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Abstract

Research on the subject of cellular automata is surveyed, with the
intention of distinguishing between what has and what has not been ac-
complished during the course of its history.

1 Introduction

The subject of cellular automata has passed through several stages of evolution
during the fifty or so years during which it may be thought to have existed.
It is interesting to see what has been accomplished during this time, and not
only to speculate as to what remains to be done but also to wonder to what
degree the subject has applications, and how successful it will be in meeting the
expectations which may be held for it.

If an automaton is supposed to be a mechanism capable of performing in-
tricate tasks or exhibiting complex behavior, the concept is surely as old as
antiquity; but it was not until the mastery of electricity at the end of the last
century that really delicate and subtle constructs could be imagined. Far beyond
that, it required an advanced degree of electronics, and even of microelectron-
ics in the form of reliable vacuum tubes, transistors, and nowadays integrated
circuits, before truly elaborate automata could become a reality.



For this reason, the innovative ideas of Warren McCulloch and Walter Pitts[50]
and the designs of John von Neumann[53] are more properly considered to be
the foundations of automata theory than, say, Charles Babbage’s[3] proposal for
his difference engine or the more advanced analytical engine which made use of
ideas taken from the Jacquard loom. As it is, there is a wide variety of sources
from which to choose, whatever one’s point of view. Little of this will be taken
into further account here, but for those interested there are excellent references
which can be consulted[60, 2, 30, 26].

McCulloch and Pitts’ investigations concerned the possibility of constructing
a model of mental processes. While derived from their knowledge of the physi-
ology of nervous systems, their model was intended mostly to reflect character-
istics such as the connectivity of the neural net or the interactions in Boolean
terms of signals propagating through it. Neither the strict form of the signals,
nor the material composition of the neurons were considered to be primary
issues.

In similar fashion, von Neumann thought of different models, some of them
quite physical, through which his plans for automatic construction could be re-
alized. Nevertheless, as is quite the customn among mathematicians, the abstract
approach proved to be the formulation which seemed best to capture the central
ideas.

From such a beginning voluminous results have followed, both in the form
of mathematical theorems and in the design of specific circuits, all of which
have been duly recorded in the scientific literature. Cellular automata achieved
substantial popular notoriety when John Conway took up the subject[16] and
Martin Gardner reported one of his most interesting discoveries in Scientific
American [28]. The evangelical efforts of Stephen Wolfram[70] have given a
whole new dimension to the topic in recent years.

2 What has been done

When certain subjects are mentioned, they are immediately associated with a
certain body of results; others are more tentative or may even be in the process
of revision. There is probably a certain consensus as to what the theory of
cellular automata comprises, overlapping somewhat with automata theory in
general, and touching upon the theory of probabilistic automata. The following
synopsis is a mixture between a catalog of topics and an account of the historical
development.

2.1 The concept of an automaton

Whether or not the ideas of McCulloch and Pitts have any bearing on neu-
rophysiology, there is no doubt that their proposals stirred up a considerable
amount of interest, some of which can fairly be seen as having resulted in the



present theory of automata. Indeed, von Neumann made quite direct and ex-
tensive reference to their ideas in the process of designing the EDVAC as well as
in his work on self reproducing automata.

Another direct outgrowth of their work was origin of the theory of regular
expressions, which was formulated by Stephen Kleene[45] as a rigorous logical
and algebraic foundation for their ideas. In turn, regular expressions have been
found to lie at the foundation of the theory of formal languages; indeed they
constitute just about the simplest of all languages, because the others always
include them. This is a subject which can be pursued in great detail, but
which is not strictly a part of the theory of cellular automata. Nevertheless
the circle closes when it is found that regular expressions are invaluable for
describing paths through graphs, one of the preferred representations by which
the evolution of cellular automata may be described.

All of these early ideas have undergone extensive development since they
were first proposed. To start with, von Neumann was deeply involved with a
critical phase in the development of computers, which coincided with his inter-
est in cellular automata. As a mathematician he had an interest in symbolic
logic and the theory of computation which permeated his approach to computer
design. Setting out to equip a computer with the organs required to realize a
certain philosophy of computation is a rather different proposition from uncov-
ering all the capabilities of a complex circuit which one has designed.

Thelogical issues which preoccupied von Neumann would not have concerned
all designers, nor did he necessarily cast computer design into a mold which
would not otherwise have shaped it. Nevertheless decisions ranging from the
choice of the binary number system to the systematic use of stored programs
evolved during that formative era. Previously computers had not been complex
enough to make the issues important, although Ada Lovelace touched on some
of the points in her description of Babbage’s Analytical Engine; subsequently
computers worked well enough and were sufficiently well understood that after
1956 or thereabouts they tended to be copied rather than redesigned as they
went into commercial production.

