
1 
 

Multipurpose Mobility Services for the Future Internet 

Francisco A. Gonzalez-Horta, 
1
 Pedro Mejia-Alvarez, 

2
 Eldamira Buenfil-Alpuche 

3
 

1, 2 
CINVESTAV-IPN, Computer Science Department, Mexico City 

3 
UNILA, Research Department, Cuernavaca, Mor., Mexico 

1 
fglez@computacion.cs.cinvestav.mx, 

2
 pmalvarez@cs.cinvestav.mx, 

3
 ebuenfil@unila.edu.mx 

 

Abstract 

Mobility and handoff management is a key problem of the Future Internet. Current 

solutions provide mobility services, such as seamless mobility, adaptive mobility, always-

best-connected (ABC) mobility, etc. The problem is these services work separately and 

ignore conflicts between them. This may lead to improve one service and degrade others. 

Hence, we propose multipurpose mobility as a new holistic service that integrates multiple 

mobility services and supplies a fair balance between all the objectives to meet. As a proof-

of-concept, we integrate the seamless, ABC, and adaptive mobility services, which have 

objectives in conflict. We formulate a Multi-Objective Handoff Optimization Problem, 

which grades as NP-Hard. We develop a heuristic handoff algorithm, which provides near-

optimal and balanced solutions. Finally, we evaluate the algorithm through random samples 

of simulated handoff scenarios, which provide hit rates over 90%. 

Key Words: Future Internet, handoff optimization, multipurpose mobility 

1. Introduction 

The Future Internet denotes a communication system that is present anywhere, anytime 

(ubiquitous), connects any user and any terminal (universal), supports mobility across any 

wireless access network (mobile), conveys any service over any access network and any 

terminal (multiservice), and hides heterogeneity (seamless) via homogeneous layers of IP 

software (uniform). Hence, the Future Internet [1] is ubiquitous, universal, mobile, 
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multiservice, seamless, and uniform. However, in order to achieve multiservice mobility, 

the Internet must improve a primary task called mobility management [2]. 

The problem of mobility management is the leading of packets from source to target, 

while source, target, or both change their network Points of Attachment (PoA). This 

problem is easy to describe, yet complex to solve. The packets delivery service must adapt 

to connectivity changes, while it satisfies continuity, correctness, and timeliness constraints. 

To face this complexity, mobility management divides into two problems: location 

management, which determines the route to reach the target at any time, and handoff 

management, which preserves the communications while end-systems change their 

attachment points. Location managers deal with mobility protocols [3]. Handoff managers 

deal with handoff algorithms [4]. We focus on mobility and handoff management. 

Mobility and handoff management is extensively studied in the literature. Hence, many 

mobility services have been proposed; e.g., seamless mobility [5], autonomic mobility [6], 

adaptive mobility [7], always-best-connected (ABC) mobility [8], secure mobility [9], 

energy-efficient mobility [10], and others [11]. The problem is these services work 

separately and ignore conflicts between them. Consequently, one service might be 

improved while another is worsened, yielding an erratic and unbalanced behavior. Hence, 

these solutions may be seamless but not ABC, ABC but not adaptive, adaptive but not 

secure, secure but not power-efficient, etc. This means that single-purpose services will not 

be able to achieve multiservice mobility. When we integrate several mobility services into a 

service of multipurpose mobility, the integrated objectives may conflict with each other. In 

this case, a new task of the handoff control manager is to optimize and maintain a fair 

balance between all the objectives to meet. Since that task is not easy to achieve and it 
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affects the global behavior of handoff algorithms, we propose a paradigm shift from single-

purpose to multipurpose mobility [12]. 

Despite the broad literature on mobility and handoff management, multipurpose 

mobility and multiobjective handoff optimization remain largely unexplored. Hence, we are 

interested in integrate ABC mobility, seamless mobility, and adaptive mobility. The purpose 

of ABC mobility is to keep users always connected to the most appropriate access network. 

