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Abstract

A reversible cellular automaton is one whose evolution, and therefore
the entire past history of any configuration, can be uniquely deciphered.
There are degrees of reversibility, depending upon whether the configura-
tions considered are arbitrary, periodic, or quiescent at infinity; which are
subsidiary to more general questions of injectivity and surjectivity, within
a general perspective of the ancestry of configurations. Reversibility is
examined within this general context, expanded to include the frequency
distribution of ancestors and its moments. It is argued that the coupling
of zero variance (judged from the maximum eigenvalue of the second mo-
ment matrix) with zero frequency for zero ancestors (surjectivity) is the
fundamental concept. An ideal theoretic property inherent in decomposi-
tions of the de Bruijn matrix suffices to prove the coupling for automata.
Surjectivity in different contexts, injectivity, and degrees of multiple val-
uedness all follow from this central result. Although the article is intended
as a review, it is far from a complete historical survey; the presentation is
uniformized through the use of graphs, de Bruijn diagrams and matrices
wherever possible.

1 Introduction

When John von Neumann [1] worked out the theory of universal constructors
within the framework of cellular automata in the mid fifties, philosophical ques-
tions soon arose concerning ancestorless patterns, which surely could not be
“constructed” through the intermediary of other configurations occupying the
same system. That such predicaments could arise under certain circumstances
was first appreciated by Edward F. Moore [2], whose article of 1962 was reprinted
in a collection of influential papers edited by Arthur W. Burks [3] in 1970. Even
though the only requirement which von Neumann was interested in satisfying



was that a device with the computational power of a Turing machine should
be capable of producing copies of itself — not necessarily that it had to fill
space with arbitrary designs the latter concept is an interesting one which
has received further study.

In short order the question turned into the relationship between the local
mapping in an automaton, which assigns successors to neighborhoods, and the
global mapping, which produces the succession of configurations from one gen-
eration to the next. In contemporary mathematical terms, the interesting ques-
tions are whether the global mapping is injective, formerly called one-to-one,
and also whether it is surjective, formerly designated onto. In the latter case
every configuration has at least one ancestor, and there is no Garden of Eden.
For finite sets the equivalence of the two characteristics follows from counting
arguments which no longer apply to infinite sets.

To pose the problem properly for infinite automata, some thought has to
be given to the meaning of infinity, often with respect to boundary conditions
which are relaxed or assumed to lose their influence as the automaton grows
in size. Three choices usually considered are: 1) cyclic boundary conditions, 2)
quiescence at infinity, or 3) a quite general, unspecified arrangement (sometimes
with a topology which minimizes the importance of exceedingly remote cells).

In a sense, these are external considerations, subordinate to other, internal,
aspects of the problem. Fundamental to the nature of cellular automata is the
difference in size between cells and the neighborhoods which determine their
evolution, resulting in a permanent discrepancy between the area of a region
and that from which it has evolved. Paying attention to the external aspects
may try to avoid the difficulty by folding or smoothing the margins, but it
is probably better to resolve the internal aspects first, adjusting them to the
external requirements at the end.

Although it is quite easy to work out ancestral neighborhoods for one or even
a few cells, problems of consistency are bound to arise because the neighbor-
hoods always overlap. Fortunately, especially in one dimension, there are matri-
cial techniques based on the de Bruijn diagram which organize the relationships
involved, and the calculation of ancestors can proceed. Most commonly incon-
sistencies arise which cannot be resolved, leading to the Garden of Eden, and
the conclusion that most rules of evolution are not surjective. For such rules,
most configurations have multiple ancestors whilst others have none.

Among the exceptions, the freedom of choice which exists in the margin
usually leads not just to a single ancestor for each configuration, but to several
distinct ancestors. But for a still smaller subset of rules, the freedom is to
greater or lesser degree illusory, even to the extent that the state of one of the
cells in the ancestral neighborhood — the central cell, for instance — can be
deduced once the state of the evolved cell and some of its neighbors is known.
The rule of association can be used to run the automaton backward, for which
such an automaton would be called reversible.

Historically, various attempts were made to define the problem, and to en-



counter examples of various types of behavior; some of the conflicts inherent in
which were discussed by Sven Skyum [4] in a 1975 article aptly titled “Confusion
in the Garden of Eden.”

Interestingly, similar studies had grown out of the topic of symbolic dynamics
and ergodic theory, originating with Henri Poincaré in the nineteenth century,
continued in the first half of the twentieth by George Birkhoff [5], formalized by
Walter Gottschalk and Gustav A. Hedlund [6] in a 1955 Colloquium Publication
of the American Mathematical Society. In 1969 Hedlund [7] published a thor-
ough summary of the properties of automorphisms and endomorphisms of the
shift dynamical system, albeit written in a very terse mathematical language
with many topological features.

Indeed, continuous mappings of the shift are cellular automata, providing one
of the few known instances of an unequivocal application of the theory of cellular
automata to another field; ironically the applications to symbolic dynamics and
ergodic theory were worked out in exhaustive detail much before the subject of
cellular automata became particularly organized, and quite unbeknownst to the
majority of its practitioners.

In 1978, about a decade after Hedlund’s fundamental paper, Masakazu Nasu
[8] undertook to describe these results with the aid of graph theory, without
relying on topology, and incorporating some ideas from automata theory. During
this same period a variety of other articles appeared; but in the meantime, a
more direct approach to the explicit construction of reversible automata was
invented, then applied to some physical problems, by Edward Fredkin, Tommaso
Toffoli, and others.

Recent interest in automata has been greatly stimulated by Stephen Wol-
fram’s computer experiments, first reported in Reviews of Modern Physics [9)
in 1983; familiarity with his reprint collection [10] of 1986 is assumed, as well as
his use of (k,r) whenever k-state cells form a neighborhood of radius r (possibly
half-integral) is followed, likewise his k-ary enumeration of evolutionary rules.

This paper also relies heavily on the properties of nonnegative matrices, an
exposition of whose theory can be found in half a dozen or more contempo-
rary textbooks, such as Gantmacher [11], Bellman [12], Varga [13], Seneta [14],
Berman and Plemmons [15], or Minc [16].

2 Fredkin’s model

Edward Fredkin discovered that the parity, or exclusive or, operation could lead
to an interesting replication of patterns in cellular automata [17, 18, 19]; he also
devised a model for reversible automata [20]. Reputedly differential equations
were his model; first order equations typically have real exponential solutions
which are not time reversible, whereas second order equations often have solu-
tions composed of readily reversible pairs of complex conjugates.



2.1 Two-generation rule

The proposed rule of evolution involved two generations of cells: let x} represent
the state of the ' cell in generation t. Then if
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were the rule of evolution of any ordinary (2,1) automaton, the new rule
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on account of the algebraic properties of the exclusive or. Any other invert-
ible function of two variables could have been used in place of &; for boolean
variables the only other candidate is exclusive nor (equivalence).

2.2 Cartesian product rule

Toffoli’s own scheme [21] increases the dimensionality of the automaton rather
than the number of generations spanned by its evolutionary rule. However,
the simplest solution to the problem of exhibiting explicitly reversible rules of
evolution may well lie in increasing the number of states of the automaton, by
forming their cartesian products, whose rule of evolution needs to span but a
single generation:
i+1
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Thus a single cell of a (4,1) automaton may hold two successive generations
of a (2,1) automaton by forming pairs whose components are to be interpreted
as

(it ad);

substitution of these values into Eq. 3 reproduces Eq. 1, in its turn reversible
by the rule
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Similar formulas would allow the formation of reversible (k%,r) rules from
arbitrary (k,r) rules, the more so by taking advantage of additional alternatives
for @. Nor is it difficult to invent schemes whereby the equivalent of three
generations of evolution could be incorporated into (k*,7) automata, and so on
and oun for even longer histories.

To understand possible complications which can arise, consider Fredkin’s
idea applied to a (2,1/2) automaton via a rule in which sequential letters replace
subscript indices for improved legibility:

(). (ed) = (dp(b.d) o a).

Evolution loses the value of ¢, preserves d intact, yet permits the recovery
of a if b were known explicitly. Supposing a third cell (e, f) provides two cells
in the second generation,

(d,o(b,d)Da) and (f,¢(d, f)De),

from which ¢ can now be recovered via ¢ = ¢(d, f) D (¢(d, f) & c) with the aid of
the explicitly known d and f. Since d is already known, the cell (¢,d) has been
reconstructed, as could be done for all the rest of the cells of a configuration.

In each case evolution “remembers” the second component of the right cell,
but the left ancestor is the one recovered by the reversed rule. Typical of neigh-
borhoods with half integral radius, this asymmetry seems to have no further
significance. It is often seen in rules with shifting.

2.3 Rules spanning three generations

The next rule depends upon three generations of evolution, following the same
convention as before:

O((a,b,c),(d,e, f)) = (e,coo(e, ) D a). (5)

Time reversal cannot be achieved as before by a rule with a two cell neigh-
borhood, because the new state is independent of both b and d. Again supposing
a cell (g, h,?) to the right of the first two, all three generating the evolved pair

(e,c,o(e, f)@a) and (h, f,o(f,1) @& d),

the lack of b prevents recovery of (a,b,c), while the lack of ¢ prevents releasing
d from the combination in which it is bound (admittedly, a degenerate ¢ would
help) in order to recover (d, e, f). Not even (g, h,i) can be obtained, for the lack
of g; even less information is available going further afield.

However, a third cell in the second generation, involving yet a fourth cell
from the first generation, would have the form (h,, 2) wherein the value of z is
immaterial, but ¢ combines with f to release d from (f,i)®d revealing (d, e, f).



Altogether, we have a reversible (8,1/2) rule which requires an (8,1) (three cell
neighborhood) rule for its reversion. Altogether, the inverse rule appears to be

& ((a,b,¢),(d,e, f), (g, h,i))
= (e, h)& f,a,e). (6)

Evidently considerable ingenuity can be exercised in devising reversible au-
tomata, but it would be desirable to have criteria of necessity or sufficiency for
the process. One significant aspect of the formulas shown so far is their unifor-
mity in the respect that every state has the same number of counterimages as
any other. Additionally, the rules are entirely local; even though the size of the
neighborhood of an inverse rule may be different from that of the original rule,
it is fixed; moreover distant boundary conditions do not affect it.

