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Abstract

The de Bruijn diagram describing those decompositions of the neighbor-
hoods of a one dimensional cellular automaton which conform to predeter-
mined requirements of periodicity and translational symmetry shows how to
construct extended configurations satisfying the same requirements. Similar
diagrams, formed by stages, describe higher dimensional automata, although
they become more laborious to compute with increasing neighborhood size.
The procedure is illustrated by computing some still lifes for Conway’s game
of Life, a widely known two dimensional cellular automaton.

1 Introduction

Public attention was drawn to cellular automata by Martin Gardner’s monthly col-
umn Mathematical Recreations, a regular feature of Scientific American for many
years. The October, 1970, issue[2] featured the game of Life, which had been
invented about that time by the British mathematician John Horton Conway. Suf-
ficient interest was aroused by the game for it to be followed up in several later
columns, and to support a newsletter[§] for nearly three years. Gardner’s columns
have now been collected into one of the compilations that are regularly published
by W. H. Freeman and Company[3], while Conway’s own version of the game is
available in the recent Academic Press book[1l] Winning Ways.



However, there had been much previous interest in cellular automata, begin-
ning at least with the work[5] of Warren McCulloch and Walter Pitts on neural
nets, later including John von Neumann’s investigations[6] into self reproduction
and automatic factories. Interest still continues, a recent example being Stephen
Wolfram’s examination[10] of one dimensional automata from the point of view of
chaos in complex systems theory.

One of the fundamental expectations in the theory of automata is that the
automaton will eventually settle down into a fixed cycle of states, which will then
characterize its long term behavior. Some modification of this principle must be
expected for infinite automata, nevertheless the search for states of low period
constituted an important part of the activity inspired by the announcement of Life.
Someone with a crystallographer’s frame of mind might well have undertaken a
classification of all such states, beginning with those of period 1, which Conway
called “still lifes.”

This article describes how such a classification can be obtained.

2 Cellular automata

Mathematically, an automaton consists of a set of states, together with a set of
mappings of the state set into itself. Each mapping is identified with a signal, which
is supposed to cause a change of state. Signals can therefore be considered as inputs
to the automaton, which in turn could be considered as a neural net, an electronic
circuit, or some other structure. In that case, outputs might also considered, and
altogether the groundwork has been laid for some kind of fundamental theory of
computation, or at least of computing devices. Much of the theory of automata
procedes in that direction.

Cellular automata are those for which a large number of similar automata the
cells—are connected together in some regular pattern, and for which the signals are
the information which each cell has concerning some of its neighbors, most likely
including selfawareness. From time to time the cells change their state, according
to this knowledge. McCulloch and Pitts would have the connectivity of the cells
modelling some physiological system, but lacking definite structures to follow, the
tendency has been to use crystallographic lattices of low dimension. Von Neumann
worked with two dimensions, which was also the arena for Conway’s game.

Life presupposed binary cells occupying a two dimensional square lattice, the
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neighborhood of each cell consisting of itself, four lateral neighbors, and four di-
agonal neighbors; a total of nine cells altogether. Many other combinations are
possible, but Conway chose one of them, as well as a particular rule of transition,
for his game after discarding many alternatives. Adopting his picturesque ecological
metaphor, binary cells are either dead or alive; in each generation,

e new cells are born to three live “parents”
e old cells survive if they have two or three live neighbors
e all other cells either die or remain dead

There are 2%, or 512, different combinations of dead and live neighbors. Each
combination can evolve in its own way, giving the enormous number of 22" differ-
ent rules, or games, which Conway could have chosen; nevertheless that one choice
has lived up to his expectations of finding an interesting game. Part of the choice
consisted in selecting a symimnetric rule; it is reasonable to suppose that a square
lattice would evolve similarly if it were rotated or reflected, as well as if any config-
uration were shifted to on side by a given distance. Beyond this, the rule depends
on numbers of live neighbors, not on particular groupings.

Whatever the reasons for choosing one rule in preference to another, the analysis
which follows is applicable to all cellular automata; so Life just happens to be
a particularly interesting special case. Consequently its results are available for
comparison and checking against other rules.