This requires a mechanism to select the most suitable network and maximize the dwelling-

time in the best available connection (DTiB). The purpose of seamless mobility is to 

preserve service continuity. This requires reducing the communication disruptions during 

handoffs, which implies to minimize parameters, such as the handoff latency, the 

cumulative handoff latency (CHoL), or the number of executed handoffs (nEHO). The 

purpose of adaptive mobility is to keep the success of all handoffs in all mobility scenarios. 

This requires a mechanism to determine the success or failure of handoffs and estimate the 

rate of successful scenarios. Adaptive mobility intends to maximize the number of 

successful handoffs (nSHO) or the number of successful scenarios. Especially, seamless 

mobility, ABC mobility, and adaptive mobility are mutually in conflict, and tradeoffs 

between conflicting objectives make multipurpose mobility a difficult problem. Thus, we 

are concerned with improving and balancing these services as much as possible. 

In this paper, we formalize a Multi-Objective Handoff Optimization Problem 

(MOHOP) addressed to maximize DTiB, minimize nEHO, and maximize nSHO. As far as 

we know, there are no prior efforts providing a formalization and solution to this problem. 

Moreover, we classify this problem as NP-Hard. Using deterministic heuristics, we propose 

a handoff algorithm that provides near-optimal and balanced solutions in polynomial time. 

To verify this algorithm, we use a simple handoff simulator that creates samples of handoff 
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scenarios, displays the algorithm’s behavior, and measures handoff performance parameters 

(e.g., DTiB, nEHO, and nSHO). A statistical analysis on hundreds of random samples 

estimates relative frequencies of acceptable solutions over 90%. 

2. Problem Modeling 

Let us introduce the problem modeling and the challenge of handoff management in the 

Future Internet with an application scenario and relevant contextual information. 

2.1. Application Scenario and PoA Concept 

Fig. 1 illustrates a Mobile Video-Surveillance System where end users convey real-time 

multimedia traffic while they change their points of attachment to the network. 

 
Fig. 1.  Mobile Video-Surveillance System. This system uses video cameras connected to a mobile router inside a public transport vehicle 

in order to monitor in real-time the security of passengers. A police officer, using a tablet or laptop, checks the vehicle’s internal 
environment. The challenge is to preserve the video quality as both officer and vehicle arbitrarily change their PoAs. 

 

This application is a challenge to the handoff management of the Future Internet. We 

describe three entities that play a crucial role in this issue: users, terminals, and PoAs. 

Users. In the Future Internet, users will be humans, sensors, actuators, machines, or 

objects (things) with the ability to collect, process, or send information to other users. In 

Fig. 1, the police officer and the video cameras are end users. 

Terminals. Mobile terminals are hardware devices with the ability to interface a user 

with the communication network through attachment points. In Fig. 1, tablets, smartphones, 
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or laptops are terminals to the police officer, whereas mobile routers in the vehicle are 

terminals to the video cameras. Terminals may send data through various PoAs, either 

simultaneously or changing the active PoA one at a time. This choice separates two 

different problems, the handoff problem, which assumes one active PoA at a time, and the 

multihoming problem, which assumes several active PoAs simultaneously [3]. An active 

PoA is an attachment point that is currently transferring data to the network. 

PoAs. Traditionally, a PoA is a connection point to the access network [4]. We extend 

this concept and define a PoA as a connection point to each layer of the network structure; 

i.e., a channel at the physical layer, a base station at the access layer, an IP network at the 

distribution layer, and a service provider at the core layer. We define a PoA as follows. 

Definition (PoA). Let C, B, I, P be universal sets of Channels, Base stations, IP networks, 

and Providers, respectively. A network Point of Attachment (PoA) is a tuple (c, b, i, p) such 

that c  C, b  B, i  I, and p  P. The universal set of PoAs is the set A = C  B  I  P. 

We envision PoAs as sockets that allow terminals to establish connections with elements in 

the inner network. PoAs also represent connectivity resources distributed around the cloud. 