Another direction which the early ideas took was the growth of the gen-
eral theory of automata as well as the study of formal languages. In fact the
McCulloch-Pitts “neurons” were only one example of digital circuitry, as dis-
tinguished from analog circuitry; naturally the use of such circuits required a
theory to explain them. Boolean algebra served for combinatorial circuits; the
incorporation of memory elements or time delay elements extended the theory to
take into account sequential circuits, the kind that could be used in computing
machines.

General automata differ from cellular automata in two important respects.
Ordinary automata are concerned with input and output, that is, the transfor-
mation of signals through the intervention of the automaton. Moreover, design
problems are typically concerned with constructing the precise automaton which
will produce a given transformation, ascertaining the possible equivalence of two



automata in their signal handling abilities, finding the simplest automaton for
a given purpose, and so on. The second characteristic is that they are typically
small, in any event finite, being intended for use in actual construction.

In contrast cellular automata are required to form lattices, infinite in princi-
ple if not in practice, and do not work with signals. Rather, the “signal” which
activates each cell is its knowledge of its own state and the states of a certain
number of its neighbors at any given moment. Were the lattice not infinite,
there would be no discussion of Turing machines, universal computation, or the
like. On the other hand, just because of its large scale regularity, a cellular
automaton lends itself readily to implementation in terms of microelectronics.

In any event, it could hardly be expected that it would be possible to discuss
cellular automata without first taking a certain amount of the general theory
into account.

2.2 The evolution of finite systems into cycles

It is not surprising that the reasons for studying automata change from time
to time, and that the amount of detail required keeps increasing. Basically a
cellular automaton is a lattice formed from cells, each of which has k states,
conveniently numbered from 0 to kkkkkkkkkkkkkkk — 111111111111111. As
a consequence of forming part of the lattice, each cell may be associated with
several nearby cells, which form its neighborhood. The geometrical shape of
the neighborhood may vary, but typically only the closest neighbors up to some
radius r are included. Neighborhoods are supposed to have the same form for
all cells, and are therefore translates of one another. Consequently there is a
single function ¢ to specify the state of a cell at the next generation in terms of
the states of its neighbors (generally including itself) in the present generation.

Although ¢ relates cells to neighborhoods, its systematic application through-
out the lattice defines a mapping ® from the configuration—assignment of states
to lattice sites—of the automaton in one generation to that of the next. Of
course, the central problem of the theory of cellular automata is obtaining a
satisfactory description of &.

If an automaton, such as von Neumann’s universal constructor, had been
carefully constructed to serve a special purpose, the greatest interest in its op-
eration would naturally lie in whether it performed according to specification
or not. On the other hand, if an arbitrary automaton were presented for exam-
ination, the most natural reaction would be to observe the course of a typical
evolution, that is, the result of repeated iteration of ®. Different concepts of
“typical” would be likely to produce somewhat different results. The initial
configuration might be a simmple pattern, such as a group of cells in one state
with the remainder in another. Alternatively, some short sequence of cell states
might be repeated indefinitely, giving a periodic initial configuration. If still
greater variety were desired, the states of the individual cells might be assigned
with the help of a random number generator.



The best way to reach a compromise between finite and infinite automata
would be to combine the second alternative with the third. But then one would
soon find that mappings of finite sets into themselves have one fundamental
property which turns up over and over again in practically any context what-
soever. Their iterations must eventually become periodic. Evolution being the
pertinent mapping for cellular automata, the inescapable conclusion is that the
sequence of configurations through which the automaton evolves must eventu-
ally become cyclic, oftentimes even static. Thus one is advised to begin the
analysis of an automaton by ascertaining all of its periods, both temporal and
spatial.

Knowing whether an automaton is large enough to be considered infinite,
distinguishing between periodic and aperiodic extensions, and resolving other
philosophical dilemmas have a practical importance. Recognizing an entity such
as the square root of two so that the diagonal of the unit square can have a
length only requires that that such a nuimber can be represented to an arbitrary
accuracy. Likewise, although a Turing machine must never be denied additional
tape, a generous allotment might suffice for all the calculations required by
some project. Thus it is convenient to work with finite structures in such a way
that their scale does not have to be stated explicitly, making them implicitly
infinite. It then remains to identify any additional structure which may have
inadvertently been introduced.

Describing the asymptotic behavior of infinite, but not periodic, configura-
tions within an automaton is a relatively recent development, much of whose
motivation arises from trying to identify the computational powers of automata.
At the same time, it has been realized that the transient portion of their evolu-
tion, particularly when it persists for an exceptionally long time, is not entirely
uninteresting, and that its statistical properties warrant investigation. Also,
there is interest in locating some or all of the cycles without the necessity of
performing all the trial evolutions, the possibility of which is part of the theory
of computational complexity.