3 Still life

For any given rule of evolution, some cells will retain their existing state, while
others change; generally there is no correlation between the two alternatives, giv-
ing the automaton a different appearance from generation to generation. Still, it
could happen that there are particular combinations which remain immobile. One
such, deliberately included in Conway’s choice of a rule, is that if a cell and all its
neighbors are dead, it remains dead. Automata which follow this requirement are
said to have a quiescent state; live cells cannot appear spontaneously, but only near
other live cells.

A quiescent state is not usually considered to be a still life; the latter term is
reserved for collections of live cells for which cells neither die nor are born with
succeeding generations.



It is curious that the simplest possible approach, if managed properly, suffices
to enumerate the still lifes for an automaton. To begin with, neighborhoods can be
classified as “good” or “bad” according to how their cell evolves. For the moment,
a good neighborhood is one whose cell remains fixed; a cell that changes state is in
a bad neighborhood. Obviously we are only interested in good neighborhoods.

The next step checks the neighborhoods of the neighbors; but not all pairs of
neighborhoods overlap consistently. Only good neighborhoods that overlap well
need be considered. The direct approach procedes along some path, fitting good
neighborhoods together until an inconsistency results. By backtracking and con-
sidering alternative neighborhoods, it might be possible to generate a whole region
which is unaffected by evolution. Trying again and again until all the possibilities
are exhausted would eventually produce a complete list of static regions.

The whole plane can never be covered by this process; but it would be possible
to stop when a quiescent border was reached, or even if the region began to repeat
itself after a certain distance. So, at the very least, it should be possible to find all
the still lifes covering a fixed area. Of course, the quantity of computation required
grows exponentially with the area to be covered.

Giving first priority to the compatibility of overlapping neighborhoods, later re-
jecting those whose evolution is not satisfactory, places the computation on a firmer
foundation. In either case, there is a simple diagram from which the compatibility
of neighborhoods can be ascertained.

4 De Bruijn diagram

The representation of overlapping sequences and the establishment of some of their
properties is facilitated by using a diagram which is often called the de Bruijn
diagram, or its associated connectivity matrix. The concepts involved have had a
fairly long history|[7]; sometimes the diagram is given other names.

Basically, a diagram is prepared whose nodes represent short segments taken
from a sequence; an example would be a string of three binary numbers, eight
nodes corresponding to all the possible sequences. Links are drawn in the diagram
according to the ways that the first member of the sequence can be discarded, and a
new final member appended; it is natural to label the links by the longer segments,
including the discarded and adjoined elements.

In this binary example, 0 could be discarded from the sequence 011; then 0



adjoined to produce 110 or else 1 to produce 111. Accordingly 011 would be linked
to each of the nodes 110 and 111, but no others. The first link would be labelled
0110, the second 0111.

In the case of Life, and for automata in general, we are interested in dissecting
the neighborhood of a cell into two overlapping pieces, each of which overlaps an
appropriate partner among adjoining neighborhoods. In the following sample,

alblc|d]|e

glh|i]yg
Ell | m|nl|o

the cells g, I, and 7 have the respective neighborhoods and partial neighborhoods

cell neighborhood left half right half

a c a c

g flaglh flg g|h
kil |m k|1 [ |m
bl c|d b | c c | d

h gl h |z g | h h |1
Il |m|n I |m m | n

c | d]e c | d d | ¢

t h ||y h |1 |y
ml|nl|o m|n nl|o

The de Bruijn diagram for Life and other automata based on the same neighbor-
hood has 64 nodes, due to six binary cells forming each overlapping half. Fight links
emanate from each node, since three binary cells are discarded and three added to
advance from one neighborhood to the next. Links and neighborhoods correspond
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exactly; there are 512 altogether. Octal notation readily labels the nodes; if

a = 4da+2f+k
B = 4b+2g+1
v = 4c+2h+m,

then the link a3v joins the node af to the node 3.

The large number of nodes and links would make such a diagram laid out on a
small sheet of paper overly crowded; a better representation would be the connec-
tivity matrix of the diagram, or even a simple listing in which each line contained
its own node followed by a list of the nodes to which it was linked.