They are busy or free depending on whether a terminal has established a connection with 

such PoAs or not. Besides, any PoA a  A has a desirability value Da(t), which represents 

the overall valuation of a in different aspects (e.g., quality, cost, security). These factors are 

dynamic and hard to predict, so the PoA desirability may change rapidly and unexpectedly. 

At any specific t time, the best PoA is the one with highest desirability value. 

Users, Terminals, and PoAs. Users, terminals, and PoAs intertwine directly; users need 

terminals to establish network connections through PoAs. Conversely, PoAs create security 

associations with terminals and users. We define binary relations between these entities. 
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Definition (Relations Users-Terminals-PoAs). Let U, M, and A be universal sets of 

Internet Users, Mobile Terminals, and Attachment Points, respectively. We define binary 

relations: UM Relation = {(u, m) : u  U, m  M, u uses m}; MA Relation = {(m, a) : m  

M, a  A, m connects to a}; UA Relation = {(u, a) : u  U, a  A, u associates with a}. 

The UM Relation states a ‘usage’ relationship between users and terminals. A user can 

use zero, one, or many terminals, and zero, one, or many users can use a terminal, thus, UM 

is a many-to-many relationship. The MA Relation states a ‘connectivity’ relationship 

between terminals and PoAs. A terminal can connect to zero, one, or many PoAs, and one 

PoA can have zero, one, or several connected terminals, thus, the MA relation is many-to-

many. The UA Relation states an ‘association’ relationship between users and PoAs. It is 

the relationship between users and providers, which is many-to-many. 

Definition (Null Elements). There exist null elements, namely, null user u0 U, null 

terminal m0  M, and null PoA a0  A, such that when they relate to other elements, they 

produce new entities. For instance, UM(u,m0) represents a user with no terminal, 

UM(u0,m) is a terminal with no user, MA(m,a0) is a disconnected terminal, UA(u,a0) is an 

offline user, and both UA(u0,a) and MA(m0,a) represent a free PoA (i.e., a PoA that is 

dissociated from any user and any terminal.) 

Definition (Available PoA). Let A(a, m, u) mean PoA a is available to terminal m and user 

u; R(m, a) mean m reaches a; P(a, m, u) mean the provider of a has authenticated terminal 

m and user u; thus, ( aA, mM, uU) [A(a, m, u)  (R(m, a) P(a, m, u)  UM(u, m))]. 

Finally, communicating entities in the Future Internet must have the ability to be 

identifiable [13]. That is, there must be a unique identifier associated with each producer or 
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consumer of information [14]. Every communicating entity combines a user, a terminal, 

and an attachment point. We name this identification as follows. 

Definition (Unique Identifier). For each communicating entity k (producer or consumer), 

let (k) be the identifier of k represented by the tuple (uk, mk, ak)  U  M  A. Each 

communicating entity has exactly one identifier. That is, (i,j)((i) = (j)  i = j). 

In this way, identifiers for communicating entities are unique, yet dynamic. An identifier 

shifts as the user changes of terminal or the terminal changes of PoA. 

2.2. Handoff Definition 

A handoff/handover is a process that changes the identifier of a communicating entity. 

Different types of handoff may occur: from (u, mold, a) to (u, mnew, a), from (u, mold, aold) to 

(u, mnew, anew), and from (u, m, aold) to (u, m, anew). In this work, we consider handoffs as 

changes of PoA only, from an old PoA to a new PoA, or rather, from the current PoA ac to 

the best available PoA ab. We define a handoff as follows. 

Definition (Handoff). Assume that two PoAs, ac and ab, are available to terminal m and 

user u. Before handoff, (m, ac)  MA, (m, ab)  MA, and ac is better than ab according to a 

particular metric (e.g., desirability). If ab becomes better than ac, then a handoff will 

initiate. During handoff, a function h: UMA  UMA is applied to the communicating 

entity to change its identity from (u, m, ac) to (u, m, ab). After handoff, (m, ac)  MA, (m, ab) 

 MA, and the new attachment point ab becomes the current attachment point ac; this 

closes a cycle until a new ab appears in the scene. 