3 Some relevant diagrams

One approach to encountering reversible automata is to scan all the automata
of a given order, to find those for which there are unique ancestors, and to
work out their rules of inversion. The task is formidable, considering that there
are kK" different rules for (k,r) automata; S. Amoroso and Y. N. Patt [22]
reported a survey of (2,3/2) automata in 1972, which uncovered eight instances
of nontrivial reversible automata, whose principle of operation differed from
the later ideas of Fredkin. Previously they had known that (2,1/2) or (2,1)
automata lacked nontrivial rules (shift, complement, identity).

Two different algorithms formed the content of their article; one determined
the existence of the Garden of Eden (or else concluded that every configura-
tion has ancestors), the other could verify that a configuration had only one
ancestor. Formalizing the auxiliary diagrams and tables which were incidental
to their presentation would enhance our understanding of the procedures and
could facilitate the derivation of additional results.

3.1 De Bruijn diagrams

By a de Bruijn diagram [23] one understands a graph whose nodes are sequences
of symbols from some alphabet, for example the set of states of an automaton.
The sequences all have the same length, often called the number of stages be-
cause of an application to shift register theory [24]; for automata they are partial
neighborhoods. In one dimension, a single cell could be dropped from one end
or the other of a given neighborhood, although other decompositions are con-
ceivable (dropping or adding two cells, say).

Many authors have used de Bruijn diagrams to study cellular automata,
among them Nasu [8], Erica Jen [25], Wentian Li [26], and Wolfram [27]. There
does not seem to be any evidence of an attempt to formulate two-dimensional
de Bruijn diagrams.



The nodes of a de Bruijn diagram are linked according to their overlap,
resulting in a map which reveals the possible succession of contents in a moving
window as it advances across an even longer sequence. For automata, the most
convenient, choice of window size — the number of stages — is the length of a
full neighborhood, that being the basic unit participating in the evolutionary
process.

A de Bruijn diagram is also represented by its connectivity matrix; for this
purpose it is convenient to represent the states of a (k,r) automaton by the
digits 0, 1, ... & — 1, its partial neighborhoods by 2r-digit numbers radix k.
Multiplication by k shifts cells, arithmetic modulo k2" drops the leftmost cell,
adding a single digit number adjoins a new rightmost cell; altogether

ki+1
D;; = J (7)
ki+(k—1)

0 otherwise

As an example, (2,1) automata have four different partial neighborhoods 00,
01, 10, and 10, overlapping each other to form eight full neighborhoods of three
cells each. Regarding these binary strings as numerical indices produces

wherein dots replace zeroes for clarity.

3.2 The subset diagram

By its very definition, a de Bruijn diagram serves as a guide to the sequencing
of strings of symbols, from which any other set of objects can be given the same
sequencing. A trivial example would be to recover the original symbols from the
central element of each string, while the purpose of using neighborhoods from
an automaton is to obtain the sequence of evolved cells. In the same way, a
de Bruijn matrix serves as a skeleton in which the rules of matrix multiplication
(for noncommutative elements) ensures that the elements of a product respect
the sequence of the corresponding de Bruijn diagram.

In this spirit, alternative labels can be affixed to the links in a de Bruijn
diagram; reading one label instead of the other while following along some path
associates the labels with one another. In particular, relating the central cell of
a neighborhood to the value of the evolved cell associates configurations with
their ancestors; whether or not there was any ancestor at all turns into the
question of discovering whether the corresponding path exists somewhere in the
diagram.

~I



3.2.1 Moore’s subset construction.

The subset construction [28] was devised to solve this precise problem, so that
the transcription of Amoroso and Patt’s first algorithm [22] into graphical lan-
guage is readily accomplished.

The subset diagram of a 2r stage k-ary de Bruijn diagram has 2k*" nodes;
if all configurations of this length possess ancestors, then all configurations of
whatsoever length will also do so. If some do not, they can be described; in fact
there is a regular expression describing every configuration in the Garden of
Eden, which is nothing more than the description of the path leading from the
full set to the null set in the subset diagram. Frequently required information
can be found without having to use the entire subset diagram; the connected
component of the full set is often all that is needed.

As an example, consider the connectivity matrix of the subset diagram be-
longing to the (2,1) Rule 22. With four partial neighborhoods, the subset
diagram has sixteen nodes. Ranking the subsets in order of size places the full
subset as number 1 and the empty set as number 16; it is likewise convenient
to group intermediate subsets of similar size.

With such an arrangement links between different groups can be discerned,
according to variations in the total number of links connecting nodes in the
original diagram, which is represented in the subset diagram by the unit classes.
Rather than joining to each other, the unit classes will link to the empty set or
to larger classes to reflect inhomogenieties in the original linkage.

1|1 .
11 .o
R | .o 1
1 1.
1. 1 .
.o 1
2 ...
Y= 1 1
1 1.
. .1
1 1
r1 ..
..o 11
R
1. . 0 |1
L 2_

38 is the lowest power of ¥ with an element linking the full subset to the
empty set; one of the Garden of Eden configurations thus revealed is the se-
quence 10101001.

Note that ¥ is partially tridiagonal, in that there are nonzero submatrices
only along its principal diagonal, superdiagonal, and subdiagonal. This is not a
necessary structure inasmuch as the imbalance between the number of links at
the nodes of the de Bruijn diagram could have been more severe than it is, nor
is it especially helpful in analyzing this particular matrix.



Nevertheless, the rows corresponding to the unit classes are significant, inas-
much as they suffice to determine all the remaining rows.

3.2.2 Formal definition.

The indexing shown is one of convenience for visual display, but a more mathe-
matical arrangement would be to use n-bit binary numbers as indices. The i*"
bit of the index would be 0 or 1 according to whether the i*" node is included in
the subset or not. With such symbolism the remaining rows could be explicitly
constructed from those associated with the unit classes.

Even without this element of sophistication, the rule of formation of the sub-
set matrix is easily described. Begin with the observation that the fundamental
requiremnent for the definition of any function is that each argument has just
one image. Links in a graph define a function when there is just one link of
a given class leading onward from a given node; the subset diagram is created
when this condition is violated, by combining multiple links into a single link
between subsets.

Even though the linkage of a given graph does not define a function, the
subset linkage is always functional and, thanks to the inclusion of the null set
as a destination, defined for the entire subset graph. Each class of links defines
one function, say ¥y or X;. The subset diagram describes the union Xy U ¥,
which itself is not functional.

Let a and b be nodes, S a subset, and |S| the cardinality of S; then

¢ S=¢
Zi(8) = {b ] link;(a,b)} S ={a} .
Uses Zila) |S] > 1

3.2.3 General characteristics.

From this definition three properties of the subset diagram are evident. First,
if there is a chain leading from any subset to the empty set, a similar chain will
lead from any smaller (included) subset to the empty set. Conversely, if the
unit classes lack links to the empty set, no other subset will have such a link
either, and there will be no Garden of Eden.

Such will be the case when every node of the de Bruijn diagram has a link
associated with each different kind of cell; that is, when it is row stochastic or
itself a function. Similarly, the full subset will link with no others, depriving
the rule of a Garden of Eden, if every node has an incoming link for each kind
of cell; such rules have column stochastic de Bruijn matrices.

Rules for which the Garden of Eden fails to exist for more subtle reasons are
much rarer, correspondingly more interesting, and require much more careful
scrutiny of the subset diagram for their discovery.



Second, there is a certain residue of the connectivity of the de Bruijn dia-
gram, in the sense that given any source and any destination, there will always
be a subset containing the destination accessible from any subset containing the
source; but the destination can hold additional nodes.

Third, the subset diagram may not be connected; even if it is, it is interesting
to know the largest subsets accessible from a given subset, as well as the smallest.
Consider the subsets of largest cardinality accessible from a given unit class {a},
and another unit class {b}.

Since there is a chain running from {a} to a subset containing b and thence
onward to a subset even larger than the largest subset accessible from b directly,
the resulting contradictions can only be resolved if the cardinalities of all the
maximal subsets are the same.

Unfortunately this information alone does not ensure that the subsets en-
countered along a path are monotonic, not even after a maximal subset has
finally been reached.

3.3 The reversed subset diagram

The subset diagram which has just been discussed pertains to extending a partial
neighborhood on the right, but an extension to the left could just as easily be
made. Rule 22 is symmetric by reflection, but the partial neighborhoods are
not, leaving the lefthanded subset matrix similar to the righthanded version by a
permutation rearranging the subsets. For asymimetrical rules, such a similarity
transformation would not exist.

11 .
oo
1 o1
L. 1
11 .
1.
11
“ 1 1
== 1.1
1 o 1
1.1
1.1
1.1
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Since subsets of partial neighborhoods defining the rows are linked to those
of the columns by incoming links, it would be more natural to use the transpose
of the matrix shown to follow incoming links back through a configuration.
3.4 The pair diagram

Whether a configuration has multiple ancestors can be resolved with the subset
diagram, but an alternative, the pair diagram, is easier to interpret. The nodes

10



of a pair diagram are pairs of nodes from the original diagram; labelled links
join pairs whenever both members of the pair are joined by links with that same
label. Paths in the pair diagram correspond to pairs of paths in the original
diagram; they do not even have to originate at the same node. However, the
same path taken twice can always be found amongst any others, so that the
original diagram is always embedded in the pair diagram.

The pertinent question is whether there are any other, and how many, paths
besides. The pair diagram is the appropriate arena for the second of Amoroso
and Patt’s constructions [22]. One might also refer to Tom Head’s recent pro-
posal [29].

