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Abstract

As part of a collection of samples illustrating the use of the second order real differential
equation solver SERO, some variants on the theme of periodic potentials are discussed.
Constructing the stability chart for a periodic potential is one of the most important uses of
the program, although details of specific solutions are also frequently called for.
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1 Introduction

Periodic potentials can be described in two contexts, classical and relativistic. In each category
there is a wide assortment of actual potentials, but in both cases three stand out for their
simplicity and generality.

In the Kronig-Penney model [4], the potential starts out as a step function, alternating between
one value in part of a unit cell, but another for the rest of the cell. The advantage lies in having
a plane wave in each interval, requiring only some trigonometry to match the boundaries and
derive energy levels and band structures.

However, these authors noticed that the algebra could be simplified still further when the
potential was very large over a limited interval, allowing it to be approximated by a Dirac delta
function. In physical terms, the particle receives a pair of jolts as it passes a certain point, one
accelerating it and the other slowing it down again. Or the reverse, if the sign of the potential is
changed.

Finally, the third choice avoids a potential with discontinuities; a simple periodic function
such as the cosine can be selected. Classically, this leads to Mathieu’s equation, which has been
extensively studied in various places for a variety of reasons; for example, after separation of
variables for wave equations in elliptical coordinates [1, 2, 3].

1.1 Schrodinger equation

A 2 x 2 matrix notation is admirably suited for discussing one-dimensional problems. For the
Schrédinger equation, we would write

dfl;x) _ ( (l) v(xz)_ E ) 2(x) )

taking Z as a matrix containing two the linearly independent solutions as its columns.

For a constant potential it is a matter of finding the eigenvalues and eigenvectors of the
coefficient matrix, then writing the solution as an exponential. Even so, there is a question of
keeping the solution in a real form, making it convenient to distinguish V' > E with a matrix
of hyperbolic functions from the realm V < E with sines and cosines. After introducing the
attenuation factor

K= (V_E)l/zv (2)
the solution takes the form

cosh r(z — ) r sinh k(z — xg)

Zx) = < (1/k) sinh k(z —2z9) cosh k(z —z¢) )Z(xo). (3)

Otherwise the wave number k = ix would be used, after switching over to trigonometric functions:
cos k(z —zo) —k sin k(z — z9)
Z(x) ( (1/k) sin k(z —x9)  cos k(z — x0) Z(wo). (4)

Splitting a nominal period of 27 into parts and multiplying the matrices corresponding to each
part gives a result which could be graphed as a function of the parameters involved. Consider a
one dimensional lattice whose base potential is zero, but for which part of the period consists of a
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Figure 1: SERO results showing dispersion contours for two Walsh function potentials. Left: well
and barrier widths equal. Right: well twice the length of the barrier.

barrier of height hi. In other words, the potential could be a Walsh function of simple form. The
result of varying the height from the value of 0.0, representing a plane wave to 10.0, representing a
sizable barrier, is shown in Figure 1. Actually it contains contour maps of the dispersion relation

cos 0 = %Trace(zlow(a)zhigh@?r—a)) (5)

as a function of energy and the Walsh function amplitude for a fixed splitting of a period.

The expected result is that for energies larger than the barrier height, the solutions are mostly
free waves, with occasuional exponential regions which can be attributed to Bragg reflection. On
the other hand, for lower values of the energy the solution resembles bound states confined to
the wells with a meagre possibility of tunneling between them, while the diffraction diminishes
in intensity the further one goes above the top of the well.

Suppose that V is large with & — 2y proportionally small, keeping P = V X (z — x¢) constant.
Then x(x — x9) would be infinitesimal with a huge s, whose reciprocal would remove the lower
left element in the solution while cancelling the hyperbolic sine in the upper right element, finally
leaving the factor P (remember that x is only the square root of V). Altogether the solution
matrix over such an interval is a shear:

Z(x) = ((1) ’f)zuo). (6)

In the context of the Schrodinger equation, it alters the derivatives of wave functions while
preserving their continuity.
Joined to an interval of length L, the resulting solution is

1 P cosh KL k sinh kL \
0 1 (1/k) sinh kL  cosh kKL o
( cosh KL+ (P/k) sinh KL & sinh kKL + Pcosh kL )

(1/k) sinh ka cosh kz (7)