Currently, mobile terminals can change their active attachment points regardless the 

terminals are moving or not. Modern wireless networks are overlaid, large cells over small 

cells, so, several PoAs may be available in a specific place and time. 
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2.3. Handoff Types and Handoff Latencies 

A change of PoA may involve a change of channel c, base station b, IP network i, or 

service provider p. Different types of handoff occur depending on the parameter that is 

changing. A terminal achieves a layer 1 handoff if c changes within the same b, i, p. A 

layer 2 handoff occurs if the terminal changes c and b, but preserves the same i, p. A layer 

3 handoff happens when the terminal changes c, b, and i, but maintains the same p. Finally, 

a layer 4-7 handoff takes place when the terminal changes c, b, i, p, simultaneously. As 

expected, the more layers involved in a handoff, the higher is its latency and complexity. 

The handoff latency for a k-layer handoff, namely k, is given by k = ∑   
 
   , where  i is 

the handoff latency in a specific layer i. The handoff latency is hard to predict, since 

different kinds of handoff may occur: horizontal/vertical, symmetrical/asymmetrical, 

upward/downward, soft/hard, imperative/opportunistic, reactive/predictive, etc. Authors in 

[11] provide a thorough classification of handoffs. 

2.4. Problem Formulation 

Let us consider a handoff (mobility) scenario as a particular scene where several PoAs, 

including the null PoA, concur and are available to terminal m and user u for a time called 

scenario length. Considering that m has only one active PoA at a time, we depict in Fig. 2 

connectivity changes that might result from such a roaming terminal. Fig. 2 distinguishes 

three kinds of time intervals: disconnection intervals T(a0), connection intervals T(ac), and 

handoff intervals k(acab). Expression          represents the ith disconnection interval. 

Expression          describes the ith connection interval where m connects to ac (current 

PoA). Finally, expression             represents the ith handoff interval where m performs 

a k-layer handoff from ac (current PoA) to ab (best PoA candidate). 
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Fig. 2.  Connectivity Timelines Split by PoAs. This diagram shows transitions (handoffs) from one active PoA to another. Major 

parameters in this model are the sum of handoff latencies CHoL, the sum of connection times DTiB, the sum of disconnection times 

DTiD, the number of executed handoffs nEHO, the number of disconnection intervals nDI, and the scenario length (x2 – x1). 

 

Using nEHO and nDI, we define Cumulative Handoff Latency CHoL, Dwelling-Time 

in the Best DTiB, and Dwelling-Time in Disconnection DTiD, as follows. 

      ∑                       

    

   

                

     ∑                 

      

   

                     

     ∑        

   

   

                                        

Transitions to and from a0 are not considered handoffs; they rather represent transitions 

between connection and disconnection states, thus a0 is excluded from (1) and (2). 

Disconnection intervals occur when there is no available PoA in such a period. Hence, the 

size and number of disconnection intervals do not depend on the handoff algorithm, but on 

the availability of PoAs in the scenario. By splitting the scenario length into disjoint 

intervals DTiB, CHoL, and DTiD, the following expression holds. 
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Each ratio in (4) provides a measure of the parameter in the numerator. Thus, the rate of 

time in the best connection rTiB = DTiB / (x2 – x1), the rate of time in handoff execution 

rTiH = CHoL / (x2 – x1), and the rate of time in disconnection rTiD = DTiD / (x2 – x1). 

Also notice that DTiB, CHoL, and DTiD are numbers bounded by the closed interval [0, 

(x2–x1)] satisfying (4); and rTiB, rTiH, and rTiD are bounded by [0, 1]. 

In particular, three measures of handoff performance are DTiB, CHoL, and nEHO. 

