as
the other transitions. Experimentation with different packings of glider guns or different
responses to glider barrages may well be repaid with a more interesting design than the
one shown.

11.2 Table of transitions

Any design can be accomplished by hand using paper and pencil, a procedure quite prone
to mistakes. Options which have been added to both the line editor and the rule editor
in LCAU41 will render mechanical assistance. Transitions can be marked, evolution can
be evaluated generation by generation, and account can be kept of the transitions which
have already been defined relative to those which are still available for assignment.
Fortunately, this example yielded a straightforward design, its principal objectives
having been met before any significant choices had to be made. Given the basic style,
counting and carrying have unique solutions; the selection of the four pairs comprising the
glider gun was somewhat more arbitrary, although we knew that the glider could only be
exposed on the left wall once per cycle, and that the other two states form stable walls.

30

Still, were the design to be pursued to its ultimate details, most of the work would
be done in harmonizing combinations which would occur very rarely, supposing that the
original intentions of the design were to be respected in choosing applications. Finishing
of these details could require a tremendous amount of backtracking, making mechanical
assistance imperative, and requiring its eventual incorporation in the design process.

In any event, the following table summarizes all the transitions. Those defined at
stage 14, or accompanied by a dot indicating that they are still unresolved, are subject to
revision by anyone seeking the ultimate in perfection. Each neighborhood is accompanied
by its image and, within parentheses, the stage at which it first appeared.

000 0 (1) 100 0 (2) [200 0 (3) |300 0 (4)
001 0 (2) 101 0 (7) [201 0 (6) |301 0 (8)
002 2 (3) | 102 2 (5) [202 2 (13)|302 2 (6)
003 0 (4) |103 0 (8) [203 0 (14)|303 0 (7)
010 1 (2) |110 3 (9) [210 1 (6) |310 1 (7)
011 1 (14) 111 2 (10) | 211 1 (9) | 311 2 (14)
012 3 (5) | 112 3 (13) 212 . . |312 . .

013 3 (9) | 113 2 (14) 213 . . [313 3 (14)
020 0 (3) |120 0 (5) [220 1 (9) |320 3 (6)
020 0 (6) |121 0 (8) [221 . . |321 3 (7)
022 1 (9) | 122 3 (14)]222 1 (10)|322 0 (14)
023 1 (6) | 123 3 (10) [223 1 (12)|323 . .

030 3 (4) | 130 3 (9) [230 0 (6) |33 2 (9)
031 . . |131 . . 231 0 (7)|331 2 (14)
032 2 (6) | 132 3 (11)]232 1 (14)]332 2 (12)
033 2 (9) | 133 . . [233 2 (14)]333 2 (11)

Table 2: Transition table for a binary counter.

Realizing that both the body of the counter and the glider gun can be sketched in
crude form by relatively few transitions gives some idea of how common these structures
must be among automata in general. The leading edge of whatsoever glider determines its
principal characteristics—for example, its velocity of propagation—just as the boundaries
between a still life and a quiescent region break the field up into stable domains. Relatively
few transitions establish the simplest gliders or boundaries, making them proportionately
common phenomena. Consequently they should be among the first characteristics to be
checked out when examining and creating a new rule.

11.3 Using the line editor

Having seen how to design a binary counter using pencil and paper, consider how the
same task may be performed using the line editor. In editing mode, the line of 320 cells is
regarded as 8 lines of 40 cells each. With respect to evolution, the left and right edges are
connected cyclically. The top and bottom margins are not connected; rather, the display
is scrolled when necessary.

The line panel has a cursor, which serves as a point of reference. Its movements can be
driven by an appropriately programmed mouse, by the keyboard arrows, and to a certain

31

extent by space and backspace. The options can bhe grouped according to function.

11.3.1 Position cursor

The most general options, which are present in each LCAU program, simply position the
cursor.

MOD- move cursor downward
MOU- move cursor upward
MOR- move cursor forward
MOL- move cursor backward

< - move cursor to left margin
> - move cursor to right margin

11.3.2 Enter state

Every program refers to a certain number of states, which are numbered consecutively
starting with zero. Very few programs have more than ten states, so the decimal digits
can be reserved; typing one inserts the state and advances the cursor. States inappropriate
to a given automaton are simply ignored.

0,1,2,3, ... - enter state

Between ten and sixteen states, hexadecimal digits can be used, whose letters usurp
any other use of the same symbol.