The pair diagram for the (2,1) Rule 22 automaton is subordinate to the
maximal matrix which would correspond to Rule 0 or Rule 255, the location of
the remainder of whose elements is shown by *’s in the following matrix:

rL o« . =1 . 1. . . . 0 0T

1 . |1 =

e |— oot -
« 1 . |1 %

= 1]. . =1

L. .o

The diagram just described pertains to ordered pairs; a variant which is fre-
quently encountered is the unordered diagram in which the distinction between
(a,b) and (b,a) is considered insignificant. A smaller diagram results; it can be
gotten by coalescing the nodes of the larger diagram.

4 Vector subset diagram

The subset diagram is concerned with the existence of paths in the original
diagram, whatever their point of origin, which it discovers by trying them all.
However, it records them in terms of “at least one path,” displayed according
to the collection of nodes which could serve as an origin (row index) versus the
collection of possible destinations (column index). The principal information
revealed by the subset diagram is: what amount of choice in selecting a ter-
minal right neighborhood remains, having prescribed both the leftmost partial
neighborhood and that a configuration has evolved in a certain way? To the
degree that none remains, the configuration cannot have had an ancestor.
Paths leading to the empty set reveal this information; other paths or loops
indicate variations in the possible partial neighborhoods to be found at any

11



stage in constructing ancestors. Indeed, Moore’s original intention was locating
paths leading to the unit classes — paths capable of isolating one single node
from the original diagram, thus casting an automaton into a known state.

In a more accurate reckoning, when counting the paths becomes of interest,
specific endpoints are required, and the dichotomy between “some” or “none”
is no longer appropriate. One way to retain this additional information is to
enlarge the nodes in the subset diagram, making each a “vector” whose compo-
nents are the original nodes; matrices linking vector nodes preserve the original
links. However, we should also consider splitting the original de Bruijn matrix
into k£ parts, just because we are interested in the differences in what can be
linked with one symbol in contrast to what can be linked with another; each
part is assigned to its own subset.

For a formal definition of the entire vector subset diagram, define instead a
connectivity matrix. Suppose that m(S) is a k*" x k2" projection matrix whose
elements are zero save for those diagonal elements for which the " partial
neighborhood belongs to S. In particular, the projector for the full set is the
unit matrix, for the empty set, the zero matrix.

Then, using the matrix D of Eq. 7, the element of the vector subset matrix
indexed by subsets S and 7T is just

Vsr = =(S)Dr(T).

All these references to vectors and matrices can be avoided by establishing
a suitable linkage within the cartesian product of the subset diagram with the
original diagram, although they reappear when the connectivity matrix of the
composite diagram is formed. For Rule 22 (or any other (2,1) rule) the result
would be a 64 x 64 matrix with 4 x 4 submatrices.

In any event, multiplying vector subset matrices induces a product of sub-
matrices, from which most of the information which one desires can already be
extracted. They may as well be used directly, discarding the intermediary of
the vector subset matrix.

5 Symbolic de Bruijn matrices
Symbolic de Bruijn matrices and matrix fragments can be defined in several

ways, each with its individual advantages. A good introduction to the techniques
involved can be found in the article of R. C. Backhouse and B. A. Carré [30].

5.1 Neighborhood matrix

To form complex symbolic expressions, the language of regular expressions is
convenient, whose operations are union, concatenation, and iteration. Another
operation which is sometimes useful is the overlapping (whose symbol could be

12



o) of two strings; if the words ax and yb each consist of letters a and b, joined
to the shorter words z and y, then:

o _ axb =y
aroyb = { ¢  otherwise

(¢ is the empty word).
With such notation a symbolic de Bruijn matrix

Dij = ioj (8)
could be defined; the symbolic form of the matrix shown above would be
000 001 . .
,_| . . o010 011
~ | 100 101 . .
. . 110 111

dots now represent the empty word. Such matrices would be multiplied by
using ¢ to multiply individual matrix elements. Subsequently the advantage of
substitutingimages  such as the evolved cell ~ for the symbolic neighborhoods
will be seen. The full neighborhood matrix is rarely used, but it serves to
illustrate very explicitly the involvement of the row indices and the column
indices with the individual matrix elements.

5.2 Evolution matrices

The multiplication of ordinary symbolic matrices follows the algebra of regular
expressions; that is, multiplication concatenates symbols, union (addition) offers
alternatives, the empty set acts like zero.

Moreover the n'* power of a matrix M contains all the possible words of
length n, distributed throughout the matrix according to the overlap of the
indices of constituent letters as chains are built up to length n. All this overlap
in M" is no longer explicit, yet its matrix elements are still indexed by their
initial and final partial neighborhoods.

To track the evolution of a configuration consider the following variant of
Eq. 8, which describes the evolution of individual neighborhoods:

Sij = wlic]) (9)

which can be decomposed into the sum

k—1
S = ) Sk
=0
by defining
o Lk oelieg)=k :
S(k)ij = { ¢ otherwise (10)
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As an example, for Rule 22

decomposable into the two matrices

o . . . 1
S(0) = l: 0 9]ar1(1 sm—li 1]
oo

Altogether, we see that 0 has five counterimages, 1 only three. From the

product S(0)5(0) = S(00),
o . . . o . . .
SO° = [: o ‘,’] [: o ‘?]
.. 00 ... 00

00 . . .
. . 00 00
. . . 00 |~
. 00 00 00

the string 00 is seen to have seven counterimages, and so on for all the other
configurations.

5.3 Counterimage matrices

Since the evolved cell has been inserted into the symbolic matrix, it is hardly
surprising that strings of evolved cells appear as elements of the product ma-
trices. But it is decidedly inconvenient to have to look up all their indices to
recover the original string, especially when the same information could have
been encoded in the symbolic matrix from the beginning.

Therefore let a subscript such as w; denote the P letter of the word w,
beginning with the first; (7 ¢ j), 11 would be the state of the central cell of its
neighborhood for integral r.

This time vary Eq. 8 by defining

sij = (107)r (11)

which is likewise decomposable into a sum

by defining

sy ={ oo stien=h w

1) otherwise

14



Continuing to use Rule 22 as an example,

o . . . o . . .
O l:o:?“:a:?]
.. 11 .. 11

00 . . .
. .11 11
. . .01 |-
.10 11 11

There are still seven nonempty matrix elements. Expanded by adjoining the

implicit boundary cells to obtain all seven precursors of the sequence 00, the
evolution shown below results.

0000 0110 0111 1011 1101 1110 1111
00 00 00 00 00 00 00 -

There is no reason to insist that the central cell be used in defining the
matrices s(7); frequently an ancestor at one side is chosen, particularly if the
radius of the neighborhood is half integral.

5.4 Counting counterimages

Yet a third variation on the theme of symbolic de Bruijn matrices is actually
a numerical matrix, whose purpose is to merely count counterimages, not to
display them in some form. This final variant on Eq. 8,

Dy = {1 plioj)#¢ (13)

0 otherwise

gives an alternative definition of the de Bruijn matrix which in turn is decom-
posed into a sum

k—1
D = > N(k)
=0
by defining
v [ 1 elieq) =k |
N(k)ij = { 0 otherwise (14)

Still using Rule 22 as an example,

1. 1.
1 o
N0 = | i
.11 .11
1.
1
1|
111

Summing (rather than counting) the matrix elements again reveals seven

counterimages.



6 The statistics of counterimages

Taking the numerical version N(7) of the symbolic matrices s(4) allows the numn-
ber of counterimages to be counted, namely by summing the matrix elements
of the product to be evaluated. By invoking the appropriate matrix algebra,
various quantities of statistical interest can be obtained; the most important
among these are averages and variances.

6.1 Averages

In fact there are three ways the sum yielding the number of counterimages
can be carried out. If no importance is attached to the boundary cells of the
sequence, all the elements should be summed. If the sequence is supposed to be
cyclical, then the partial neighborhood with which the sequence starts should be
the one with which it ends, and only the diagonal elements should be summed.
Finally, if some specific boundaries are required, such as a quiescent partial
neighborhood, then only that particular matrix element should be taken into
consideration.

All of the summation techniques can be taken into account by choosing
appropriate formulas from matrix algebra. Let (u| be a row vector all of whose
components are ones, |u) its transpose, and U = |u){u| the matrix, all of whose
elements are ones. Finally |¢) could be a unit vector whose it" component is the
only one which is non-zero. Then the sum s,(M) of all elements of the matrix
M is realized by the formulas

sg(M) = (u

Mlu) =Tr(UM),
the diagonal sum s.(M) corresponds to

se(M) =Y (i|Mliy = Tr(IM)

3

and the quiescent sum, assuming that ¢ is the quiescent state, is given by
sq(M) = {q|M|q) = Tr(|q){q|M).

The trace formulas are especially convenient.

The average number of ancestors of a configuration of length n can be
obtained from summing all the possible products of matrices representing se-
quences of cells forming the configuration. Such a collection is simply the result
of multiplying out the ordered (because of matrix noncommutativity) product

M, = k*"Zf[N(i./)
j=1

7

k" {ZN@?)} (15)

i
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Given that the de Bruiju matrix Dy, for k states and ! stages (I = 2r by our
conventions) satisfies the minimal equation

+1 l

Dler = kDy,

and additionally that D,"\,, = U, from which
D}l;}—m — kM7

we have the eminently credible results that independently of n,

sq(M,) = (k*)? (general)
so(M,) = K% (cyclic)
s¢(M,) = 1 (quiescent).

6.2 Second moment

The formulas for higher moments are more interesting. If R is a certain product
of matrices, G the template for admissible boundary conditions, then the square
of the number of ancestors represented by R is

(Tr(GR))*.
However the relation
Tr(A)Tr(B) = Tr(A® B),
(@ designates the tensor product [12]), yields
Tr(GR® GR).
Identities for the tensor product allow transforming this expression into
Tr((GoG)(Ro R)),

from which the first term can often be extracted as a constant factor from a
sum of traces. If the sum in Eq. 15 is now carried out for all values of R, it is
possible to recognize the expansion of

k—1

N = > N(i)o N(i) (16)

=0

This sum has to be evaluated in each particular case; the simple closed form of
the general average was due to an algebraic identity which does not apply to
the higher moments. Nevertheless, even when it has to be analyzed numerically,
it constitutes one single matrix encompassing the behavior of all the ancestors.
Particularly interesting is the fact that it is just the connectivity matrix of the
pair diagram introduced in Sec 3.4.