Whatever the degree of sophistication of the presentation, it is not likely
that one is going to find a discussion of a cellular automaton which omits all
reference to its periodicity, from its static configurations onward.

2.3 Self-reproducing automata

Crystal growth does not qualify as a reproductive process, whilst the real pro-
cess involving DNA molecules and a whole chemical environment remains far
from being fully understood; nevertheless one is skeptical that it will be found
to contain some complex computing mechanism. Certainly comprehension of
biological reproduction has advanced considerably since those days when chro-
mosomes were known but genes were merely conjectured on the basis of em-
pirical observations, which was still the case when cellular automata came into
being.



Questions of reproduction, be it sexual, asexual, or self reproduction, tend
to be rather philosophical in nature, along with questions of consciousness, the
borderline between the living and the nonliving, and similar issues. A robot is
easy enough to imagine, not to mention the possibility of its having a certain
dexterity and the ability to follow instructions of a sort. Never mind that
functional examples may be in short supply, but it was just this gap between
fanciful speculation and actual practice which led von Neumann to settle instead
for self patterning wallpaper. The suggestion came from Stanislaw Ulam, who
had been experimenting extensively with functional transformations and means
of representing them.

By working with a medium which could support a variant of Alan Turing’s
hypothetical computer, the constructor which von Neumann sought could avoid
the monotony of reproduction through crystal growth by calculating the nature
of its intended construct, opening quite a few possibilities of variability, adap-
tation, and evolution. Presumably the use of a full Turing machine would leave
the constructor with the utmost versatility possible in choosing its products,
or the strategies for carrying out its constructions. Consequently it would ap-
pear that whatever such a model lacked in realism might be compensated by
the possibility of establishing theorems similar to those which Turing proved
for general computations, namely the existence of a universal machine and of
undecidable calculations.

The resulting object was cumbersome, containing twenty nine state cells ar-
ranged on a two dimensional square lattice, and a finished universal constructor
that would occupy an area thousands of squares on a side if it were ever to be
“built.” Given that the construction originally contrived to prove a point is
not necessarily the simplest or most elegant route to the same conclusion, it is
not, surprising that there are other alternatives, such as one with eight states
found by Edgar Codd[15]. Nor is it surprising that von Neumann himself found
that as he worked out the details of more and more of his proposed machine, he
encountered ideas that would simplify the construction of the parts of the ma-
chine which he had already designed. Earlier this trap had thoroughly ensnared
Babbage, who repeatedly laid aside plans for one machine in favor of another,
still more elegant one, while gradually running out of financing.

The requirements which von Neumann laid on his machine may have been
much more severe than necessary. If only the emulation of a Turing machine
is required, Alvy Ray Smith III[65] has shown a fairly straightforward way to
do so; if only reproduction is required, Christopher Langton[46],[47] has shown
some simple variants of Codd’s automaton which will grow, neither using a
computer to guide the expansion, nor even their own description. Langton does
argue, however, that a description of sorts is inherent in the form of the simplest
reproducing unit of the organism.

The search for automata with elegant computational properties still goes on,
and automata continue to be judged either by the power of the computation that
they are able to carry on, or the power of the computer required to understand



their behavior.

2.4 The Garden of Eden

The evolution of an automaton is nicely represented by a transition diagram
or graph; every configuration is represented by a node, the nodes are linked
according to the rule of evolution. Chains formed from the links describe long
term evolution. The deterministic character of evolution implies that there
is exactly one outgoing link for each node. In the forward direction, chains
must close into loops; they could also continue indefinitely when the number of
configurations is infinite.

In the backward direction the additional possibility exists that a configura-
tion has no ancestor. For a finite diagram that is a necessary alternative if any
of the chains are confluent. The reason is simply that after counting exactly one
link per node in the outgoing direction, a node with two incoming links must
deprive some other node of a compensating incoming link.

Simple counting does not work for infinite diagrams, but the fact that the
neighborhoods defining the evolution have to overlap to some degree allowed
Edward F. Moore[51] to show that a similar conclusion nevertheless follows,
namely that whenever some configurations have multiple ancestors, there must
be others which have none; the term Garden of Eden seemed appropriate to
describe the situation.

The result is an interesting limitation on the kind of constructions which
an automaton can perform. But a universal constructor is not expected to
construct everything, and according to this theorem, clearly cannot. Generally
it is considered adequate that it can construct objects at least as complicated as
a Turing machine, or slightly more so, so as to be able to make copies of itself.

There are straightforward procedures for ascertaining the Garden of Eden
configurations of a one dimensional automaton, as well as the actual ancestors
for the remaining configurations. Jen[43] has shown one such construction,
based on a symbolic de Bruijn diagram. It is typical that the corresponding
calculations are undecidable for arbitrary two dimensional automata or beyond,
generally because of conflicts arising from the Post correspondence principle.
Nevertheless two Garden of Eden configurations for Life have been published
[29, page 248],[9, page 829], and a third cited[29, page 248], all of them were
evidently encountered after a long series of exhaustive eliminations.