The choice of a de Bruijn diagram whose links are the neighborhoods in Con-
way’s Life means that any path through the diagram represents a possible row of
cells in the automaton, surrounded by their respective neighborhoods. The nodes
are partial neighborhoods; the lack of a link between a particular pair shows that
they cannot be overlapped to form a complete neighborhood.

Insofar as the links represent neighborhoods, they can be considered to reflect
the properties of their neighborhoods as well. By dropping the links corresponding
to bad neighborhoods, any remaining paths through the diagram can ouly represent
a good row, which in the present context would be a row of a still life. In other
words, there exists a diagram from which all the still life rows can be read off just
by following paths through the diagram.

Building up still rows is only the first stage of construction; a new second stage
de Bruiju diagram governs the overlapping of rows to cover the plane.

5 First stage

The maximal first stage de Bruijn diagram has 64 nodes connected by 512 links.
The nodes are representable by a pair of octal numbers or equivalently, by a single
number modulo 64. In that case, it is easy to describe the connectivity matrix M,;,
whose elements are defined by

Mij:{l P

0 otherwise

This matrix is shown in greater detail in Figure 1.



1=8 mod 64
j=8i+1mod 64
7 =81+ 2mod 64
7 =8i+ 3 mod 64

Mij=1 j=8i+4mod 64
7 =8i+ 5mod 64
7 =28t 4 6 mod 64
7 =28t 4 7Tmod 64
=0 otherwise

Figure 1: the full first stage 64 X 64 de Bruijn matrix

By inspection, Trace(M) = 8 and M? is a matrix solidly filled with 1’s. There-
fore Trace(M?) = 64 and M satisfies the minimal equation

M3 = 8M?2,

from which its characteristic equation can be obtained. It is evident from calculating
traces of its powers that there are many loops of all possible lengths in the diagram.
There are also numerous Hamiltonian loops, these latter passing through all 64
different nodes, giving the longest possible consecutive sequences of neighborhoods
that can be formed without repeating one of them.

Dropping links from the complete de Bruijn diagram will break some loops,
maybe even isolate certain nodes completely. Normally such artifacts would be
discarded; if a node had no exit links, it would mean that there was a partial
neighborhood for which no right border existed so that the central cell would re-
main constant in the next generation. Such partial neighborhoods are barriers to
extending a region of still lifes, therefore inappropriate to an infinite plane.

Such barriers would terminate any recursion reaching them in the direct ap-
proach to still lifes; the advantage of using de Bruijn diagrams is just that their
occurrenceis clearly located in the context of the finite number of distinct sequences
of neighborhoods which exist.
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Although emphasis has been placed on still lifes, it should be noted that the
evolved cell can be compared to any of the other cells in the neighborhood from
which it arose, not just the original cell. The simplest comparisons are with the
shifted cells; by symmetry the interesting ones would be the longitudinal neighbor
in the direction of progressive overlapping, the transversal neighbor perpendicular
to the direction of extension, and the diagonal neighbor. Using the symbol (z,y, t)
to designate a pattern in which a cell matches the one x cells to the right and y cells
up after t generations, the fundamental neighborhood is large enough to detect the
patterns (0,0,1), (0,1,1), (1,0,1), and (1,1,1). The first of these are the still lifes, the
others might be called gliders. Strictly, Conway’s glider corresponds to the pattern
(1,1,4), his space ships to (0,2,4) or (2,0.4).

In principle any Boolean combination of the evolved cell with the cells of its
neighborhood could form the basis of a pattern. For example, a pattern could
consist of configurations which vanished after a single generation.

Figure 2: the de Bruijn matrix for Life’s still lifes

Figure 2 shows the connection matrix of the first stage de Bruijn diagram for
still lifes, from which its resemblance to the complete diagram can be judged. A
better understanding can be formed by inspecting several of the lower powers of
the matrix, as shown in Figure 3 on the next page.

The block structure of M is evident by the power M3; the fact that M? is still



Figure 3: second through fifth powers of the de Bruijn matrix




fairly sparse but M? is not indicates the presence of an important component of
period 3. This situation has been strongly evident to those who have examined
large empirical collections of still lifes, among which the length three is a magic
number. In terms of the properties of positive matrices, an explanation would be
that the second largest eigenvalue was triply degenerate (in absolute value).