The quantities of interest in this new matrix are still its eigenvectors and eigenvalues, and in
particular whether the eigenvalues are hyperbolic or trigonometric. Half the trace of the matrix



compared to unity tells which; we get

P
cosh § = cosh kL + 2—sinh kL. (8)
K

Written with wave numbers to orient the interpretation towards free particles rather than
bound states,

cos 8 = cos kL + 5 sin kL. (9)
this is precisely the dispersion relation obtained by Kronig and Penney. Note that sin 2/ is unity
at the origin, gradually diminishing as x increases while retaining the higher zeroes of sin z. It is
also interesting that the sign of P could be changed, the result being a complementary spectrum.
In other words, a series of delta-wells can restrain particles and produce reflections just as well
as a series of delta-barriers. The effect carries over to even a single delta-potential.
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Figure 2: SERO results showing dispersion contours for two Kronig-Penney potentials. Left:
wells under a zero floor. Right: barriers above the floor. The incipient delta-function takes up
only 2 1/2 percent of the period. The strong moiré effect is the result of pixel size in the graphing
program; nevertheless it still mirrors changes in the underlying graph because it is sensitive to
the overall widths of the bands being displayed.

The dependence of the dispersion relation on P becomes evident when it is graphed. When P
is zero, there is nothing but a plane wave, which is still mostly true when P is small. But when
L corresponds to about half a free particle’s wave length, there is an amplitude change resulting
from a slight reflection, which is compounded as more and more unit cells are taken into account.

At the other extreme, a favorable phase relation allows consistent tunneling from one side of
the potential step to the other, making a wave propagate. The size of P, which determines the
scale of the effect, is measured by the same scale in which E or V' themselves are expressed.

All these relationships can be discerned in Figure 2 on the left, in the regime of wells, in-
terference creates narrow reflection bands wherein waves do not propagate. On the right in the
regime of barriers, narrow tunneling bands permit wave propagation. The bands are not always
so narrow, and are somewhat complementary, so the two figures look rather much the same. More
resolution and enlarging the area under examination would be required to pursue the subject in
greater detail.



If the contour maps are examined is closer detail, as in Figure 3, the “bound state” of the
Kronig-Penney wells is visible. As the well becomes narrower, it has to become deeper to support
a bound state, and thus will show up at an ever higher location in the contour plot as the delta-
function limit is taken.
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Figure 3: Enlargements of portions of Figure 2.

A third approach to the study of periodic potentials is to use a trigonometric function rather
than a Walsh function for the potential of the Schrédinger equation. The solution involves the
Mathieu functions, which have been well studied, but for which there are no limits which simplify
the algebra as there were for the Kronig-Penney lattices.

Figure 4: Stability contours for the Mathieu potential.

Figure 4 shows the contour map for the Mathieu dispersion relation, otherwise known as its
stability chart. The energy runs from -10.0 to 30.0, the amplitude of the cosine from 0.0 to 15.0.
Here the potential is centered on zero, so there are negative energy bound states for sufficiently
deep potentials. The Mathieu function itself is traditionally defined in terms of (cos z + 1) to
give it a zero floor.
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Figure 5: SERO results illustrating a periodic potential.

The program SERO calculates solutions for second order ordinary differential equationa or,
equivalently, pairs of first order equations. The latter is the form already taken by the Dirac
equation, so it is only necessary to write the coefficient matrix before proceding.

The program has a fixed list of potentials, with provision for varying some of their parameters.
After they have been chosen, the solutions can be displayed in one or the other of two forms.
One, the more traditional presentation, graphs solutions as functions of the independent variable,
sometimes several at a time along with coefficients from the matrix in the form of options.

The other presentation is via the phase plane, wherein one component of the solution is plotted
as a function of the other (often, its dertivative).

A sample of the two forms of presentation is shown in Figure 5. They are little used in this
report, to get the illustrations for which an independent facility graphing selected dispersion

relations has been used.



1.2 Dirac equation

The one-dimensional Dirac equation for a particle of rest mass my has a matrix form

dZ(z) _ ( 0 mo — (V(z) — E) >Z(:c). (10)

dz mo + (V(z) — E) 0

which is structurally somewhat different from the Schrédinger equation because of the symmetric
term depending on the rest mass, and the antisymmetric presence of the kinetic energy in two
different places.

The substitutions

1/2

KR = [mg - (V_E)2]1/21 g = (mo + (‘/_ E)

lead to the same form of solution matrix as before,

cosh Kz o sinh kz
Z(w) = ( (1/o) sinh kx  cosh k& >Z(z0), (12)

but still only for a constant energy difference E — V. Otherwise the derivative of V(z) would
have to be taken into account, introducing additional terms into the coefficient matrix.