11.3.3 Maintainance of the line panel

Clearing lines and copying lines are frequently required.

z - clear the row containing the cursor

Z - clear the whole line panel

q - clean up the area (remove colors)

" - repeat the line just above the cursor’s line

Additionally, the marking can become so cluttered that it is convenient to restore the
symbols in the panel to a neutral color, while still preserving the original symbols.

11.3.4 Defining transitions

Several of the options interact with the rule menu, since one of the important applications
of the line editor is to define transitions. The basic operation is the insertion of a definition,
but marking it for future reference is an important secondary operation. Marking may
distinguish between transitions already settled upon and those yet to be defined; it also
serves to protect the designated transitions from the random number generator.

= - insert transition defined by cell under cursor
* - insert transitions for the whole line at once

x - unmark all transitions
+ - set marker for transition under cursor
- - remove marker for transition under cursor

In referring to the “transition under the cursor,” a neighborhood of the appropriate
length is taken from the line just above the cursor, cyclically wrapped if the cursor is near
the margin. To make sense, the cursor must be in the second row or lower.

11.3.5 Trial evolution

In order to judge the effects of the definitions, and to verify that the evolution is following
the intended course, several degrees of trial evolution are offered as optious.

. - point evolution (only the cell under the cursor)
? - evolution of the whole line
/ - conditional evolution

The choice of the two symbols ? and / was not particularly elegant—they sit at the
lower right hand corner of the keyboard, where they are readily accessible.

Point evolution consults the rule table to find out what the cell under the cursor will
become, if no changes are contemplated. It is useful for checking that a planned transition
is consistent with those already defined.

Unconditional evolution, via 7, is the variant which processes the whole line at once,
rather than individual cells. The table is taken as given, and followed unquestioningly.
Conditional evolution, on the other hand, inserts an “undefined” marker for each unmarked
transition in the table. The marker is usually k for a k state automaton, for which the
only legitimate symbols are 0, 1, ..., k-1.

By this mechanism, transitions which have yet to be defined stand clearly in evidence.
If any ancestor of a cell is undefined, the cell will be undefined also; conditional evolution
may be safely followed through several lines.

11.3.6 Counsistency

Rather than building up an evolution generation by generation, it is possible to check a
given field for consistency. This is done by giving distinctive colors to cells derived from
their ancestors in the previous line according to the rule table, and those which are in
violation of the table.

c - test consistency everywhere
C - test consistency for marked neighborhoods

Consistency may be judged according to the entire table, or only according to the
marked transitions.

33

11.3.7 Prescribed evolution

The final option concerns specifying two lines in the line editor’s array, then searching for
a rule which will lead from the first line to the second. Again, certain transitions may be
forced by previously inserting them in the rule table and marking them.

m - try to match a given evolution

When a rule complying with the requirements is found, the program pauses, awaiting a
decision to accept the result, or to continue searching for another, if any. If, at any stage,
no rule can be found, the program announces this fact when it pauses.

12 Chaté-Manneville automata

An exception to the general rule that all the LCAU automata are one dimensional has
been made for some of the binary automata with larger neighborhoods. The programs
are basically one dimensional. On the one hand the neighborhood sizes are inconveniently
large, especially for the de Bruijn and ancestor menus; on the other, the volume of the
neighborhood coincides with that of various higher dimensional automata whose statistics
are interesting.

As a consequence, programs such as LCAU23 and LCAU24 have been set up to concen-
trate on the probability menu, even though the other menus function partially or not at
all. Beginners may simply want to use the REC demonstration, ignoring the rest of the
program.

12.1 Using these programs

As presently formulated, there is only one REC demonstration, designed to show off the
Chaté-Manneville Swiss cheese, to which the program has been initialized. After loading
the program, a Copyright Notice will be displayed long enough for recognition and the
first keypress. Normally the delay would be used to randomize the startup demonstration,
which makes no difference here.

The main menu shows up in text mode; it may be passed over by typing t to get to the
probabilistic menu, or one may linger over such things as the REC menu and editor, or the
definition of a rule. To get directly to the demonstration, type t followed by £5. Having
tired of the demonstration, it can be halted (say by typing carriage return) and other
aspects of the program explored. Thereafter use REC demonstration #2 rather than #3
to avoid losing new rule numbers, or use #3 to go back to the original demonstration.

To quit from the probability menu, which incidentally is a graphics screen, type
carriage return followed by q. Otherwise use q from the main menu.