Although there is probably no real “explanation” of why 3 is magic, those who
have worked with Life have noticed that the still lifes for a 3 x 3 torus are just
those configurations with four live cells, an easy requirement to satisfy. The same
rule works for a general 3 x N torus, although an additional family of still lifes is
also possible. Apparently breaking the periodicity in the cross direction still leaves
ample opportunity to form still lifes. It would be interesting to know whether this
phenomonon persists for other rules or for other lattices.

The ergodic set of the diagram has 57 nodes, the remaining seven never ap-
pearing in any still life. This is not surprising, since it is foreordained that the live
central cell in neighborhood built either by extending the nodes 73, 76, or 77 to
the right, or the nodes 37, 67, or 77 to the left will die. The node 57 cannot be
extended to the right, nor 75 to the left, but each can be extended in the other
direction. They, too, have to be removed from the diagram.

Usually the exclusion of nodes is more subtle, requiring much higher powers of
the connectivity matrix to establish the pattern clearly.

Although relatively few nodes are lacking from the full de Bruijn diagram, about
half the links are missing. In general such numbers are explained by the fact that
there are two classes of neighborhoods, the good and the bad, and that they occur
in roughly equal numbers. Thus there is a 50% probability of dropping any given
link from the diagram.

Eight links must be dropped to leave a node without exit links; since (

%)8 = 2.%6’
there is about 0.4% chance of finding one such node, which means that not too
many bare nodes will be found among 64. The fact that seven are missing has to
be considered as a fluctuation, due to some special characteristic of Conway’s game.
Experience with other rules tends to confirm this evaluation.

Similarly rough estimates apply to the chance of finding loops; we expect 8
loops of length N (with repeated subloops included) but cutting any link ruins the
loop, so that there is one chance in 2 of finding an intact loop of that length. Thus
the expectation is that the number of loops will quadruple with any increment in
length. The dominant eigenvalue of the de Bruijn matrix gives the most accurate
estimate of this factor, which is generally close to 4.0.
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The following table presents the number of loops originating with the quiescent,
state, the total number of loops, and the maximum number possible. Bear in mind
that the trace of the connection matrix counts a loop once for each node which it
contains, but not multiple traverses of portions of a loop, so the crude data does
not reflect the usual number of cycles as they are commonly counted.

width (0,0) element  Trace  maximum Trace

1 1 3 8

2 1 23 64

3 4 156 512

4 24 499 4,096

5 103 2,613 32,768
6 455 12,320 262,144
7 1,114 57,235 2,097,152
8 10,708 279,523

9 51,006

This data shows that the number of loops is multiplied by approximately four
for each increment in length, and that there is a strong component of period 3; as
confirmed by experimental tallies of the number of still lifes.

6 Second stage

The first stage de Bruijn diagram shows which rows of cells can form a still life (or
other pattern). The second stage selects a width, then determines all possible rows
of that length. A new de Bruijn diagram, whose links are these rows, describes
strips of fixed width but arbitrary height embodying the desired pattern.

It is natural to ask why a fixed width is required. Amongst other representa-
tions, the admissible rows can be defined by regular expressions. From the expres-
sions defining the link sequences (three rows high) can be extracted those defining
the node sequences (two rows high); compatible rows would be described by inter-
sections of regular expressions. It would seem that one has an instance of Post’s
correspondence problem, in trying to relate the two classes of regular expressions.
Keeping the width fixed and finite eliminates this uncertainty from the calculation.

The simplest criterion for a row is that it be periodic, which means that it would
be formed from loops of the first stage diagram of a given length. Other boundary
conditions could be imposed, but they would seem to be rather artificial unless the
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context determining them were included. One possibility, somewhat contrary to
the spirit of the generality being described, would be to build up a collection of still
lifes with given boundaries. Matching such strips to get even wider strips would
reveal somne, but not all, of the still lifes having the the composite width.

A very important exception to the reccommendation to eschew such construc-
tions is when the quiescent state forms the boundary. If the de Bruijn diagram
contains a link connecting the quiescent state to itself, isolated patterns can be
formed. If in turn the strips themselves are bounded by the quiescent state, there
will be free standing figures which can exist in complete isolation from any others.