Garden of Eden configurations represent one end of the evolutionary tree, its
leaves, which lie at the opposite extreme from the cycles, which form its roots.
Discovering them requires more than simply following out trial evolutions, but
their inclusion nevertheless forms an interesting part of the description of any
given automaton.
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2.5 Conway’s Life

For some time the theory of cellular automata consisted of the inevitability
of evolution into cycles, the existence of pristine initial configurations, and a
respectful reverence for the complexity of von Neumann’s detailed plans and the
philosophical implications of his efforts. In the practical direction, a variety of
efforts with image processing and photographic interpretation were understood
to be related as much to cellular automata as to Fourier or Walsh transforms[5§],
and some thought was given to designing circuit arrays as automata.

One way or another. the lore of automata theory has gradually spread
around. Studying cellular automata has become a popular computer game in
addition to being a learned academic subject in several stages. Perhaps the
initial step resulted from John Conway having decided to review the area just
at the time that computers acquired versatile visual display equipment.

By taking the approach of first defining the automaton, then examining
its capabilities, Conway[28],[29] encountered a two-dimensional binary cellular
automaton of incredible elegance and beauty. Christened Life, it was eventually
shown to have the same powers of universal computation and self-reproduction
as von Neumann’s automaton[9]. Even so, much work and several years were
required to acquire familiarity with Life; many of the results were reported as
they were being discovered in a quarterly newsletter published for nearly three
years by Robert T. Wainwright[68]. Later some of the information was published
more formally in a book written by William Poundstone[57]. The substance of
all the notices in Martin Gardner’s columns was collected in one of his reprint
volumes[29)].

From the outset Wainwright undertook to catalog the Life configurations
that were being discovered, classifying them roughly along the lines of the gen-
eral theory. Conway knew about some travelling configurations called gliders,
but was apparently unprepared for the discovery of first “glider guns” and then
“puffer trains” which between them permitted the assembly of incredibly com-
plex artifacts. Nevertheless he was able to use them to achieve von Neumann’s
results, although in terms of an equally arduous construction spreading over a
fantastic area if it were ever to be realized in practice. The number of con-
tributors to Wainwright’s newsletter was considerable, but the contributions of
William Gosper and several associates at MIT’s Artificial Intelligence Labora-
tory were fairly outstanding. Some of their adventures have been recounted in
Stephen Levy’s book, The Hackers[48].

Conway’s choice of a particular rule and lattice resulted from careful experi-
mentation, giving Life a relatively distinguished setting. Poundstone[57] reports
experiments with an alternative rule, Packard and Wolfram[55] surveyed numer-
ous two dimensional automata; in both cases reporting that their automata fail
to meet Conway’s criteria. It would appear to be an interesting challenge, either
to account for the singular nature of Life or to encounter additional specimens.

Besides offering a new and interesting automaton to the existing repertoire,



Conway’s contribution was to begin with specific automata with the intention of
ascertaining their potential behavior, rather than beginning with the application
and searching for the automaton which would fulfil the requirement.

2.6 Wolfram’s classes

As computer power steadily increases, there have been ever increasing opportu-
nities to perform experimental mathematics, both by professionals and by am-
ateurs. An excellent example of this tendency has been all the recent work on
fractals, nonlinear differential equations, dynamical systems, and similar topics.
Many extremely classical results, such as the results of Pierre Fatou and Gaston
Julia concerning functional iteration, some very esoteric topological results such
as Stephen Smale’s strange attractors, or even such advanced theorems relating
to differential equations such as Kolmogoroff, Arnol’d and Moser’s results in
celestial mechanics, acquire an entire new perspective when their consequences
can be followed through a numerical calculation.

A rather interesting confrontation of this nature took place when Stephen
Wolfram began to experiment with the evolution of one dimensional cellular
automata, and felt that he saw a certain amount of analogy between the phe-
nomenological characteristics of the evolution of the automata and some classi-
fications of limit sets which had been found relevant in nonlinear dynamics. As
a result of numerous observations, he proposed a system of four classes, which
reflected the same number of different kinds of evolution which he had been ob-
serving. Roughly speaking, cellular automata seem to settle down to a constant
field (Class I), isolated periodic structures (Class II), uniformly chaotic fields
(Class III), or isolated structures showing complicated internal behavior (Class
V).

In addition to a series of computer experiments in one and two dimensions,
with varying numbers of states per cell and sizes of neighborhoods, Wolfram,
occasionally working with some coauthors, has analyzed the mathematical as-
pects of the rules of evolution of their automata. Thus[72] discusses the rela-
tion of automata to formal language theory, including the observation that the
evolute of a configuration described by a regular expression is still a regular
expression, but may fail to remain so in the limit. Lyman P. Hurd has taken
up the explicit question of the limiting behavior in his thesis[39] and related
publications[38],[40].