6.3 Higher moments
It is not hard to establish the general formula for the third moment,

k=1

my = > N(i)@N(i)® N() (17)

i=0

nor generally the analogous n'” moment in terms of the n'" tensor power sum.

However, the first two moments are the most important in view of the role of
the average and the variance in statistical analyses. Specifically, configurations
of zero variance in their number of ancestors are candidates for reversible rules.

7 Moments and frequencies

A distribution of data is characterized by its collection of moments as well
as by the individual frequencies with which the data occur; these are really
two complementary aspects of the same data set. Here, frequencies n(i) are
associated with the nonnegative integers ¢, namely the number of configurations
with a given number of ancestors. The k" moment of this data is defined by

mi =Y n(i)i* (18)

where it is understood that 0° = 1.

The second volume, second edition of William Feller’s popular book on the
theory of probability [31] contains some material on moments; an advanced
theory can be found in the American Mathematical Society Survey written by
J. A. Shohat and J. D. Tamarkin [32].

Regarding the right hand side of Eq. 18 as the inner product of two vectors,
then displaying the equations for individual moments, reveals a matrix equation

mo 11 1 ... 1 n(0)
m; 0 1 2 7 n(1)
moy = 01 4 r? n(2)
my 0 1 2 P’ n(r)

expressing the moments in terms of the frequencies. One desires a reversed
relation, expressing frequencies using moments, the more so supposing that
the moments could be calculated independently. Naturally this requires the
determination of as many moments as frequencies, in order to produce a square
matrix for inversion.
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The matrix shown is a particular case of a type which is very well known in
mathematics, the Vandermonde matrix. Its general form is

1 1 1 ... 1

Tog X1 T9 e Tp

J  — P2 2 N2 2
VvV = Ty T TR, ... TF
” ” ” ”

Ty x Ty ... @

readily invertible through the use of the Lagrange interpolation polynomials

(), defined by
(@) = )
ri(r) = ()

(x — i) (2;)

r

Zcijxj. (19)

j=0

The inverse matrix transforms moments into frequencies:

77/(0) Coo Co1 Co2 --- Cor my
n(l) c10 €11 €12 ... Cip mi
n(?) = Cog C21 C29 ... Co2p meo
n(r) Cr0 Crl Cra «eov Cpp my

(20)

It is important to appreciate the mechanism by which the product V=1V
vields the identity matrix. There are r+ 1 interpolation polynomials to evaluate
at r + 1 points; each polynomial vanishes at all the “wrong” points, while as-
suming unit value at the “right” point, namely the one for which the subscripts
match. The matrix V! contains rows of coefficients for such polynomials; in
the matrix product they form inner products with the columns of V', composed
of all the powers needed to evaluate the polynomial at some particular point.
The resultant interplay of right and wrong creates the unit matrix.

Because the ancestral datais all evenly spaced, the interpolation polynomials
specialize to the Newton polynomials v;(z),

r

viz) = H(.l—])
j=0
r+1

= > 5 (21)
j=0
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(1) =in(e)
il(r — i)l (x —1)’

whose characteristics have been nicely described, for example in Berezin and
Zhidkov’s numerical analysis text [33]. The primary polynomial v(z) is sym-
metric or antisymmetric with respect to r/2 according to its parity, oscillating
with diminishing amplitude from the origin to the midpoint, and growing rapidly
outside the interval (0, 7).

vi(e) =

The coefficient S:,Ql in Eq. 21 is a Stirling number of the first kind, as de-
scribed in Abramowitz and Stegun’s mathematical handbook [34]. The explicit
formula cited therein is fairly long; asymptotic formulas, some special values
and tables are also presented.

Since we have already seen how to express the moments of the counterimage
distribution in terms of tensor powers of the de Bruiju fragments, we have an
alternative viewpoint from which to examine the frequency of counterimages.

An important special case is that of zero variance, in which all data equal z,
say; in that case one would have my, = (rr+1)2*, for which the inversion formula
Eq. 20 would yield n(7) = (r+1)m;(x). Supposedly # would be an integer, so that
2’s actual frequency r + 1 would be recovered, all other frequencies vanishing.
Nevertheless the formula is valid for any sequence of moments which are powers
of x. such as might arise from an eigenvalue of one of the tensor power sums.

In practice, the high moments of any distribution are dominated by the
largest datum; accordingly we might expect the inversion of a moment dis-
tribution to involve the maximal frequency plus a tail composed of the lower
moments weighted by coefficients from the upper left hand corner of the matrix
V=1, These coefficients approach limiting values for large values of r, which
would be the case of principal interest; moreover they diminish factorially while
the moments increase as powers, ensuring convergence. For example, combining
Equations 19 and 21 yields the frequency n(0) corresponding to the Garden of

Eden,

r—1 "

1 i
n(0) = ﬁZS}fﬁ )mj. (22)
it

We have just seen that n(0) vanishes (no Garden of Eden) for distributions
with zero variance; the converse would be that it only vanishes for zero vari-
ance, a conclusion whose likelihood is greatly enhanced by the existence and
appearance of Eq. 22.

8 Some illustrative examples

Having succeeded in finding one single matrix for each automaton which sum-
marizes important properties of the distribution of its ancestors, it is worthwhile

20



examining some typical cases; because the 16 x 16 matrices of (2,1) automata
are unwieldy, it is convenient to make the same points with (2,1/2) automata.
We first consider an automaton with a Garden of Eden and configurations with
arbitrarily large numbers of ancestors (or), then one which has no Garden of
Eden but which is not reversible (exclusive or), and finally one which is reversible
(right shift). In due course we shall encounter nontrivial reversible automata.

8.1 Rule 14
8.1.1 Matrices.

Consider Rule 14, boolean or, amongst the (2,1/2) automata. The matrices
N(%) become

N(0) = {1 '}and N(1) = {i ”

Their tensor squares are

1 S
92N(0) = and 22 N(1) = "
1111
consequently

1.1

. A

N= 1.1

1111

8.1.2 Eigenvalues.

Evidently this rule gives 0 one ancestor, 1 three. Their squares are 1 and 9,
visible respectively as the number of nonzero elements in the individual tensor
products. The element sum of N is 10; its eigenvalues are £1, 1£+/3, contrasted
to eigenvalues 0, 1 for N(0) and (1 £ v/5)/2 for N(1).

The 27 configurations of length n will have 212 ancestors for an average of
4 each, while the sum of the squares of the number of ancestors will eventually
grow according to 2.732". The growth could be as small as a factor of 2 per
cell or as large as a factor of 4, according to whether all configurations have an
equal number of ancestors, or all ancestors map into a single configuration.

The quiescent state will have asymptotically 1.57™" ancestors (whose square
is 2.46™), an increasingly negligible proportion.

Because the mean is always constant and small, the variance, mﬁ 2 =
moms —m?, will grow asymptotically at half (square root) the rate of the second
moment, or by (1.18)", or 18% per additional cell.
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8.1.3 Frequencies.

An average splits any set of data; half is less than average, half greater. The
frequency distribution for ancestors is uniformly positive with a mean which is
always quite small in relation to the range of the data, leaving the frequency
distribution highly skewed. The following tabulation of the 512 ancestors of the
256 configurations of length 8 illustrates the point:

number of
ancestors instances weight comment
i n(1) n(i)(i —av)
0 142 —284
1 39 -39
2 28 0 average
3 16 16
4 4 8
5 7 21
6 2 8
8 4 24
9 1 7
10 2 16
13 4 44
15 2 26
16 2 28
21 2 38
89 1 87
256 0 total

At one extreme, there is a large number of ancestorless configurations, for
examnple all those containing the string 010 somewhere amongst the eight cells;
the other end boasts an outlier 1* with 89 ancestors. Indeed, some 5% of
the configurations account for half the ancestors.

The lesson to be learned is that even a few points on the high end must be
compensated by numerous points on the low end, the very lowest of which come
from the Garden of Eden.

8.1.4 Moments.

To avoid the large matrices of Sec. 7, consider just the sixteen ancestors of
the eight configurations of three cells, for which in principle a 17 x 17 matrix
is required. There are only four nonzero frequencies, shown in the following
variant of the previous table:
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—

o N = O
=N e =

which gives rise to the following moments (the residuals remain when the powers
of the dominant frequency are subtracted; the weights, to be used in Eq. 22,
were approximated from Abramowitz and Stegun [34]):

moment value residual Coj Cojmj
my 8 7 1.000 7
my 16 8 -3.381 27
Mo 76 12 4.923 59
ms 532 20 —4.159 —-83
My e 36 2.311 83 -
ms . 68 —0.902 —61
Mg e 132 0.256 34
mz .. 260 —0.054 —14
ms e 516 0.008 4
Mg e 1028 —0.001 -1

Note how the residuals are eventually dominated by the second largest da-
tum; of course the phenomenon would repeat if an attempt were made to sep-
arate more and more of the largest data from the rest. Even in this restricted
example, at least ten moments are required to approximate n(0) to the dubious
accuracy of n(0) = 1, so the procedure may not be very practical. Nevertheless
it is quite possible in theory, serving as a criterion whether n(0) vanishes or not,
and suggesting that such vanishing might be unlikely unless the variance were
exactly zero.

8.2 Rule 6

Two further examples are illustrative. First consider Rule 6, evolving via exclu-
sive or.

8.2.1 Matrices.

The de Bruijn fragments for Rule 6 are doubly stochastic, which endows them
with nice combinatorial properties:

N(0) = {l l'}and N(1) = [i l]

23



The tensor squares are now

. .. |

1 1 | and ®2 N(1) =

.1 1.