Expressions (1) and (2) show how these measures are mutually related. Nevertheless, we 

can write a simplified version of such equations as follows. If  ̅ is the average latency of a 

k-layer handoff from ac to ab and  ̅ is the average connection time in ac, then 

            ̅        ̅                             

              ̅       ̅                      

               ̅⁄                                   

A goal is to minimize CHoL (5) and maximize DTiB (6). Nevertheless, minimizing 

CHoL involves reducing both nEHO and  ̅  and maximizing DTiB involves increasing both 

nEHO and  ̅  However, nEHO cannot be increased and decreased simultaneously; hence, 

CHoL and DTiB are mutually in conflict. Since nEHO is the control parameter for attaining 

a suitable balance between such conflicting objectives, we have two optimization choices: 

(a) maximize  ̅ (for a maximum DTiB) and minimize nEHO (for a minimum CHoL), or (b) 

minimize  ̅ (for a minimum CHoL) and maximize nEHO (for a maximum DTiB). We 

choose to maximize DTiB and minimize nEHO. 

We normalize DTiB and nEHO so that we can compare them. Note that rTiB, the first 

ratio in (4), is already a normalization of DTiB, thus, we focus on normalizing nEHO. 

According to (7), nEHO bounds from above and from below, but such interval includes 
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both trivial and nontrivial handoffs. Trivial handoffs appear without reason or need, i.e., 

they are unnecessary handoffs. Thus, we claim the existence of an integer nEHOmax that 

works as the least upper bound of (7), such that 0 ≤ nEHO ≤ nEHOmax ≤ (x2 – x1)/  ̅, and 

nEHOmax is the maximum number of nontrivial handoffs that are necessary to make rTiB = 

1. In Section 3.8, we explain how to obtain this parameter. Using this relationship, we 

define the rate of executed handoffs rEHO as 0 ≤ rEHO = nEHO/nEHOmax ≤ 1. For 

particular scenarios where nEHOmax = 0, we let rEHO = 0 so that rEHO is defined. We let 

rEHO as a normalization of nEHO. Since rTiB and rEHO are compromised parameters, we 

usually study the ordered pair (rTiB, rEHO) as a joint random variable. 

The third optimization parameter we study is the number of successful handoffs 

(nSHO) that occur in a handoff scenario. Let [T(anew)]i+1 = (tc – tb) and [k(aoldanew)]i = (tb – 

ta), we say a handoff succeeds if (8) is true. 

                                                      

                {                       }                   

Now, we normalize nSHO so that we can compare it with rTiB and rEHO. Since nSHO 

 [0, nEHO], then the rate of successful handoffs is rSHO = nSHO/nEHO, where rSHO  

[0, 1]. If nEHO = 0, we let rSHO = 1 so that rSHO is defined. A null scenario occurs if 

(cA)(aA)(t[x1,x2])[Dc(t)  Da(t)]. Typically, nEHO = 0 in null scenarios since 

there is no need to make handoffs if the current PoA c is always the best one. 

We define a Multiobjective Handoff Optimization Problem (MOHOP) by describing 

optimization objectives and optimization constraints. Let us use the following notation. Let 

S be the universal space of mobility scenarios. For each s  S, there are random variables 

X, Y, Z, defined on S, such that X : S  rTiB, Y : S  rEHO, Z : S  rSHO, where X(s), 
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Y(s), Z(s) represent numerical values of rTiB, rEHO, and rSHO, respectively. The solution 

space for the bivariate random variable (X, Y) is the unit square represented by {(x, y) : 0  

x  1, 0  y  1} where  x = X(s) and y = Y(s). The solution space for Z is {(z) : (0  z  1)} 

where z = Z(s). Let Sn = {s1, s2, …, sn} be a random sample of n scenarios; for each sk  Sn 

we get a solution point (xk, yk), (zk), such that xk = X(sk), yk = Y(sk), and zk = Z(sk). 

Optimization Objectives: High rTiB (X) values improve ABC mobility, low rEHO (Y) 

values improve seamless mobility, and high rSHO (Z) values improve adaptive mobility. 

Thus, the optimization goal is to maximize X(s), minimize Y(s), and maximize Z(s), ⱯsS. 

Since 0  x, y, z  1, for any solution (x, y), (z), the optimum point is (1, 0), (1) and the 

worst point is (0, 1), (0). In terms of Euclidean distances in the solution spaces for (X, Y) 

and (Z), the optimization objectives are to minimize the next functions, simultaneously. 