Wolfram also discusses some measures of complexity, such as the size of the
automata associated with the regular expressions.

Martin, Odlyzko, and Wolfram[49] have worked out the evolution of au-
tomata for which ¢ is defined by a linear combination of the states of the cells
of the neighborhood, assuming them to be elements of the corresponding finite
field; an example would be evolution according to the rule of parity, in which
each cell transforms into the sum of the three neighbors, modulo 2. Although
such automata may not be entirely typical, the fact that quite complete and



exact results can be obtained makes for useful comparisons.

Wolfram has edited a collection of most of his own papers and a good assort-
ment of others, including several useful appendices containing a wide variety of
data[73].

Notwithstanding the fact that assigning an automaton to one of Wolfram’s
classes is an undecidable proposition[17], his investigations represent the first
time that a systematic and exhaustive study had been made of large classes of
one dimensional linear cellular automata, rather than selecting a single automa-
ton for concentrated attention. At the same time the classification has a strong
visual appeal and has been widely adopted by other investigators, along with a
few notational details such as his numbering scheme.

2.7 Probability measures

For various reasons, the statistical properties of the evolution of cellular au-
tomata have attracted attention. That there are statistical properties to be
investigated is immediately apparent whenever there are graphical means avail-
able to display the evolution, such as can be done readily with most computers
nowadays. Typically, if an initial configuration is randomly chosen, it quickly
develops a characteristic texture which persists until the inevitable cycles make
their appearance and dominate the evolution; thus there are usually two inher-
ent, time scales and three textures associated with the evolution of any given
automaton.

The first phase can be orderly or random, in either event reflecting the
details of the initial pattern or random number generator used to produce it.
Its duration gives some idea of the incompatibility between the evolutionary
rule and the initial arrangement; for random patterns the time is typically quite
short, but for quiescent automata with a recognizable “velocity of light,” a
reasonable propagation time must be allowed for quiescent regions to feel the
influence of their neighbors.

One would like to think that there might be a “self consistent probability”
associated with any particular evolutionary rule, but calculations based on the
simple rules applicable to independent probabilities produce indifferent results,
traditionally disclaimed by invoking unaccounted correlations. Evidently an
appeal must be made to more elaborate statistical concepts if better results are
required; the crude theory usually produces results which match observations
at the level of 10% to 20% error, which is often considered adequate.

Otherwise it is necessary to investigate measures which commute with the
evolution or are otherwise related to it. Related concepts such as entropy are
also relevant, and can also be studied. One of the first studies to be made was
that of Schulman and Seiden[62], who tried to explain their measurements of
Conway’s Life. Later Dresden and Wong[24] made corrections for correlations,
but the most comprehensive studies have been made by Wilbur, Lippman and
Shamma[69], and then by Gutowitz, Victor and Knight[34].
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There are actually three or four levels at which self consistent probabilities
can be approached. All of them involve comparing the probability that a cell
lies in a certain state with the probability that the cells in the neighborhood
are in just the states in which they are found. Self consistency requires that the
two probabilities agree, but the methods differ in the way that the probabilities
are estimated.

The simplest comparison is to ask how many of the possible neighborhoods
can evolve into the state in question; the answer may range from ‘none’ through
‘an equal share’ to ‘all of them’. The uniform fields resulting from the extremes
produce no surprise, a state with scarcely any ancestors would not be expected
to be very common, while a democratic assortment of rules would lead one to
expect a representative mix of states. In general terms these expectations are
seem to be confirmed by experience and are thus well founded.

It is a general statistical principle that the variance in averages decreases
inversely as the square root of the sample size; as applied to the evolution of
automata it is possible to obtain very stable frequencies for the occurrence of
the different states by collecting them from an automaton with a very large
number of states — say a thousand or more. When this is done, discrepancies of
tens of percent are found with respect to estimates by rule of thumb, such as
counting transition rules.

The next level of self consistency consists in estimating the probability of a
neighborhood by combining the probabilities of its cells according to the tra-
ditional rules, while assuming the validity of the traditional assumptions of
independence. Called mean field theory, it provides polynomial equations to
be solved for the self consistent probabilities. Indeed, the simpler estimate is
just the probability that would be assigned the standard distribution the one
in which all states have the same probability — and thus could be the starting
point for an iterative solution of the mean field equations.