When the rest mass is zero, the coefficient matrix is a scalar multiple of the unit antisymmetric
matrix, so the use of the angle

o = / (V(t) = E)dt (13)
o
gives simply

20) = (7 e ) g (14)

sing  cos @

Irrespective of either my or E, if V is very large yet extending over a small interval such that
V x (z — zo) = P, the result is this same rotation matrix, now running through the angle P. An
interesting consequence is that strengths differing by 27 make identical changes to the solution.

The fact that a concentrated potential produces a finite rotation rather than a shear is some-
what disconcerting, since it implies a discontinuity in both components of a solution vector. But
mainly, this illustrates the fact that not all potentials give rise to continuous derivatives, nor even
to continuous wave functions.

Following the Kronig-Penney precedent of compounding the delta-function potential with a
plane wave, we would get

cos P —sin P cosh kL o sinh kL
sin P cos P (1/o) sinh kL  cosh kKL

( cos(P) cosh(kL) — (1/a) sin(P) sinh(xL) o cos(P)sinh(kL) — sin(P) cosh(xkL) )(15)
sin(P) cosh(kL) + (1/0) cos(P) sinh(kL) cos(P) cosh(xL)+ o sin(P) sinh(xkL)

with the dispersion relation

cosh(d) = cos(P)cosh(xL)+ %(0 - %) sin(P) sinh(kL). (16)



This is the spherical cosine law for a unit hyperboloid with an angle between edges of the triangle
of cosh(y) = $(0—1/c). We don’t see such clear bumps on the cosine curves as for the Schrodinger
equation, but the result is very similar.

2 Small mass compared to height

When the mass is small or even zero, the coefficient matrix of the Dirac equation is nearly a
scalar multiple of the unit antisymmetric matrix i. Accordingly solutions take the form seen in
Equations (13) and (13). For the potential Asinz the results for the interval 0 — 27 are

® /0 7T(A sin(t) — E)dt

= [~Acos(t) — Et]3"
= —27E (17)

and accordingly

207) = ((Gnon) oo tong) ) 2O 19

half of whose trace is cos(2rE), independently of the strength of the potential, and even of its
form so long as it is periodic. This is evident in Figure 6 and even in the contour plot of Figure 7,
whose apparent structure is more likely due to the precision of the computation than to the
effects of mass, height, and energy.

Mass and energy may be separated in the Dirac equation by writing the coefficient matrix as
M = A+ B where A = (V — E)i and B = myj. Factoring the solution into Z = UV and solving

dU

—= = (V-E)U (19)

to get the result already shown in Equation 18 (where the solution was called Z), there remains
the solution of the equation for V,

dv

E = U~ 1m0jUV (20)

When my is small, it is approximately solved by the so-called first Born approximation
V() = I—i—mg/ U U)dt + ... (21)
0
0

the second form being due to the anticommutation of the quaternion matrices. Taking into
account that U is a combination of 1 and i while the integral is a mixture of j and k, changes in
the dispersion relation due to a small mass will be of at least second order.
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Figure 6: A perspective view of the stability function for the relativistic Mathieu potential. Mass
= 0.125, nearly negligible. Strength = 1.0. The energy varies from 0.0 to 3.5, the height of the
potential form 0.0 to 1.5. Negative energies give the same results as positive energies. The mass
causes a slight expansion of the interval —1.0 — 1.0 occupied by the massless half trace, something
visible in the change of coloring.

Figure 7: Stability contours for the relativistic Mathieu potential. There is essentially no variation
with respect to the height of the potential, with results very close to those for a mass of exactly
Zero.



3 Mass comparable to height

Figure 8: A perspective view of the stability function for the relativistic Mathieu potential.
Extreme values have been flattened to make the figure more legible. mass = 1.0, already fairly
strong. Strength = 1.0.

Figure 9: Stability contours for the relativistic Mathieu potential.
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4 Mass overwhelms height

Figure 10: A perspective view of the stability function for the relativistic Mathieu potential.
Extreme values have been flattened to make the figure more legible. mass = 1.75, now quite
strong. Strength = 1.0.

Figure 11: Stability contours for the relativistic Mathieu potential.
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5 Further variants

Figure 12: Stability surface for the relativistic Mathieu potential with a sharpening third har-
monic.

mass = 1.0 ' #
height = 1.0
cos x +1/3 cos 3x

Figure 13: The relativistic Mathieu potential sharpened by its third harmonic.
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Figure 14: Stability surface for the relativistic Mathieu potential with a flattening third harmonic.

mass =1.0
height = 1.0
cos x -1/3 cos 3x

Figure 15: The relativistic Mathieu potential flattened by its third harmonic.
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Figure 16: Stability surface for the relativistic Mathieu potential with a delta-function-
approximating potential cos(z) + & cos(2z) + 3 cos(3z).