@2IN(0) =
with

] 1
N=1| 1,

8.2.2 Eigenvalues.

Each state has two ancestors, the square of this number is 4; N has the minimum
sum possible which is 8. Eigenvalues are readily calculated; N(0) is a unit
matrix, as s its tensor square which commutes with N(1) © N(1). N(1) has
eigenvalues %1; its tensor square their products in various combinations, so
that altogether IV has eigenvalues 0 and 2; indeed it is essentially (projectively)
idempotent since N = 2"~ N, This is the least rate of increase possible for
any (2,1/2) rule, conforming to the fact that every configuration of Rule 6 has
exactly two ancestors.

8.2.3 Moments.

Since every configuration has two ancestors, the moment distribution is concen-
trated on that value, and all the higher moments are powers of the first moment.
In particular, the distribution has zero variance.

8.3 Rule 12

Finally consider Rule 12, right shift, which intuitively should be a reversible rule.

8.3.1 Matrices.

The de Bruijn fragments for Rule 12 are stochastic, but not doubly stochastic.
N(0) = {1 T}and N(1) = [1‘ 1‘] :

Their tensor squares are

1111
@N@oy= | = " |and @*N(1) =
1111
consequently
1111
N =
1111
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8.3.2 Eigenvalues.

Again there are two ancestors per state, giving squares of 4 and the minimal
element count of 8 for N. This time N(0) and N(1) are idempotents with
eigenvalues 0 and 1 but they do not commute. N is nevertheless “idempotent”
according to N? = 2N; its element sum is 8 with powers growing at the minimal
rate.

The difference is that Rule 12 is reversible, via a left shift, whereas Rule 6
is not reversible at all, each different value of a boundary cell resulting in a
completely different ancestor (or no ancestor at all if the left and right bound-
aries conflict). Rule 12 is indifferent to its right boundary, but the ancestor is
uniquely determined by the left boundary. Yet both rules are surjective.

Both these rules have a pair matrix with eight 1’s, the minimal number
possible; uniformly distributed throughout the rows and columns for Rule 6,
but not for Rule 12. The difference is crucial, and is related to the observation
that rules of the Fredkin type are all constructed from groups of variables, some
of which are superfluous. Right shift does not depend upon the right cell, so
the matrices N (i) (and their tensor squares) have constant rows, bunching the
1’s in a way that does not occur for Rule 6.

8.3.3 Moments.

The moment distribution is the same as for Rule 6, also with zero variance.

9 A statistical Gerschgorin theorem

With the knowledge that the moments, especially the average and variance, of
the distribution of ancestors of a cellular automaton can be gotten from the
powers of readily obtained matrices, attention naturally turns to the matrices
themselves. Powers, not, to mention other properties, are most readily obtained
from the eigenvalues and eigenvectors of any matrix, especially from the eigen-
value of largest absolute value.

9.1 Gerschgorin’s theorem

Gerschgorin’s theorem [13], one of the most serviceable estimates for the eigen-
values of a matrix, asserts that the largest row sum of absolute values of the
matrix elements forms an upper bound for the absolute values of the eigenvalues.
It results from applying the triangle inequality to the definition,

MX =X
once it has been written out in terms of the matrix elements,

/\Ii = Z A/[,'j.fj;
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namely
Ty
A< M;; || =2
< Sl

Since not all the components of an eigenvector are zero and at least one of
them is larger than (or at most equal to) the others, any inequality in which
the largest component appears in the denominator can be further improved by
increasing all the ratios to 1, leaving

A<y
i

Inasmuch as the identity of the largest component is usually unknown, the

worst case has to suffice, giving the result which is usually quoted. Sometimes
the diagonal element is associated with the eigenvalue, leading to a collection of
disks centered on the diagonal elements whose radii are gotten from summing
the off diagonal elements in the row.

9.2 Positive matrices

Further information is available if all the elements of M are positive, or if none
is negative with an assurance of purely positive components for the eigenvec-
tor; then the minimum component can be used to reverse the inequality and
reveal the least row sum as a lower bound to the eigenvalue. So it will be for
the largest eigenvector of an irreducible nonnegative matrix, according to the
classical theory of Perron and Frobenius [14].

Statistical information concerning the eigenvalue can be obtained from the
equation just as easily as the traditional bounds; for example, suppose that the
equations for each component are summed:

/\Z x; = Z.ngwj.
i ij

With the definitions
;Z‘j

2

£ =

and

Ci=> M;

i

one obtains

A=Y i,
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provided that the sum of the eigenvector components is not zero; again it is a
foregone conclusion that the eigenvector of the largest eigenvalue of a nonnega-
tive matrix can be so chosen.

Inasmuch as the right hand side has the form of an inner product, as long
as the quantities involved are real, there is an angle 6 and vectors , and = for
which

A=

, ||Z| cosB.

Even if complex quantities were involved, there would only be alost phase, which
could be restored. In such an equation A is circumscribed by the variances of
the set of column sums, and of the eigenvector components.

9.3 The statistical theorem

Supposing that the required means and variances have been calculated, we could
write

C; = v+¢ (23)
& o= % +uj (24)
A = Y4 no.occosv. (25)
From our point of view, the interesting result is that
n
v o= % M;;, (26)
i,j=1

and that deviations of A from this value are expressible in terms of the variances,
both of the column sums and the eigenvector components.

The factor n in Eq. 25 may be disconcertingly large unless it is compensated
by considerable uniformity in the column sums and/or in the components of
the eigenvector. When either, and especially both, are small, the eigenvalues
are estimated by the element sum of the matrix. Since similar estimates apply
to all eigenvalues (with suitable modifications for complex eigenvectors whose
components do not sum to zero), it can be seen that the orientation of the
eigenvector relative to the vector of column sums distinguishes between the
different eigenvalues.

9.4 Examples

In practice it seems that o is a large fraction of v and that o¢ is on the order
of the average { = 1/n; thus v approximates A to logn decimals; the sign of the
correction seems to be positive when the relative number of ancestors is fairly
uniform, but negative when there is a large preponderance of ancestors for some
of the states.



9.4.1 (2,1/2) automata.

As an example, consider the following table of results for (2,1/2) automata,
where @ and b (¢ +b = 4) are the respective numbers of neighborhoods evolving
into 0 or 1 (v = (a* + b*)/4); the first three columns show empirical results.

ab  min
04 4.000
13 2.533
22 2.000

9.4.2 (2,1) automata.

1ax

4.000
2.737
2.000

ave
4.000
2.635
2.000

~y
4.000
2.500
2.000

For (2,1) automata, a + b = 8, while (k?")? = 16 and v = (a? + b?)/16.

ab min
08 4.000
17 2.938
26 2.400
35 2.132
44 2.000

9.4.3 (3,1/2) automata.

max

4.000
3.381
2.800
2.695
2.480

ave
4.000
3.102
2.580
2.253
2.155

~
4.000
3.125
2.500
2.125
2.000

As a further example, (3,1/2) automata, yield the following data, where a, b,
and ¢ (for which a + b+ ¢ = 9) are the respective numbers of neighborhoods
evolving into 0, 1, or 2; (k?")? = 9 with v = (a? + b + ¢%)/9.

abc

009
018
027
036
045
117
126
135
144
225
234
333

9.5 Commentary

min
9.000
7.047
5.747
5.000
4.562
5.095
4.362
3.813
3.707
3.707
3.259
3.000

max

9.000
7.519
6.110
5.531
3.266
6.002
5.283
4.615
4.854
4.854
5.000
4.002

ave

9.000
7.204
5.949
5.107
4.676
5.704
4.719
4.121
3.920
3.970
3.602
3.430

~
i

9.000
7.222
5.889
5.000
4.556
5.667
4.556
3.889
3.667
3.667

3.000

The trend seems to be favorable; generally the average value approximates the
nominal value, but there are distortions at both ends of the range which can
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be attributed to the influence of the bounds to which the tensor squares are
subject, but which would not affect a more random collection of matrices.

In order to have A = ~ in Eq. 25 it is necessary that o. = 0, 0¢ = 0, or
cos?y = 0. In the first case all the column sums will be equal, equal to the
eigenvalue, and the matrix will be stochastic. In the second case the vector
|u) will be an eigenvector, the row sums will all be constant, and again the
matrix will be stochastic. The final alternative is more interesting, requiring the
residuals in the column sums to be orthogonal to the residuals in the eigenvector,
for a matrix which is explicitly not stochastic.

10 General considerations

Both general properties of positive matrices and general statistical considera-
tions favor sharper results than the ancestral distributions taken from de Bruijn
matrices seem to justify. The reasons lie in the difference between positive ma-
trices for which strict conclusions are possible, and nonnegative matrices, for
which they may hold; and also in the strongly asyminetrical frequency distribu-
tion.

So, in spite of the encouragement given by matrix theory and Eq. 22, it is
necessary to look elsewhere for actual proofs. An ideal theoretic result, that
is, one which depends on collective properties and not on individual matrices
themselves, has been published by Michel Dubois-Violette and Alain Rouet [35];
similar reasoning had already been used by Hedlund [7], was recounted by Nasu
[8], and was probably the basis of Amoroso and Patt’s assertion [22] regarding
the balancing of counterimages (they cited an unpublished laboratory report).

Nasu has shown [36] that the argumemts, ostensibly valid for de Bruijn
diagrams, actually apply to any graphs for which the numbers of incoming and
outgoing nodes are themselves balanced. In all cases, the important connection
lies between the variance and n(0); otherwise understood as the fact that when
every configuration has at least one counterimage, the number of counterimages
is uniform.

10.1 The de Bruijn fragments

Once there are matrices from which the properties of counterimages may be
deduced, the deduction usually takes the form of ascertaining eigenvalues, and
occasionally, eigenvectors. For example, according to whether the largest eigen-
value A; of N(7) is greater than, equal, or less than 1, the number of counterim-
ages will inevitably increase, remain stable, or decrease. As it lies in the range
from 1 to k. the rate of increase will range from modest to drastic.

The statistical Gerschgorin theorem, Eq. 26, estimates \; as [0~ '(i)|/k*"
(— — denotes cardinality), which would yield a value of 1 only for balanced
counterimages. Although this estimate is subject to considerable variation, it
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gives a good indication of the degree to which a configuration profits from having
cells with numerous ancestral neighborhoods.