Empirically mean field theory provides better frequencies, but not all au-
tomata perform equally well and discrepancies still range on the order of 10%
or so, a useful but hardly a precision result. So the next level concentrates on
taking correlations and other factors into account. The block structure theory
of Gutowitz et.al. is based on Bayesian extension; empirical studies have shown
that by taking into account probabilities of blocks of six, eight, ten or more
cells, frequencies can be matched to two or more figures. The self consistency
equations involve rational fractions rather than polynomials, and can also be
solved by iteration.

The final level would be to obtain the invariant measure of the automaton,
but having to describe it numerically leaves one on the level of local structure
theory with very long blocks. Whatever the level of detail at which they are
attempted, it would seem that the probabilistic approach is a significant alter-
native, and a complement to, the point of view of formal language theory.
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2.8 De Bruijn diagrams

Whether working with probabilities, measures, or simple evolution, the overlap-
ping which occurs between different neighborhoods comprises the greatest tech-
nical obstacle to computations; unless this problem is resolved adequately, fur-
ther progress is almost impossible. Fortunately, for one dimensional automata,
a diagrammatic technique which lies at the heart of shift register theory[31]
saves the situation; the diagrams are called de Bruijn diagrams, but they are
Jjust simple graphs showing the possible ways in which different neighborhoods
can overlap[59]. Erica Jen has shown how many properties of automata can be
extracted from such diagrams, especially the static and periodic configurations
on a cylinder of fixed circumference[44].

In principle, such a diagram could be extended to automata of higher di-
mensions, but a problem arises from selecting partial neighborhoods that will
join to form full neighborhoods in all directions. The straightforward approach
of building up strips of successively higher dimension runs afoul of Post’s cor-
respondence principle when arbitrary intermediate strips have to be matched
to form the strips of the next higher dimension. If only periodic solutions are
required, the problem is still soluble, but again the conflict between large sys-
tems and unbounded systems arises, tending to leave the generic properties of
aperiodic systems undecidable,

At least in one dimension, there is nothing difficult about a de Bruijn di-
agram; as applied to cellular automata it is simply a graph in which partial
neighborhoods are the nodes, with links connecting those which may overlap
to form a full neighborhood. Given this correspondence between links and full
neighborhoods, each link is also associated with the evolved cell belonging to
the neighborhood. Consequently characteristics of the evolution can be used
to select subgraphs of the de Bruijn diagram; for example, there is a subgraph
composed of the neighborhoods whose central cell never changes. Global prop-
erties of the automaton can be read off in terms of the chains to be found in
such a subdiagram; for the present example, the chains determine all the static
configurations.

The advantage of using a de Bruijn diagram is that many problems con-
cerning automata are thereby transformed into known problems regarding the
tracing of paths through a graph. For instance, no loop can be longer than the
total number of nodes in the graph without repeating some segment; but then
there must exist still other loops in which the repeated segment is traversed an
arbitrary number of times. For example, a binary automaton depending upon
nearest neighbors has eight distinct neighborhoods, representable as eight links
connecting four nodes, it follows that no static configuration can be more than
four cells long without repeating some two-cell partial neighborhood. Thus the
static configurations are rather severely constrained.

Sometimes the de Bruijn diagram reveals information about localized aspects
of a configuration. For example if an acceptable path terminates at a node in
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which all the outgoing links are acceptable, it need continue no further. Likewise
if all the incoming links are acceptable, the path may begin just as though it
had been part of a loop. Thus semi infinite structures may be located, or even
finite ones if both ends have such universal terminations. This leads to the
phenomenon of membranes and macrocells which Wolfram noticed during the
course of his investigations. That is, an automaton may have patches which
are isolated from one another by static regions, whose evolutions proceed quite
independently.

The converse process is also possible, to define the rule of evolution of an
automaton by postulating that the de Bruijn diagram have prescribed proper-
ties; for example that the unit cell (0101) must be a static configuration. To
the extent that the requirements are not contradictory, and all the possibilities
are covered, an automaton may practically be designed to order.

Enumerating the paths through a graph is a classical task, to which many
papers have been devoted, but which has a particularly elegant solution in
terms of regular expressions. Conway’s book on regular algebra[16] expounds
the technique; a later article of Backhouse and Carré[4] gives a very thorough
presentation.

Probabilistic versions of both the de Bruijn diagrams and the evolutionary
diagrams exist, being useful for studying correlations between blocks of cells,
or in the numerical calculation of self consistent block probabilities. All the
standard theorems regarding positive matrices and stochastic matrices apply.
All told, the introduction of graphical techniques to automata studies is very
profitable.

3 What has not been done

It is hard to know whether there are likely to be any surprising new develop-
ments in automata theory, in order to be able to predict them. To judge from
past experience, each technological episode which has produced substantial new
computing power has brought with it some new development in automata the-
ory. The industrial revolution allowed Babbage to envision a mechanism which
transcended dolls having the style of a Swiss music box operated by cams, levers,
and gear wheels; even so, inadequacies of technology and project management
kept a functioning machine from becoming a reality.