                  √                                    

                           √ ⁄                         

                                         

Note that (9) and (11) provide near-optimal solutions since they minimize the distance to 

the optimum, and (10) provides a fair balance between X and Y since it minimizes the 

distance to the line of equilibrium (x + y = 1). Therefore, by minimizing (9), (10), and (11) 

we obtain near-optimal and fair-balanced solutions. Moreover, the optimal solution (1, 0), 

(1) only can be obtained by null scenarios. Nevertheless, null scenarios are not common in 

reality, since it is rare that a single PoA remains as the best one in the whole scenario. 

Optimization Constraints: A solution (x, y), (z) is unacceptable if (x < 0.5  y > 0.5)  z 

< 0.5, on the contrary, a solution is acceptable if (x  0.5  y  0.5)  z  0.5. Since x, y, 

and z are functions of s, if a solution is acceptable then the underlying scenario s is 
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acceptable. For random samples of handoff scenarios Sn, with n > 30, we expect relative 

frequencies of acceptable solutions over 90%. 

To conclude, we stress on the classification we make of this problem as NP-Hard. The 

MOHOP we stated above characterizes objectives in conflict and nonlinear functions such 

as (9) and (10). According to Kumar and Banerjee [15], optimizing conflicting objectives 

subject to nonlinear constraints is a NP-Hard problem. Therefore, this MOHOP is NP-Hard. 

3. Solution Development 

We want a computational solution to the prior optimization problem. Hence, we express the 

optimization problem as a computational problem. 

Problem (Seamless-ABC-Adaptive Handoff). Given Sn, for n > 30, we wish a handoff 

algorithm R with control parameters CP, such that R(Sn, CP) = (x, y), (z) subject to f[(x  

0.5  y  0.5)  z  0.5] > 0.9, where f[E] is the relative frequency of event E. 

 Since the MOHOP is NP-Hard, no algorithm can always produce the optimal solution; 

but, we can obtain suboptimal solutions within specific ranges of quality. We require 

optimization techniques [16] that reduce the consumption of resources, and produce fast 

and acceptable solutions, since the algorithm may run in mobile terminals, where battery 

loads, processing capacities, and storage capacities are limited resources. Once we have a 

computational problem, we describe models to develop a computational solution. 

3.1. State-Based Handoff Model 

In [17, 18, 19], we described a generic handoff control system coordinating the stages 

before, during, and after the handoff. We review the handoff state diagram in Fig. 3. 

The handoff states work as follows. Disconnection is the initial state where no available 

PoAs are present; thus, the terminal stays disconnected from the network or connected to 
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the null PoA. Connection is the state where the terminal connects to the best available PoA; 

therefore, the communications perform in the best way possible. Disconnection and 

Connection are final states. Preparation state occurs when a candidate PoA starts to 

perform better than the current PoA, hence, the terminal prepares for a potential handoff. 

During preparation, the terminal keeps exchanging data with the network through the 

current PoA while the handoff algorithm makes crucial decisions.  

 
Fig. 3.  Generic state-based model for handoff control. Transitions from disconnection to connection to preparation are sequential states 
that can rollback to previous states. However, transitions from preparation to execution to evaluation cannot rollback. 

 

First, the algorithm determines whether the reason for preparing a handoff is a necessity 

or an opportunity (why). Second, it selects the best PoA candidate from a list of candidates 

(where). Third, it selects a handoff method according to the type of handoff in progress, the 

running application, and the handoff objectives (how). Fourth, it decides who is going to 

take the handoff in progress to a final state; this is important since there may be several 

control managers distributed in the network. Finally, it decides when to trigger the actual 

handoff; this is, perhaps, the most important decision. Once a control manager decides to 

trigger a handoff, there is no way to roll back the process; it will execute the handoff at the 

stated time. The Execution state performs the actual change of PoA; i.e., the physical and 

logical disconnection from an old PoA and reconnection to a new PoA. After the handoff, 
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the Evaluation state takes some time to assess the handoff and determine its success or 

failure. Unsuccessful handoffs could lead to experience a disastrous Ping-Pong effect [20]. 