Setting aside considerations of eigenvalues for the moment, consider the sum
545 its value for each matrix or product of matrices is a nonnegative integer. Its
least value m surely satisfies

k=1
m < 111i(1;1<u|N(i) u)
1=

and could well be as small as zero — the Garden of Eden case.
Consider further a configuration whose cells were in states {i1, iy, ... is}, the
number of whose ancestors would therefore be m = (u|P|u) for

P = N(i1)N(iz)... N(is).

The extended configuration produced by adding one additional cell at the
right in state ¢ will have m = (u|PN(i)|u) ancestors; then the expected number
of ancestors averaged over all such extensions is

1kt 1 k—1
EZ(U|PN({)|U> = Z<U|P ZN(,‘) |u),
i=0 i=0
*(ulPD]u)
= —{u u
k;
= m

because the N(¢) sum up to the de Bruijn matrix, whose eigenvector u has the
eigenvalue k.

At this point, note that averages lie between the maximum and minimum
of their data, reaching either extreme only if all the data are equal. This is the
first part of Dubois-Violette and Rouet’s [35] result. Such being the present
situation, any single (and by induction, finite) extension of a minimal ancestor
configuration also has a minimal number of ancestors.

In the worst case, an extended Garden of Eden is still a Garden of Eden,
an observation already clear from the subset diagram, not to mention the con-
sequence of multiplying by a zero matrix. The main point of this new result is
that it is not possible to gain ancestors by taking longer configurations, then
suddenly lose them; at least not for minimal configurations within a de Bruijn
diagram. For others, counterexamples exist.

Although the proof shown is right sided, the left sided version is entirely
similar. The proofis also completely symmetrical between maxima and minima,
with the difference that a minimum is assured whereas a maximum is not.

The foregoing analysis then establishes the set A, consisting of all P for
which s,(P) takes the minimum value as a two sided ideal. By this we simply
mean that

PeAnn = 54(PQ)=s4(QP)=m.
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If Anax exists, it too must be a two sided ideal; from
Pe 44111111-, Q € —4111ax

and taking n as the maximum number of counterimages follows

m = gmax(PQ)=n.

The existence of ideals makes it hard to find matrices which are not absorbed
into the ideal because those lying outside the ideal can only be formed from
certain products of N(i); of course when m = 0 the subset diagram provides a
map showing just which matrices to choose and which to avoid. Furthermore,
multiplication by zero is a drastic action whose role in defining ideals can be
readily understood, but one might conjecture that those are the only kinds of
ideals that there are. In other words, ideals depending on m > 0 would have to
be null or else encompass the whole space.

10.2 The second moment

To obtain an ancestor census directly, it necessary to deal with k different ma-
trices N (i) together with all their possible products; their compliance with the
general properties of nonnegative matrices is frequently complicated by their
reducibility. Fortunately the single matrix N characterizing the second moment
subsumes the properties of all these individual matrices and their products; dis-
covering its general properties avoids most of the more detailed calculations,
although its own reducibility is still a possibility.

The basic conclusion that the eigenvalues of N lie in the range from k%" to
B2 s quite easily established.

The lower limit follows from the fact that the diagram of identical pairs,
{(a, a)} is a subdiagram of the diagram of arbitrary pairs, {(a,b)}. The de Bruijn
matrix of the former, whose maximum eigenvalue is %, is a principal submatrix
of the pair matrix, whose maximal eigenvalue must therefore be equal to or
greater than k%", Since the lower limit corresponds to zero variance, it can only
be reached when each of the matrices N (i) contains exactly k" links (and thus
N contains exactly k(k*")? links); a necessary but not sufficient condition.

The upper limit follows from Gerschgorin’s theorem, taking into account the
fact that there are at most k% incoming (or outgoing) links from any node in
the pair diagram. However, if each node has that many links, all neighborhoods
must evolve into the same state, so that the upper limit is associated with
automata evolving to a constant field within one generation.

The tables of Sec. 9 confirm these limits, as well as showing a general dis-
tribution of eigenvalues reflecting the number of ways that the total number of
states of any given cell can be partitioned amongst the individual states.
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10.3 Zero variance

We have seen that if the number of ancestors of whatever configuration is
bounded, all states have the same number of ancestors. Otherwise the num-
ber of ancestors would increase as the length of the configuration increased, in
agreement with the rate implied by the largest eigenvalue of N. The possibility
is still open that there is no upper limit but that the lower limit might not be
so small as zero, implying that every configuration has at least one ancestor.
This would create a peculiar but not impossible statistical situation wherein an
increasing variance did not imply spreading of the data on both sides of the
mearn.

For automata, a contradiction can be deduced by confronting a configuration
with many ancestors with one with minimal ancestors; many ancestors should
lead to still more in a composite configuration, but they cannot because of
minimality.

Thus, consider any matrix P, some matrix @ € Ay, and a certain abuse of
notation with respect to the evolutionary function . Then if m > 0 there are
words P € o' (P) and Q € »7'(Q) plus a matrix M, for which

o(QP) = QMP.
The idea of selecting a fixed @), varying P, and exploiting the fact that
54(QMP) = m will not work because a counterimage ¢ ' (M) of the bridge M

will not necessarily mesh with every P. However if the left hand element of P
is fixed, an accounting can be made. Therefore let

P = NI,
N € ¢ Y{(N()),
P = AA"'p.
Once again
©(QNp) = QMP,

whereupon it may be concluded that

sg(9(Np)) < m

on account of the fact that these are only some of the items making up the
counterimages of the extension QM P. This inequality contemplates all the
choices of p for a fixed N, but there could be as many as k2"1 choices of N.
All together, independently of P,

sqg(P) < mk?r L

which is the upper bound necessary to conclude that whenever m > 0 there
are equal numbers of ancestors for all configurations — exactly &2". This is the
second part of Dubois-Violette and Rouet’s [35] result.
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10.4 The essential result

Somewhat special arguments finally establish the relationship between zero vari-
ance and zero ancestors for automata, namely that the number of ancestors is
either uniform for all configurations, or else that there are some configurations
with no ancestors at all. As special cases, if the distribution of ancestors for a
single cell is not balanced, there must be a Garden of Eden (but not conversely);
and a reversible rule will lack a Garden of Eden (but not conversely).

Mathematically, evolution is called surjective if every configuration has an
ancestor, injective if it has only one. The essential result states that surjectivity
requires uniform numbers of ancestors, at first sight incompatible with injectiv-
ity and so with reversibility as well. Reversibility can only be reconciled with
uniformity if there is an edge effect; that is if multiple ancestors differ only in
a remote boundary layer. The simplest layer would reflect the overhang due to
the greater size of neighborhoods relative to cells. Of course another source of
injectivity would be to eliminate all but one of the alternatives, by requiring
periodicity, or quiescence at infinity, for example.

Zero variance is equivalent to the maximum eigenvalue of N assuming its
minimum value, k2", This in turn implies that the maximum eigenvalue of the
matrices N(i) is 1, but not conversely. There are consequences in turn for the
properties of the subset matrix and the pair matrix, which is the same as the
second moment matrix.

11 Pairs of states

The second moment matrix is also the connectivity matrix for pairs of states
discussed in Sec. 3.4, just as the third moment matrix corresponds to triples
of states, and so on. No less than restrictions on possible pairs of sequences
implied by zero variance, observation of the same limitations in practice can
serve as an indicator of zero variance, and consequently of a surjective rule.

11.1 Partitioned pair matrix

The tensor product of the connectivity matrices of two diagrams is the con-
nectivity matrix of their cartesian product, wherein pairs of nodes are linked
according to whether both members of the pair are each linked in their own
diagram. Sometimes a careful arrangement of the nodes in the tensor product
will partially diagonalize the connectivity matrix, rendering some property of
the arrangement more evident than it would otherwise have been.

A case in point consists in grouping all the pairs composed of equal elements
together in a subset A, and the rest into the subset 5. It then becomes evident
whether links in a tensor square describe pairs of links in the original diagram
which have a node in common by linking A to B or the reverse, both nodes in
common by linking A to A, or neither by linking B to 5.
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Partition D @ D accordingly

pen = [0 9]

and consider the eigenvalue equation with a similarly partitioned eigenvector

P Q T _
R S 78 y |
The following submatrix equations are the result:

Pa+ Qy =\
Rx + Sy = Ay.

If A is already an eigenvalue belonging to P, it follows that Qy = 0; whether
this requires that () = 0 depends somewhat on §, but the condition is quite
sufficient. If X is not an eigenvalue of S, S — Al is invertible whence y =
—(S = A)7'Rx and Q(S — M)™' R would have to be singular unless y were 0.

Consideration of a left eigenvector leads to similar conclusions regarding §R,
while if A is an eigenvalue of S as well as P, Rz must vanish. Broadly speaking,
if either of the diagonal submatrices already has the eigenvalue, it had better
be decoupled from the other, but the details of the uncoupling can get messy.

In practice, another line of reasoning is slightly more compact. Consider

P?+ QR PQ+RS]

@ 2
(D2 D) = [RP+SR RQ + 87

If P were a de Bruijn matrix it would be an irreducible nonnegative matrix
and P% 4+ QR would have a maximum eigenvalue strictly larger than A? unless
@R =0; Q =0 or R =0 would be sufficient. In any event, continuing shows
that

(D @ D)3 _ mi 12 .
- ma; Moy |
with
miq = P3 + QSR
miz = P?Q+ PRS+QS5?
ms; = RP?+ SRP+ S*R
myy = RPQ+ R*S+ SRQ+ S
Gradually the series of requirements
QR = 0,
QSR = 0,
QS*R = 0,
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develops, which can be summed to recover
QIS—=A)"'R = 0. (27)

The very slightly stronger result is due to the additional knowledge about P.