Since an investigation of the conflict between totalistic rules and mean field theory
is the principal objective of this series of programs, there are many options which vary
the dimension of the automaton, as well as the degree of randomness in the connections
of a one dimensional automaton. There is just one REC demonstration (number 4) which
assesses the relation between neighborhood frequency and cell frequency by jointly plotting
the return map and a contour map showing the fit between the two as equilibrium density
and percent admixture are varied.

Otherwise, one must have a background in the issues involved, and consult the source
listings, to derive further information from the programs. The easiest place to begin is by
varying the underlying rule, which can still be done while the program is running.

12.2 Keyboard options

The following are the keyboard options in the PROBKR programs (for & = 2 and r near 4);
all such programs have a uniform menu at the present time.

The screen is divided into six panels. The topmost identifies the automaton and echoes
the keyboard command. Immediately below it is the E panel, which can show lines of
evolution of the linear automaton. Immediately below that is the large M panel, also
screenwide, used for showing the menu, parameter selection, and varied data. The bottom
half of the screen is divided into three panels, A, B, and C, in which various graphs can
be shown.

The layout is the same one shown in Figure 6.

Panel A generally holds two-dimensional graphs or histograms of cumulated data; panel
B often shows data as a function of the step number, panel C is devoted to the return
map and associated relationships.

'+’ - select white-cyan-magenta palette.
-7 - select yellow-red-green palette,

’a’ - shows a priori probabilities and other items in M panel.

A’ - multidimensional evolution shown via triple sections in panel A.
'b’ - generates a random line with pl mils of ones.

‘B’ - Bn loads parameter pl with n (mils), whose default is 500.

"¢’ - cn shows 8 iterates of probability n (mils) in panel C.

"C’ - Cn shows 100 iterates of probability n (mils) in panel B.

'd’” - dn shows 100 iterates after a delay of 2500 in panel B.

'D’ - Dn shows 100 iterates after a delay of 50000 in panel B.

‘e’ - displays 12 generations of evolution in panel E.

'E’ - multidimensional evolution shown via plane sections in panel A.
'f” - generates a random rule with pr mils of ones.

'F’ - Fn loads parameter pr with n (mils), whose default is 500.

‘g’ - shows 50 generations of evolution in red in panel C.

"G’ - shows 200 generations of evolution in green in panel C.

".” - shows one generation of evolution is red in panel C.

'h’ - graphs entropy versus probability in panel C.

1" - shows once iterated mean field probability curve in panel C.

'}’ - shows twice iterated mean field probability curve in panel C.
")’ - shows nfold iterated mean field probability curve in panel C.
'k’ - shows thrice iterated mean field probability curve in panel C.
T - shows fourfold iterated mean field probability curve in panel C.
'L’ - fit a parabola to 50 points of empirical return map.

"H’ - interpolate a parabola to 3 points of empirical return map.
'm’ - evaluates frequencies and pair frequencies for one generation.

35

"M’ - frequencies and pair frequencies for several generations.

'n’ - calculates neighborhood frequencies, displays in panel M.
"N’ - calculates neighborhood frequencies, displays in panel M.
0’ - on defines randomness and connectivity in dimension 1.

O’ - On defines the dimension of the automaton.

p’ - displays the frequency of ones in each generation in panel B.
P’ - displays a histogram of frequencies of ones in panel A.

th generation return map in panel C.

17 - displays 15! vs n
'R’ - displays (n — 1)% vs n'" generation return map in panel C.
’s’ - similar to g but plots every third point.

'S’ - similar to g but plots every third point.

'X” - set Bernstein modifier bx[bi] (in mils).

T - sets the index (i.e., bi) of the Bernstein Polynomial.

’x” - graphs the mean field theory curve in panel C.

'y’ - shows second generation mean field probabilities in panel C.
'w’ - shows third generation mean field probabilities in panel C.
't” - shows contours of two block selfconsistency in panel A.

'y’ - generate some regular points in the cell array.

"V’ - generate some other regular points in the cell array.

']’ - histogram of iterated mean field probabilities in panel M.

’2’ - histogram of iterated two-block frequencies in panel M.

'3’ - histogram of iterated three-block frequencies in panel M.

4’ - histogram of iterated four-block frequencies in panel M.

’5” - histogram of iterated five-block frequencies in panel M.

’6’ - histogram of iterated six-block frequencies in panel M.

"7’ - histogram of iterated seven-block frequencies in panel M.