Figure 17: Terms in the coefficient matrix plus one solution for the potential cos(z) + cos(2z) +
cos(3x). The potential is fairly flat on the bottom with a dent, while on top the peak approxi-
mating the delta function is quite conspicuous. The result is that negative energy solutions see
a mild reflecting corrugation while positive energy solutions see an ever rising barrier through
which they can tunnel.



h=15.0

h=0.0 i
E=-10.0

E=10.0

Figure 18: Contour map for the relativistic Mathieu potential with a delta function approximating
potential cos(z) + cos(2x) + cos(3z). The squares outline the regions whose perspective view is
shown in Figure 16.

Finding a relativistic version of the Kronig-Penney model has created some consternation in the
physics literature. The contour map of Figure 18 shows the result of approximating the delta
function by the Fourier series x (cos(x)+cos(2z)+cos(3z)+---). A notable discrepancy develops
between solutions with negative energy and those of positive energy.

Although the average potential in this approximation is zero, it reaches an appreciable max-
imum while retaining a minimum close to zero. After all, that is the desired result, but the
environment which it presents to wave functions of opposite energies is quite different. Instead of
a similar mass shell for the two alternatives, the shell has a negligible presence around the high
peaks, while constituting a uniform barrier along its base.

The mass-dominated region in Figure 18 rises at a high angle on the left because of the relation
of the factor 6/11 in the potential definition to the step size in the contour plotter. effects can

be seen on the right but they are barely visible.
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6 Summary

In quantum mechanics, periodic potentials are associated with crystal lattices; natural crystals
are so large that boundary effects can be ignored, which is not to say that the stydy of crystal
surfaces is not important nor that the explicit consideration of boundaries and interfaces is not
important. Both possibilities can be given their due recognition in the appropriate places. So
considering cyclic or infinite systems is a good place to begin.

Mathematically speaking, the principal difference between the Schrodinger equation for non-
relativistic quantum mechanics and the Dirac equation for relativistic quantum mechanics is that
large Schrodinger potentials act like shears, while large Dirac potentials acr like rotations. This
distinction refers to the action of the coefficient matrix in the system of ordinary differential
equations which remains after separating variables in many dimensions or the form which they
already have in one dimension.

Large potentials have become involved for historical reasons — symbolic solutions were more
tractable the Kronig-Penney model, especially in an era when numerical computation was hard to
come by. The Kronig-Penney model gets this simplification from concentrating large potentials
in small regions so as to have plane waves elsewhere, both of which are readily soluble.

All seems to have gone well for nonrelativistic applications, but within recent time attempts
have been made to get relativistic extensions. Several known aspects of the Dirac equation,
such as the zitterbewegung and the Klein paradox, show up in the context of periodic potentials
as well. Zitterbewegung and the Foldy-Wouthuysen transformation refer to the construction of
positive energy wave packets, which are not of themselves eigenfunctions of the Dirac equation.

The Klein paradox refers to the fact that one and the same eigenfunction can show both
positive and negative energy behavior, according to variations in the relationships between mass,
kinetic and potential energy from one region to another. In particular, a delta-function potential
contains such a reversal of behavior within itself, rotating wave functions in phase space rather
than shearing them. In practical terms, they just shift phases, neither binding nor reflecting
particles without the collaboration of still further factors.

As the dispersion relations which we have studied show, there are three distinct regions. The
first is for energies well above or well below the potentials, including any mass present. In this
region the wave function is that of a nearly free particle, with some impediments to propagation
resulting from constructive interference of back reflections off potential peaks.

The second region, which is also similar to one of the two classical regions, features exponential
behavior of wave functions with the consequent existence of bound states, or greatly suppressed
tunneling between nearly bound states. The indicator of this region is the hyperbolic nature of
the angle, due to a purely imaginary wave number, for long intervals, interspersed with an actual
wave number in shorter intervals.

The new feature, closely related to the Klein paradox, consists of regions in which the particle
energy is lower than the potential energy with its mass seell, in some intervals, yet larger than
the potential, still including the mass shell, in others. When the minimum of the high shell is
greater than the maximum of the low shell, the wave number is never imaginary, but regularly
alternates sign. This region is evident in all the examples which have been shown. It is where
the would-be delta-spike rotates rather than shears or attenuates.
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