To illustrate this result with respect to the three rules of Sec. 8, rearrange the
indices of the matrix N to group paired indices (a, @) and then complementary
indices (a,@); we obtain

rule 14 rule 6 rule 12
1 1. . 11 1 1|1 1
1 1|1 1 11 . 1 1|1 1
1. 1 PR I | P
111 . P I R

The off diagonal submatrices for Rule 14, for which QR # 0, force an eigen-
value larger than the minimum, whereas the other two matrices are partially
diagonal and maintain the minimum value. Rule 6 is self-complementary, as
evidenced by the equality of its diagonal submatrices P and S.

11.2 Symmetry by permuting states

As the use of the complement in creating these examples shows, a tensor square
can be further refined if the basic diagram has an isomorphism, which is to say
a permutation of its nodes resulting in the same connectivity matrix; for binary
automata such an isomorphism results from complementing the individual cells.
For k > 2 there are increasing numbers of isomorphisms, k! in fact, whose
presence can be detected in the full de Bruijn matrix and all the other moment
matrices associated with it. Nevertheless if an individual rule lacks some or all
of this symimetry, it will be missing from N and its analogues.

The pair matrix of Sec. 3.4 can be rearranged along these lines, which is to
say that it is equivalent to the following matrix, gotten by listing first all the
pairs of the form (a, a), last all the pairs of the form (a, @), which is the only other
permutation of binary values. The remaining pairs are laid out symmetrically
in the middle.

As before, the possible pair matrices all conform to a common pattern,
which arises for either Rule 0 or Rule 255. Since the pair (a,b) links to the
pair (c¢,d) ouly if a links to ¢ and b to d via the same symbol, the pairs of
pairs actually linked will vary from rule to rule. Furthermore there are some
additional symimetry requirements for the formation of pairs: if (a,b) links to
(¢,d), then (b, a) must link to (d,c) and a similar requirement due to transitivity.

With this new ordering, the pair matrix for Rule 22 becomes: (1’s belong
to the actual pair matrix, while x’s indicate the extent of the maximal possible
matrix)



N =

The submatrix in the upper left hand corner is always present for whatever
Rule (the lower right submatrix is filled out for Rule 150, just as it would be for
any other rule symmetric by conjugation), no matter what other elements are
deleted from N on account of the structure of N(0) and N(1). Accordingly, no
row sumn can exceed 4, so by Gerschgorin’s theorem, the largest eigenvalue of N
will be bounded by 4. The limit can only be reached if all row sums are equal,
thus only for Rules 0 and 255 (evolution into constants).

On the other hand the diagonal submatrices have a uniform row sum of
2, which must be their largest eigenvalue; alternatively the first and last are
just de Bruijn matrices, from which the same result follows. By a theorem in
Gantmacher [11], this establishes a lower limit for the greatest eigenvalue of N,
which must exceed the eigenvalues of any principal minor.

Of course there is an especial interest in conditions in which this lowest
limit is maintained; so far it has not been possible to characterize the matrix
N sufficiently to decide other than in special cases or by numerical calculation.
The general result of Sec. 10 is the best known, that the minimum eigenvalue
which already implies surjectivity, implies uniform distribution. The converse
is not valid, most uniform distributions lead to higher eigenvalues.

11.3 Characterizing surjective rules

Some consequences of zero variance are easily described. First and foremost, no
path beginning in the subset A can ever return, because that would violate the
reasouning leading up to Eq. 27. In other words, if two ancestors of a configu-
ration initially coincide  even for a single partial neighborhood  and later
diverge, they can never recombine. Seen from another point of view, no product
of the matrices N(7) can ever have a matrix element as large as 2 while the rule
has zero variance.

A similar prohibition applies to a pair of isomorphic ancestors; it is only
necessary to replace A by the set {(a, f(a))}.
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It is also necessary that the matrix § corresponding to the subset B not have
an eigenvalue exceeding that of a de Bruijn matrix, which can be checked in any
particular case, but not as easily when it is a general proposition. Essentially,
the requirement is that mixed ancestors not proliferate more rapidly than single
ancestors as the length of a configuration increases, which would clearly be
possible if sections of an ancestor could be freely substituted for one another.

12 The subset matrix

Whether an automaton has a Garden of Eden can be decided at once from
its subset diagram, or the algebraic properties of its subset matrix. For most
automata the empty set will be accessible from the full set (implying a Garden of
Eden), and there will not be that much interest in the remaining structure of the
diagram. Contrarily, for an automaton with zero variance and a surjective rule,
the very fact that the empty set can be avoided introduces additional structure
into the diagram. For example, what are the largest subsets which lead to the
empty set? What are the smallest subsets reachable from the full set? What
relationships exist between subsets with similar characteristics?

12.1 Maximal node diagram

Recall that nodes in the subset diagram are sets of nodes from the original dia-
gram, linked whenever each node in the tail subset joins some node in the head
subset; paths arise from successive links. Call nodes in the original diagram
points to distinguish them from nodes in the subset diagram. In the subset dia-
gram of a general rule, multiple links can emanate from a single point, multiple
links can also converge to a point; indeed this is the reason subset diagrams
were invented, to ensure simple links between subsets.

For a surjective rule, however, only one path can run between a given pair of
endpoints, one of whose consequences can be seen by factorizing a path between
two nodes. Let the path x run from nodes U to V, continuing on to node W,
via y (anticipating a variation of y).

Count the paths between points due to zy in two ways: Take U = {u} as
a unit class to eliminate ambiguity in the starting point, then either proceed
directly to W, = xy(U), or interrupt the path with a stopover at V = z(U).
The essential point is that there can be only one interrupted path. Now vary y,
supposing only that it is a path of length p:

Z Wyl =
y

This equation expresses an average, so that the argument applying to aver-

‘/7

kP (28)

ages of extreme quantities can be used once again: if V' is a node of maximal
cardinality, all the terms of the average must assume the same value.
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Paths leading from a given unit class will not all reach maximum nodes; those
which do will not necessarily do so immediately. Finiteness of the diagrams
ensures that there is a short path ~ shorter than the cardinality of the diagram
— leading from any node to the maximal node accessible to it. Once a maximal
node has been reached, further links will trace out paths confined to a class of
nodes of the same cardinality.

Since the de Bruijn diagram itself is connected, there is only one maximal
class, irrespective of the unit class from which it was derived. The reason is
that one can find paths which alternate between maximal nodes in the subset
diagram and individual points in the de Bruijn diagram. yielding a derivation
of any maximal node from any point, and of one maximal node from any other;
thus the maximal class is connected, and there are maximal subsets containing
any given unit class.

Not all paths lead from unit classes to the maximal class; the fate of paths
from other subsets may also vary. When the subset in question is larger (setwise)
than maximal (in particular, the full set) we know that its eventual images must
remain larger than maximal; their images do not necessarily have to lead into
the maximal class, however.

12.2 Left and right indices

In any event, the maximal class with its links is an image of the de Bruijn
diagram, containing all the same paths as the original, but possibly with fewer
nodes. The cardinality of the maximal subsets has been called [7] the index
of its Rule; strictly the quantity which has been described is a right index,
reserving the term left indez for the analogous quantity derived from the reversed
subset diagram. The handedness evidently refers to the direction in which a
configuration would be extended to get a longer configuration.

The two indices need not be equal. For instance, both indices of (2,1/2)
Rule 6 (exclusive or) are 1, but for Rule 12 (right shift) the left index is 1 while
the right index is 2.

It is worthwhile understanding the significance of an index and the reason
that the two can differ. Fundamentally, the index is the number of different
partial neighborhoods which have to be grouped together to reinforce each other
if an arbitrarily prescribed configuration is to have an ancestor. For the right
shift of Rule 12, extension to the right is pointless if the leftmost cell cannot be
arbitrarily chosen, a possibility assured by the index of 2. For left extension the
rightmost cell is irrelevant because it will be replaced immediately; any choice
will do and the index is 1.

Continuation in either direction from whatever initial cell is always possible
for Rule 6, so both its indices are 1. The consequence, however, is that the
ancestors resulting from such freedom are all essentially distinct. By contrast,
Rule 12 has only one ancestor; the necessary flexibility to construct it must be
retained in the set of partial neighborhoods made available at each stage.
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13 Reversing a rule

So far, the rules which are candidates for reversibility are those for which there
is no Garden of Eden; one cannot determine an ancestor for a configuration
which has none, which precludes a rule which purports to do so. Among those
which remain, the equidistribution rule applies. We have seen that there are
environments which could restrict the number of ancestors, such as a quiescent
infinity or a cyclic automaton. Still the examples constructed in Sec. 2 produce
a unique inverse without reference to any boundary condition, which is a gen-
eral alternative which must be considered. Evidently the apparent variety of
ancestors is illusory; the mechanism must be investigated.

13.1 Two (2,1/2) examples

Some surjective rules are injective, others are not. As an example of the first
kind, consider (2,1/2) Rule 6, and sowme of the products of ancestor matrices.
Recalling the definition of s(m);; in Eq. 12, there is either a left or a right
ancestor matrix; choosing the right handed version, s(m);; = j when ¢(i,j) =
m, ¢ otherwise. Accordingly,

s(0) s(1)
23] o]
o1 o .
The four pair products are
5(00) 5(01) 5(10) s(11)

Here the detail of interest is the fact that neither the left nor the right mem-
ber of the matrix elements in s(ij) is consistent, nor does any such consistency
arise for any of the higher order products (note that row and column indices
must also be taken into account when judging consistency). Consequently one
concludes that this rule does not have a general purpose inverse.

Repeating the display for (2,1/2) Rule 12 produces

s(0) s(1)
01 . :
. 01
5(00) 5(01) 5(10) s(11)

00 01 10 11 o o
o o 00 01 10 11 |-
This time, there is a consistency in the left member of each ancestral pair, so
that each evolved pair has a unique ancestor which can be used as the evolved
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state of the inverse rule, and all this quite independently of boundary conditions.
Note that once consistency is found, it persists for all longer products.