7 - display the option menu in panel M.

"I’ - display the parameter menu in panel M.

'z’ - zn clears panel n.

’[” - clears the whole screen.

" _ prints the Bernstein coefficients in panel M.

- # abcf(a) f(b) f(c) interpolates a parabola to 3 points.
&’ - &n graphs a combination of uniform and mean field curves.
’$’ - repeats &n at intervals of 0.1 from 0.0 t0 1.0.

%’ - print differences in totalistic neighborhood frequencies.

"I - shows a contour plot of neighborhood conformance to & curve.
@’ - show mean field curve on Hiplot plotter.

"’ - initialize the Hiplot plotter.

"Z’ - dismiss the Hiplot plotter.

MOD - moves the bernstein pointer down along right margin panel C.
MOU - moves the bernstein pointer up along right margin panel C.
MOR - increases corresponding Bernstein coefficient.

MOL - decreases corresponding Bernstein coefficient.

36

MOA - reduces Bernstein increment.
MOB - increases Bernstein increment.
MOX - resets all Bernstein parameters.

MOU and so on refer to mouse buttons, which are equivalent to keyboard arrows, control
arrows, and escape.

12.3 Analysis of the options

Since the number of options is quite large, it is worth analyzing them by subsets having
similar function.

12.3.1 Palette selection

The cGA video control allows either enabling (+) or inhibiting (=) the blue electron gun.
One choice or the other may be more pleasant for some purposes.

12.3.2 Select dimension and randomness

The options 0 and o permit variations within the theme of (k,r).

Degree of randomness Random connections are only available in one dimension. The
range of n in on is the following:

0 - completely random neighbors
1 - usual neighbors

2 - random pairs

3 - random triples

4 - random quadruples

5 - random eighths

6 - random sixteenths

Select dimension The range of n in On depends on the automaton; most of the rea-
sonable variants have been provided for. Tt is a question of whether a cube, face centered
lattice, or rectangular neighborhood has the right volume.

12.3.3 Help, information, housekeeping
Although they are frequently out of date, some very terse help panels are available. When

the panels become too cluttered, they can be cleared.

Option menu Typing 7 will display a very concise list of the options in the M-panel.
The list is not intended to be explanatory, merely to serve as a reminder of what is
available. Tt is not always up to date.

37

Parameter menu An alternative display in the M-panel, listing the values of several
parameters, can be invoked by typing !. Alongside the values of the parameters are shown
the options required to change their values. Normally the value required is a number, which
must be terminated in a manner acceptable to the C language (space or carriage return

suffice).

Clear panel Typing zx will clear panel x; x should be a single letter chosen from the
set {a, b, ¢, m, e, x}, the latter designating the whole screen. / performs the same
function.

12.3.4 Mean field probability

The change of density of live cells (state 1) from generation to generation may be esti-
mated from the laws of probability, assuming that the probability of any cell being live is
independent of that of its neighbor.

Rigorous probabilities It requires time, and a certain amount of memory space, to
obtain these probabilities from the rule table. For all rules and all dimensions, the single
generation curve is easy to compute. For many, but not all, the second generation is easily
obtained; the principal limitation is the rapid increase in the number of neighborhoods
with dimension.

x - graph mean field curve in panel C.
y - second generation mean field probability.
w - third generation mean field probability.

Monte Carlo probabilities A more efficient way to estimate the mean field curves,
although subject to the usual statistical irregularities, is to follow the evolution of sample
fields of given probability and record the results.

r - rn displays 1%¢ vs n'" generation return map in panel C.
- > s (n— 1)%" vs nerati i .
R - Rn shows (n — 1)*! vs n!" generation return map in panel C

12.3.5 Iterated mean field

If the probabilities in adjoining cells were truly independent, the development of prob-
ability from oune generation to the next would proceed by iteration. In some cases it
does, in others it does not. Several degrees of iteration can be generated for purposes of
comparison.

Iteration of the full range To the extent that time and space permit, the mean field
curve can be iterated one or more times.

i - graph once iterated mean field in panel C.
j - twice iterated mean field

k - thrice iterated mean field

1 - quadruply iterated mean field

Jn - n-fold iterated mean field

38

Iteration of individual points It is easier, and sometimes more informative, to cal-
culate the iterates of one single point on the mean field curve. The values can be shown
from the beginning, or starting after a delay.

c - cu shows 8 iterates of probability n (wmils) in panel C.
C - Cn shows 100 iterates of probability n (mils) in panel B.
d - dn shows 100 iterates after a delay of 2500 in panel B.
D - Dn shows 100 iterates after a delay of 50000 in panel B.