A century later, the first completely electronic computer inspired von Neu-
mann to speculate about the possibilities of automatic factories, leaving a huge
gap between his mathematical symbolism and the ability to design specific cellu-
lar automata, much less their translation into performing mechanisms. Greatly
improved computers, interactively operable, permitted following up his original
designs and simplifying them. Still further advances, in the form of symbolic
programming languages and visual displays, were waiting when Conway’s dis-
coveries attracted attention. Finally, Wolfram’s forays into one dimensional
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automata would seem to have coincided with the advent of a generation of
widely accessible computers, endowed with ample memory and rapid operation.

When circuits become available, for which large numbers of cells with large
numbers of states can rapidly evolve in parallel according to programmable
rules, there is no doubt that new insights will be found, very likely through
empirical observation. In the meantime it is always possible to say that more
details could be filled in with respect to any of the facets of the theory which
have already been studied. So the problem is to take some feature which seems
to show promise, to see which of its aspects make it interesting, anticipate what
results are expected, and try to find the best way to go about establishing them.

3.1 Convergence of block probabilities

Kolmogoroff’s theorem asserts that a family of consistent measures converges
to a limit measure. Gutowitz et.al.[34] use this result to assure a meaningful
construction of a system of equations for self consistent neighborhood proba-
bilities, wherein extrapolation via Bayes’ theorem yields probabilities for the
counterimages of individual neighborhoods. They incidentally remark that the
Bayesian extension yields maximum entropy; in other words, the least additional
information about the extension.

However, each different length of neighborhood, or order, possesses its own
set of equations defining self-consistency, making the measure deduced vary from
one order to the next. It would be desirable to have an estimate of how much
these measures can differ from one another, to know whether the sequence of
measures deduced from successively longer neighborhoods can be demonstrated
to converge to a unique limit, and at what point a desired degree of accuracy
has been reached.

The approach of Gutowitz et.al.was to select rules for study, keep using
longer blocks until the results stabilized, and apply statical tests for goodness
of fit between the result and empirical observations. In its context, this is an
entirely valid methodology. But each rule needs its own analysis; some rules
seem to be much more amenable to the procedure than others.

As an idea of the hazards which are to be encountered, consider the Garden
of Eden states. They can be described in terms of excluded sequences, which
necessarily have probability zero. Nevertheless a zero probability cannot be
obtained via Bayesian extrapolation from the probabilities of shorter blocks not
from the Garden of Eden, so that explicit block probabilities at least as long as
the shortest excluded sequences are required. However, there is not necessarily a
“longest shortest excluded block,” so that there may be no finite approximation
at all which is logically correct. In practice, the excluded sequences may already
be assigned such small probabilities by local field theories of low order that their
nonvanishing would never be detectable.

In point of fact, each periodic configuration of the automaton gives rise to a
discrete measure concentrated on the orbit of that particular configuration, so
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that without further restrictions, the determination of a measure is not at all
unique. Likewise there are rules of evolution based on the linear algebra of finite
fields for which periodicities of one sort or another are so scrupulously observed
that the measures also retain a thoroughly discrete structure.

No wonder that it would be nice to have a more comprehensive understanding
of invariant measures and their relationships to one another. Especially with
respect to establishing error bounds.

3.2 Automata which are necessarily infinite

The very most exotic applications of the theory of computation require comput-
ers which are infinite in extent, at least in principle. Otherwise one is dealing
with a finite state machine which can presumably always be evaluated by an
exhaustive enumeration. In practice, a large enough extent is sufficiently close
to infinite, and supposedly any quirks of infinite machines can be approximated
up to a point by making the finite machine large enough. Nevertheless, there are
certain theoretical considerations which are practically equivalent to choosing a
definition of infinity, for which finite approximations will definitely not suffice.
In any event, think of how much more tractable analysis becomes when real
numbers can be used freely rather than rational approximations.

To a certain extent, the problem which arises is not with the limiting be-
havior of an automaton as with describing that behavior. Some limits are com-
plicated and have a complicated description, but others have an exceedingly
simple description with respect to other terms of reference. The recognition of
balanced parentheses is the classical example; their description by regular ex-
pressions is infinite, substantially a listing of cases, while their description by a
“context free language” is very short. No matter that the automaton required
in either case is the same, it is the difference in the length of the descriptions
required by the two schemes which counts.

Then again, it is likely that the majority of limit sets will be horrendously
complicated, no matter what representation is chosen for them. Wolfram re-
peatedly emphasizes this point.