If “0” is the quiescent state, we need to concentrate on the (0,0) element of the
connection matrix. In any event, suppose that the following illustration represents
two consecutive rows of a strip of width 6,

a|lblc|d]elf
glh|i|7] k|1

m|n|lo|plqg]|r

s|t|lu|lv|w]|x

This time the cells are the rows ghijkl and mnopqr with the respective neigh-
borhoods and partial neighborhoods

cell neighborhood upper half lower half

a|blecld|elf
ghigkl g |h|i]g k|1

m 1 (o} p q r

mmnopqr m|njo|p|lgqg|Tr

m 1 (o} p q r S t u v w x

It is typical of the second stage that there are many broken loops and even
isolated nodes, in contrast to the first stage where they are relatively infrequent.
The same informal probabilistic arguments given for the first stage explain why.
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The full diagram for a strip of width /N would have 22V nodes with 2*V links, thus
2V links per node. But instead of a single neighborhood, half of whose links might
be bad, there are N cells, whose “halves” are compounded, reducing the number of
good links for the whole row by a factor of %N ; the two effects compensate, leaving
us with an estimated single link per node. Fluctuations can just as readily leave a
node without a link as provide it with a pair of links, so that the surviving core of
loops—the ergodic set—will still have a certain amount of variety.

One dreads to think of what would happen if this reasoning remained valid for
a third stage, as in a three dimensional cellular automaton.

Although the simplest cases are almost trivial, they are also easy to understand,
which will help to fix our ideas and understand the general case.

Figure 4: second stage de Bruijn diagram for width 1

Choosing width 1 means working with constant rows; such a system is a one
dimensional linear cellular automaton evolving according to Wolfram’s Rule 22.
Our table predicts three still life neighborhoods out of eight possible; the pertinent
de Bruijn diagram is shown in Figure 4. There is just one still life, discounting the
quiescent state; it consists of alternating rows of live and dead cells.

Although this is the simplest case, it already shows some structure, namely
that the de Bruijn diagram can consist of two disconnected pieces. It also shows
how links and nodes can be dropped from the full de Bruijn diagram. Showing
the actual diagram as a subset of the full diagram would be more instructive if a
larger diagram were used, but showing complete diagrams for greater widths is too
cumbersome for the printed page.
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Figure 5: second stage de Bruijn diagram for width 2

Width 2 shows slightly more variety. It is equivalent to working with a (4,1)
cellular automaton (4 states, first neighbors).

The unrefined de Bruijn diagram has 11 nodes with 23 links, which reduces to
7 nodes with 19 links and finally to the cyclic core with 7 nodes and 9 links shown
in Figure 5. Inspection shows that the de Bruijn diagram decomposes into three
disjoint pieces. The first contains just the quiescent state linked to itself; of course
we can ascribe any periodicity to the quiescent state that we wish, making it a
common feature of all diagrams.

The second is really double the configuration of width 1, in which rows of live
cells alternate with rows of dead cells. There is just one new configuration, the
third piece, a sort of grillework in which the minimum length of each tier of vertical
bars is two cells. Both these latter configurations have to extend indefinitely, since
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there is no transition bringing either of them to the quiescent state.
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Figure 6: second stage de Bruijn matrix for width 3 - connected component of 00

In contrast to narrower strips, width 3 is striking both for the complexity of its
still lifes and the simplicity of the rule generating some of them. The de Bruijn
diagram is too complicated to show; however its two disconnected pieces can be
exhibited in matrix form.

The first, consisting of 30 nodes, is the least regular, but is the connected
component of the quiescent state. If pairs of octal numbers are used to index the
nodes, each each member of the pair translates directly into a three-cell cross section
of the strip. The pertinent connectivity matrix is shown in Figure 6.

In all diagrams and connectivity matrices a certain amount of symietry must
be present, because the rule of evolution remains the same even though the row
from which the diagram is derived is longitudinally shifted or even reflected. The
symmetry can manifest in various forms according to whether the still life has the
same symmetry as the row, or whether there are several equivalent patterns arising
from one another via the symmetry operations. For longer rows whose lengths have



various distinct divisors, intermediate cases of partial symmetry can arise.