12.3.6 Sample evolution

Although it is possible to return to the main menu and then display the evolution of
the automaton on the full screen, often a small excerpt gives all the information that
one requires while avoiding the inconvenience of menu shifting. Two options offer this
advantage.

One dimension The option e places about a dozen lines of evolution in the E-panel, at
the top of the probability screen. In doing so it treats the automaton as though it were
one dimensional, even though that option is not active, by just copying the field array.

Higher dimension The option E places a small square of two-dimensional evolution in
the A-panel. Altogether, nine squares are shown before the display begins to repeat; if
the automaton is not two-dimensional, then the excerpt shown is a two-dimensional slice
through the field of the automaton.

Both displays can be interrupted by a keypress; otherwise they continue through one
full cycle before stopping.

Triple section The option A is similar to E, but shows a triple section, which sometimes
aids the interpretation of the section.

12.3.7 Frequencies in succeeding generations

In a panel devoted to probability, it is natural to compare the actual proportion of live cells
with the theoretical predictions. Two options carry out the evolution without exhibiting
the automaton; they simply place a point corresponding to (p, ¢(p)) in the C-panel. Pre-
sumably some option such as x has already inserted the theoretical curve into the same
panel.

One generation To see the effect of one single step, type . to show one single red dot
in the C-panel.

50 generations The option g (chosen for its similarity to the same option in the main
menu) places 50 red dots in the C-panel; these are points on the return map of the mean
field curve. Usually they will cluster about an average value, but their behavior in the
Chaté-Manneville automata is markedly different.

39

200 generations Option G runs through more generations than g, currently four times
as many. These figures are parameters which can be altered by editing the source code
and recompiling the program.

Every third generation, 50 times Only for those LCAU which correspond to the
Chat‘Manneville automata, the return map can be shown for every third generation. The
reason is that the period 3 is a distinguishing feature of these automata. The option g
creates this map.

Every third generation, 200 times As an option analogous to options s and G, the
return points can be plotted 200 times by S.

Time series Option p will show a time series in the B-panel rather than the return
map in the C-panel; successive generations are given contrasting colors which is useful in
observing periodicities.

Histogram The option P shows the same information in the form of a histogram in the
A-panel. Peaks in the histogram also indicate periodicity.

12.3.8 Synthesizing a return map

Since the mean field curve does not always follow the empirical data, provision has been
made to generate an empirical curve, by prescribing the coefficients of a Bernstein polyno-
mial. Cursor arrows or mouse movements are used to select the coefficient or to establish
its value.

MOD - moves the bernstein pointer down along right margin of panel C.
MOU - moves the bernstein pointer up along right margin of panel C.
MOR - increases corresponding Bernstein coefficient.

MOL - decreases corresponding Bernstein coefficient.

MOA - reduces Bernstein increment used by MOL, MOR.

MOB - increases Bernstein increment used by MOL, MOR.

MOX - resets all Bernstein parameters.

* - lists the Bernstein coefficients in panel M.

Provision has been made for a modifier, inspired by the idea of a probabilistic automa-
ton, which can multiply each Bernstein monomial. The default values are all 1.0.

X - set Bernstein modifier bx[bi] (in mils).
I - sets the index (i.e., bi) of the Bernstein monomial.

Another service which has been provided is to fit a parabola to a portion of the return
map, the intention being to see how closely the dynamics of the classical logistic function
can be matched. These options are very specific to the Chaté-Manneville automata, and
must be used cautiously; otherwise floating point overflow is likely to occur. Some control
over the points may be obtained by generating an initial field of known probability.

40

L - fit a parabola to 50 points of empirical return map.
H - interpolate a parabola to 3 points of empirical return map.
- # ab cf(a) f(b) f(c) interpolates a parabola to 3 points.

The option # requires that the coordinates of the points be stated explicitly.

12.3.9 Block probabilities

Exclusively for one dimensional automata, it is possible to develop a set of self-consistent
equations expressing the Bayes estimate of the probability of finding sequences of cells,
including the mean field probabilities as a special case for single cells. These options are
therefore not relevant to the discussion of the Chaté-Manneville automata, but they are
present in the probability menus of all the LCAU programs.