13.2 A (2,1) example

The only reversible rules for (2,1) automata are trivial, but nevertheless still
instructive. Consider Rule 204, whose evolution is stasis,
11

a=D(0) = 1 1 ; b=D(1) =

These matrices are not permutation matrices nor even stochastic, since nei-
ther row sums nor column sums are constant. Nevertheless they are idempo-
tent and generate a semigroup of four matrices of similar appearance, namely
{a,ab,ba, b} with the multiplication table

| a ab ba b

al a ab a ab

ab| a ab a ab .
ba | ba b ba b
blba b ba b

Consequently, every product has four counterimages, seemingly contradict-
ing the claimed uniqueness. However, we need to form new symbolic matrices,
which show the ancestral cell rather than the evolved cell; this ancestral cell is
the central cell of the ancestral neighborhood, which can be read off from the
indices of the de Bruijn matrix.

For Rule 204, these matrices are

they already display the crucial property: every counterimage of 0 is 0, whilst
every counterimage of 1 is 1. Therefore Rule 204 is invertible by a (2,0) au-
tomaton, which is not surprising since it is really a radius zero automaton itself.
Trivial in the present instance, the property is once again: there exists some
word length r for which every word in the product of r a’s and 3’s has the
same central symbol. For this to work r must be odd, but inversion could be
combined with shifting so that shift inverses also exist.
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13.3 A (2,1) counterexample

Symbolic matrices can also be used to prove that a rule is not invertible; consider
Rule 30 once more:

o . . 0

With little effort one can establish that
0"
s(1") =
"0 1" 1"

for n > 1. Given that the configuration 1* will always have some ancestors in
which 1 remains 1 and others in which 0 becomes 1, there is no neighborhood
length for which the ancestral cell is uniquely determined. Therefore Rule 30
cannot be reversed, in spite of the fact that every configuration has a unique
ancestor whenever its external environment is specified.

13.4 Test procedure

It is evidently possible to check the powers of more and more complex words
to see whether there is a possibility of inversion; If 0" admits inversion for
some particular values of n, 1" can be tested, then (01)", and so on, always
noting the least common multiple of the admissible values. Eventually enough
combinations may be examined to reach a decision: some word is impossible to
resolve, or enough words have been analyzed to know that there is a length of
neighborhood for which the ancestor is unconditionally unique, and the inverse
Rule can be read off according to the sequences of as and s in which the unique
values occur e.g., if the middle letter in each element of the symbolic matrix
aff is 0, ¢(0,1,1) = 0 for inverse evolutionary function ¢.

Fortunately there is an upper bound to the lengths of words which must
be tested, making eventuality a certainty. Consider the matrix product o&7
corresponding to a particular counterimage; given that the pth letter is the
same for all the words in the full product, let £ be the pth factor. Decompose
¢ into a sum & = v + € in which v contains the symbols which will be lost, and
€ those which will survive; o7 must vanish leaving oer = g€7. There may be
symbols common to v and €, but € must contain one and only one of them, 0
say.

We are interested in showing that an excessively long o or 7 can be shortened;
such a demonstration would be akin to shrinking a long path through the vector
subset diagram by excising loops, whereby a loop free path would be minimal.
But that is not the way to our proof, which is independent of the diagram.
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Rather, note that our matrices are sparse, in their numerical version all matrix
elements are zeroes or ones, with exactly k ones per matrix. All their possible
products are postulated to have the same property; yet there can only be just
so many such matrices of a given dimension.

Some of them are original de Bruijn fragments, others exist only as products,
but each of them will have a product of shortest length generating it. Let N
be the maximum length of the shortest products generating the multiplicative
closure of the de Bruijn fragments. Now replace both ¢ and 7 by minimal
equivalents through the process of converting them to numerical form, finding
the minimal product, and forming the symbolic product all over again. This
will naturally shorten and alter any ancestors being represented; call the new
products & and 7.

The important property of these new chains is

oyr =0 = ay7 =0,

since the vanishing of the products depends on the placement of their nonzero
elements and not their value, even when it is symbolic. In turn new position p
is guaranteed for which every matrix element

6T = O€T

has the same symbol for its pth letter, all within a neighborhood of no greater
length than 2NV + 1.

It may still happen that every ancestor has a position with a unique ancestor,
but that the positions do not coincide. But then padding may be inserted to
extend the neighborhood either to the right or to the left in such a way as to
give them all a common centering. Should this be necessary one will simply
have an inverse rule which is insensitive to the values of certain cells.

In practice none of this rearrangement has to be carried out; the possibility
that it can be done simply shows that there is nothing in a very long or irregular
neighborhood whose equivalent would not already have been encountered in a
systematic sweep through short neighborhoods.

13.5 Use of the pair matrix

Most of these conclusions can be summarized by referring to the pair matrix once
again. Nasu [8] outlines such a process, referring also to the concept of definite
automata [37], which is explained at some length in Zvi Kohavi’s textbook [38]
on automata theory. He uses the unordered pair matrix, but the conclusions
are the same.

If a path is started in the subset B of distinct pairs, it may remain within that
subset or it may wander into the subset A of identical pairs; if it does so there
must be no possibility of returning to the original starting point. Otherwise the
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pair matrix would not have the minimum eigenvalue required for zero variance
and surjectivity.

In the case that the path remains within 5, it must eventually close into
a loop, demonstrating that there must exist configurations with two different
ancestors. No matter that some paths may wander into A; the rule cannot be
injective. The alternative, that no path originating in 5 remains in B, means
that it is eventually trapped in A. Subsequent, return to B would force a second
visit to A, in violation of zero variance. For such automata, cannot be two
ancestors, distinct except for their initial and terminal segments. This is the
true case of injectivity.

Rules which are not injective, but lack the full multiplicity which is theoret-
ically possible can be detected by using a diagram of triples or higher multiples;
whether there are subsets of degenerate multiples which trap the trajectories
must be investigated.

14 Conclusions

There are two noteworthy aspects of reversibility. One is that there exists a
very elaborate and technical theory of injective and surjective mappings which
has not dealt extensively with particular examples or applications. On the
other hand a variety of empirical methods have been discovered for producing
reversible automata, without having had a very extensive theoretical foundation.
It would be helpful to reconcile these two tendencies.

The other aspect is the extent to which the theory of reversible automata
has been treated in isolation from other cellular automata. This has probably
been due to the very special nature of the proofs required, which do not leave
much latitude for exceptions or approximations. Nevertheless one doubts that
a binary automaton with 1,024 neighborhoods, 511 of which evolve into 0 and
513 of which evolve into 1, is that much different from an automaton whose
counterimages balance. In other words, there should be a statistical continuum
accounting for nearly reversible rules, almost surjectivity, and the like.

14.1 Surjectivity

Surjectivity is the important concept; injectivity is subordinate and can be
treated later. The differences between cyclic, quiescent, and general boundary
conditions are likewise secondary. In the analysis which we have presented,
the results depend upon the frequency distribution of counterimages, and con-
sequently upon its moment problem. The moments can be estimated from
fragments of the de Bruijn matrix, determined individually for each automaton.

There are two tantalizing aspects to the problem so formulated. If the ma-
trices involved were irreducible and not just nonnegative, several strong conclu-
sions would be available which have to be established by other means. Likewise
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if more information about the moments existed, useful conclusions could be
drawn about the existence of gaps or other nonuniformities in the frequency
distribution.

In spite of the lack of convenience, the primordial connection between zero
variance (balanced distribution of counterimages) and surjectivity (lack of a
Garden of Eden) can be established by arguments which still make use of fun-
damental properties of the de Bruijn matrix. Moreover, the proofs are still quite
relevant to the moment problem; for example the knowledge that the variance
increases exponentially with the length of a configuration leaves zero variance
as the only bounded possibility.

It may still be a surprise, even to those who have calculated numerous subset
diagrams and perhaps read Amoroso and Patt’s paper [22], that an unbalanced
evolutionary rule necessarily has a Garden of Eden.

14.2 Injectivity

Once surjectivity has been established, there is no doubt that the uniform mul-
tiplicity of counterimages is precisely what would be expected from the size of
the partial neighborhoods bounding a finite configuration. Ways exist through
which the multiplicity may be rendered ineffective; one is to terminate the con-
figuration with quiescent neighborhoods, another is to close them with a cyclic
connection. Fixed boundaries and phase relations in the closure (e.g. the left
boundary is the complement of the right boundary) are other alternatives which
could be considered.

All the foregoing mechanisms involve selections from a naturally occurring
set, of boundaries, but there is also the possibility that the boundaries don’t
really matter. In other words, aside from a finite boundary layer which would
be arbitrarily remote from the center of a very long configuration, the different
ancestors could just happen to agree. Surely this is what is happening in shift
rules or the identity map, and is clearly provided for in rules of Fredkin’s type.

Boundaryless injectivity, or one might say, injectivity with a natural bound-
ary, can be tested in one of the pair diagrams. Since the ordered pair diagram
is coincidentally the second moment matrix, the condition of zero variance im-
poses a direct condition. Just as the empty set, implying a Garden of Eden,
must be met in a limited number of steps (if at all) in the subset diagram, a
pair of ancestors must either coalesce within the confines of the pair diagram or
encounter some means of coexisting.

Apparently the decision to use a boundary condition should be postponed
as long as possible; the eventual choice may be that much simpler.

14.3 Additional comments

The role of topology in treating the evolution of cellular automata is not entirely
clear. Hedlund gives it a central role in his fundamental survey [7]; it is basic
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to such further articles as those of D. Richardson [39] or Tadakazu Sato and
Namio Honda [40], and has been used by Karel Culick II [41]. It does seems to
be required for the satisfactory description of the limiting behavior of long time
evolution [42, 43, 44].

On the other hand Nasu [8, 36, 45, 46] has been able to obtain extensive re-
sults without using topology, at least for one dimensional automata; the present
paper likewise demonstrates that no topology is required. We are left with the
question of whether there are significantly different results to be obtained from
the use of topology or whether topology simply provides a convenient language
to express results which could be derived independently. However, this is a topic
for a future study, just as is the question of handling two dimensional automata
via two dimensional de Bruijn diagrams.

There are also important questions about the applications and the philo-
sophical implications of reversible automata, a preoccupation of Toffoli [20].
Two recent articles addressed to these points are those of Asher Peres [47] and

Shinji Takesue [48].
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