3.3 Computational requirements

Numerous variants on the theme of cellular automata have been proposed, such
as stochastic evolutionary rules, varying the rule from one cell to another or
from time to time, or even permitting such variations in the definitions of the
neighborhoods. Unfortunately the quantity of computation required to simulate
an automaton increases exponentially, and usually with a rather large exponent,
with the size of the parameters involved. Thus any increase in the number of
parameters will only aggravate a situation which is already rather difficult. If a
significant practical application of one of these variants were to be discovered,
no doubt the means would be found to compute its properties. In the meantime
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the regular version of cellular automata has enough unsolved problems to keep
one occupied.

There are two visible tendencies. One is the approach of Conway, or of those
who already have an automaton and want to find out what it does. The other is
the original approach of von Neumann, to go ahead and construct the automaton
which one requires, regardless of the cost in cells and states. Given that a Turing
machine can be embedded in cellular automata in a fairly standard way, there
will always be some automaton which will realize a given calculation; typically
such a straightforward realization will be neither aesthetic nor efficient.

In either event enormous computer power is required. In the former, the
de Bruijn diagrams are enormous; for two dimensional binary automata, it is
hardly even possible to compute the period 2 states for Life, for instance. For
one dimensional binary nearest neighbor automata, the calculation of cycles of
length 34 or periods of length 15 strain present microcomputer capacity. Yet
computer experiments reveal numerous configurations which are even bigger or
repeat with longer periods. So, although much surer, systematic computation
does not yet extend to revealing many fairly common experimental results.

Self consistent probabilities likewise require exponentially growing facilities,
as the number of nonlinear equations to be solved increases with order. In
the second case these concerns may be set aside, but it is still necessary to
manage an extremely large table of transitions and to ensure its own internal
consistency, especially in the face of backtracking from changed decisions as the
rule is gradually elaborated.

3.4 Practical applications

So far there has been a shortage of physical, biological, social, mathematical,
or whatever sort of systems, of independent interest, which have been shown
to follow a rule of evolution which would qualify them as cellular automata.
There is a result from the theory of symbolic dynamics that cellular automata
define the continuous mappings with respect to a particular topology, but it is
not, known whether this has led to the detailed examination of any particular
automata.

Some examples have been proposed; Preston and Duff[58] describe image
processing applications, Wolfram’s reprint collection[73] includes applications to
nonlinear equations describing chemical reactions. It has often been proposed
that the discretization of partial differential equations will render them into
cellular automata. However, one has to wonder whether this approach gives any
new insight or produces useful methods of solution. That is, the utility of the
typical theorems of cellular automata theory such as the evolution into cycles,
or the existence of Garden of Eden configurations, has to be contrasted with
the existence theorems, stability criteria, and so on of traditional differential
equation theory.

There is no doubt that if an actual cellular automaton were built mimicing
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Laplace’s equation, for example, that it would be enormously useful. Still,
each cell would have to have enough states to represent a real number to a
significant accuracy and would have to have a capacity for at least addition and
shifting. The number of such cells would have to be large enough to interpolate
a plane area to a reasonable degree of accuracy. So, the cost of the design of an
appropriate integrated circuit, and subsequent volume of sales, would have to be
balanced, on the one hand, against the cost and utility of designing some other
comparably complex circuit, and on the other against the ease of performing
the same simulation in a contemporary single or parallel computer.

4 Conclusion

With any body of knowledge, there is a set of definitions and axioms, followed
by a series of results—the theorems. One would like to know that the basic
assumptions lead to a well defined structure which then exhibits certain re-
markable characteristics which set it apart from other structures.

In the case of cellular automata, the definitions lead first to the association of
“cells” with “neighborhoods” via a function ¢ defining cellular evolution. Then
the association is repeated uniformly throughout some lattice, leading to the
function ® mapping configurations from one to another, and thus the evolution
of the lattice. The theory of cellular automata is essentially the theory of the
interrelation of these two functions, and especially the behavior of & under
iteration.

In the forward direction, the theorems relate to the limit sets of the evolu-
tion, including the rate at which limits are approached and the nature of the
limiting configurations, often from the point of view of formal language theory.
“Crystallographic” limits, cyclic or shifting in space and periodic in time, are
of a particular practical interest; de Bruijn diagrams lead directly to their de-
termination in the great majority of cases. Theoretically and philosophically
important are the aperiodic limits, particularly those whose linguistic descrip-
tion is especially complex. In this latter category may be included the universal
constructors of von Neumann, the emulators of Turing machines, and the like.

In the backward direction, the overlapping of neighborhoods allowed Moore
to prove the Garden of Eden theorem, which does not apply to arbitrary map-
pings.

The existence of a probability measure ¢ compatible with ® permits the
calculation of equilibrium frequencies and entropies for the lattice and so is an
important adjunct to ® itself; consequently the determination of either p or
reasonable approximations thereto play an important role in theory of cellular
automata.

Finally, the existence of an extensive collection of well studied examples is
a delightful part of the theory, particularly because many of them have proved
to have a considerable entertainment value.
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