Block probabilities The length of block which can be considered is limited by the
memory space available, and the required time of computation. The equations are solved
by iteration; a histogram of the individual frequencies is shown in the M-panel. To the
extent that they are applicable, the options are:

1 - iterated mean field probabilities

2 - iterated two-block probabilities

3 - iterated three-block probabilities

4 - iterated four-block probabilities

5 - iterated five-block probabilities

6 - iterated six-block probabilities

7 - iterated seven-block probabilities

t - contour map of the two-block function

The two-block probabilities are dependent on only two parameters, which can be chosen
to be the probability of a live cell and the probability of a pair of live cells. This accounts
for the presence of the option t in the list, whose contour appears in the A-panel.

Frequencies and pair frequencies The option m and its counterpart M evaluate fre-
quencies and pair frequencies for respectively one and several generations. The purpose of
the latter is to gain better statistics by averaging. The results are reported in the M-panel.

Neighborhood frequencies The options n and N gather statistics concerning the num-
ber of cells per neighborhood. Again, the difference lies in the amount of data gathered,
and thus the time required to collect it; N averages over several generations whereas n
proceeded generation by generation. Both present their results in the form of a histogram
in the M-panel.

A priori probabilities At a level still simpler than mean field theory, the probability
of encountering a cell during evolution can be taken to be proportional to the fraction of
transitions by which its value can arise. The required scan of the rule table is performed
by the option a, which also calculates some relevant entropies.

41

Entropy A general curve of entropy versus probability can be displayed in the C-panel
by using option h.

12.3.10 Random rule

In order to generate a random rule without going to the main menu and back, an analog of
the main option X is provided. Moreover, X is set at 50%, whereas an arbitrary probability
is often needed.

Place rule in table Option f sets up a random rule with pr percent of live cells, where
pr is a parameter whose value can be adjusted.

Define parameter pr Option Fxxx will load the random rule percentage parameter pr
with the value xxx, which should be an integer in the range 0-1000. The value is expressed
in mils, therefore 50% probability would be expressed as F500; it is the default probability
taken by pr if no other definition has been given.

12.3.11 Random line

Random lines with a fixed percentage of live cells are also required; again without going
to the main menu to use the option y, and with fractions which are not necessarily 50%.

Set up a configuration Option b generates a field with pl percent live cells; it is
generated as a single one dimensional array, although it will be interpreted as having
whatever dimension that has been set by the option 0.

Define parameter pl Option Bxxx will load the random line percentage parameter pl
with the value xxx, which should be an integer in the range 0-1000. The value is expressed
in mils, therefore 50% probability would be expressed as B500; it is the default probability
taken by pl if no other definition has been given.

12.3.12 Hiplot services

To create a permanent record of some of the return maps, subroutines have been added to
service a HOUSTON INSTRUMENTS plotter, or any other model which responds to the same
commands. There is nothing in the subroutines other than the generation of a stream of
AscII characters directed to a serial output port, but the characters have to be the ones
which will activate the plotter.

~ - initialize the Hiplot plotter.
@ - @1 shows, @1 suppresses mean field curve
Z - dismiss the Hiplot plotter.

12.3.13 Miscellaneous

Given that the LCAU programs are used in ongoing research, the list of options will vary
from time time; this is particularly true in view of the fact that the alphabet of options is
now nearly full.

One item of research has concerned the fact that totalistic rules seem to follow a
different probability distribution, distinct from that of general rules. At one point this
was considered to be an explanation of the Chaté-Manneville effect, but was later seen to
have a secondary importance.

& - &n graphs a combination of uniform and mean field curves.

$ - repeats &n at intervals of 0.1 from 0.0 t0 1.0.

% - print differences in totalistic neighborhood frequencies.

K - shows a contour plot of neighborhood conformance to & curve.

Another item of research concerns the details of the mean field curves for automata in
Wolframn’s Class IV, such as Life, which can be studied in LcAu24.

Some of the scarce remaining symbols have been allocated to generating specific regular
configurations or specific rules (such as Life).

v - generate some regular points in the cell array.
V - generate some other regular points in the cell array.

12.4 Function keys

The function keys £4 and £5 execute respectively, the edited REC program or the selected
demonstration. F4 and F5 show up to 40 symbols from these programs, for purposes of
confirmation. Paragraph up and down change the demonstration selection, while "PprU and
“pPpPD show the first and last; generally one tries to keep the usage of these keys consistent
with their use in an editor. All these displays are made in the E panel.

13 Acknowledgements