1112142122244142441315 1623 2526434546313234515254616264
11 . Lo Lo 111

26 . NN Co N NN e N |

Figure 7: second stage de Bruijn matrix for width 3 - connected component of 11

The second component, consisting of 27 nodes, is disconnected from the qui-
escent state, but is extremely regular. To begin with, the rule of formation is
extremely elegant; given any neighborhood containing exactly four live cells, three
cells are to be chosen for the new margin so that the overlapping neighborhood also
has four live cells; a construction clearly unique to Life. Its connectivity matrix
constitutes Figure 7.

Close inspection shows that sections of odd parity—with a single live cell—
alternate with sections of even parity—having two live cells—in the ratio of two
odd sections to one even section; thus the importance of the height being a multiple
of three. Moreover it is pairs of sections which count the half neighborhoods
so the sequence even-odd, odd-odd, and odd-even must be rigorously followed.
Consequently the de Bruijn matrix is imprimitive of degree 3, explaining the magical
properties of the number 3.

Further inspection shows that the matrix is the tensor product of a cyclic shift
matrix with a full de Bruijn matrix for three states and two stages, which is a
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consequence of the transversal symmetry. In other words, it doesn’t matter which
section of a given parity is chosen, but from there on further choices must all be
consistent.

Figure 8: typical still lifes for a strip of width 3

To better visualize the still lifes of width three, Figure 8 shows typical samples,
one for the component of 00, the other for the component of 11. The former contains
three fundamental motifs; horizontal bars which must have castellations whenever
they are not surrounded by similar bars; rows of blocks, and extended snakes, using
the standard terminology of Life. The motifs may follow in any sequence, and with
any phase relative to one another.

Going on to widths of 4 or wider, more and more complicated diagrams are
encountered. However, a new phenomonon becomes visible with width 4, which is
that the quiescent state may have nontrivial connected components in both the first
stage and the second stage. Since the quiescent state is always self-connected, an
arbitrary number of additional quiescent states may always be inserted wherever
a single one was encountered. Consequently the live cells from any configuration
so found continue to form a still life when moved to an environment which is not
periodic.

Furthermore, with fewer diagrams, visual presentations for slightly wider strips
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are still possible.

Figure 9: freestanding strip of width 4

Strips of width 4 show the first nontrivial component of the quiescent state; the
second order diagram for this component has 24 nodes, as shown in Figure 9. This
is the smallest diagram in which completely freestanding figures occur; they are
separable from one another or others by arbitrarily long quiescent intervals, either
horizontally or vertically.

Of course, the full de Bruijn diagram for width 4 could also be exhibited; but it
isn’t since the intricacy of the diagrams increases exponentially with width, making
their explicit representation increasingly cumbersome and less visual. Eventually
the only feasible representation consists of a table, whose entries list the possible

successors of each node in turn.
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7 Comments

It is disconcerting to see the degree to which the detailed labor of hundreds of
people, and untold hours of computer time, has been reduced to an algorithm.
Even though the necessary computations can be realized quite quickly, it is no less
impressive to foresee the stupendous amount of time which would be required to
obtain certain additional results which initially seem quite simple. For instance, it
is out of the question to use the same approach directly to calculate any structures
of period 2, much less gliders and space ships which require period 4.

Much of the activity reported in Wainwright’s newsletter[8] involved tracking the
evolution of diverse small figures, a byproduct of which was a gradually increasing
catalog of small still lifes. Many of them grouped themselves into families, whose
general structure could be readily perceived, and many people seem to have become
quite skilled at designing still lifes and other predictable patterns. Moreover, after
having reviewed large collections of still lifes, one develops an eye for flaws and a
feeling for what constitutes a proper still life. Which implies that there must be
some pattern present which can be recognized.

Golomb’s book[4] on shift register sequences disseminated the use of de Bruijn
diagrams to characterize long sequences of overlapping symbols, although an appli-
cation to automata does not seem to have been published until Wolfram'’s article[9]
in 1984. Nowadays they can be seen as a tool for quickly obtaining the personalities
of arbitrary automata, subject to the limitations imposed by expounential growth
with respect to any of the parametersinvolved dimension of the automaton, length
of the period, number of states, and so on. Perhaps an even more elaborate theory
of higher dimensional de Bruijn diagrams will eventually result.
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