3.2. Desirability of PoAs 

To model the concept of best available PoA, we develop the notion of desirability. 

Desirability represents a measure of how attractive a PoA is at a given time. Desirability is 

a utility function that combines multiple variables to produce a single numerical value for 

one specific PoA at one specific time. Each variable in the function is correlated to a 

feature of the PoA, such as its performance, quality, preference, cost, energy, security, etc. 

In [19] we provide a rich set of variables for desirability functions. 

PoA desirability is dynamic and dependent on many factors, such as the network 

operating conditions, the time of the day, the type of running application, the user 

preferences, the user mobility, the geographic location of wireless overlays, etc. This 

implies that the best available PoA changes with time, perhaps abruptly and stochastically 

or perhaps smoothly and deterministically. In fact, the behavior of the best PoA can be 

both, deterministic or non-deterministic at different times. In addition, users or providers 

may assign suitable weights to each variable in order to show their preferences within the 

function. Thus, the best available PoA has the highest desirability value. We classify 

decision variables as positive or negative according to their correlation sign. The set V of 

variables correlated to PoA desirability splits into two disjoint subsets, the set V
+
 of 

positively correlated variables and the set V

 of negatively correlated variables. Examples 

of positively correlated variables are system bandwidth, signal strength, system security, 

battery load, and cell size. Increments in these variables produce improvements in PoA 

desirability and decrements yield degradations in desirability. On the other hand, examples 
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of negatively correlated variables are bit error rate, rate of lost packets, connection price, 

transmit power, and distance to the base station. Increments in these variables make the 

PoA less desirable and decrements yield a more desirable PoA. Therefore, the desirability 

function is a balance between desirability and undesirability. 

Definition (Desirability Function). Let Da(v; tk) be the desirability of the attachment point 

a evaluated at tk time, where v = (v1, v2, …, vq) is the vector of q variables, which are 

considered to evaluate the desirability of the PoA. The desirability function is: 

         ∑             
        ∑ (    )    (  

     )                         

Wi and Wj are weights associated with each positively or negatively correlated variable, 

such that Wi, Wj  [0, 1] and ∑   ∑    . E is a constant scaling factor so that 

“small” changes in variables reflect “big” changes in desirability. Finally,   
      and 

  
      are the values of the positively and negatively correlated variables evaluated at tk. 

The desirability function                  maps q variables and one parameter 

control tk to a single real value representing the desirability of a. We use logarithms as 

normalization functions, so that we can perform homogeneous operations with 

heterogeneous variables. For simplicity, we make                         whose 

domain is the time discrete interval x1  tk  x2, such that tk = x1 + k and 0  k  

(x2x1)/ = n, where  is the step time at which the desirability function is evaluated, and 

(x2x1) is the scenario length, a.k.a. total sampling time TST. 

3.3. Desirability Thresholds 

The range of desirability is (, +) but we bound this range with thresholds. Thresholds 

divide the desirability range into quality regions. Desirability values below a lower 

threshold L are unable to carry on communications; a PoA in this situation is unavailable or 
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unreachable. On the contrary, the higher the desirability is above L, the better is the PoA. 

We sustain this condition until an upper threshold U, with U > L. We consider that any 

PoA with desirability values above U is the best available PoA. Therefore, below the lower 

threshold (red region) and above the upper threshold (green region) there is no way to say 

if a PoA is worse or better than another one is. Any PoA in the red region (Da(t)  L) is the 

worst and any PoA in the green region (Da(t)  U) is the best. Only in the handoff (white) 

region, the region between L and U, it is possible to compare desirability values to decide 

which PoA is better. Thus, handoffs perform only in the handoff region. 

3.4. Desirability Curves 

The PoA desirability curves are constructed from a sequence of n+1 data points (Da(t0), 

Da(t1), …, Da(tn)) obtained when the desirability function is evaluated at discrete times tk. A 

polygonal curve of desirability would result from connecting the consecutive points with 

line segments. Nevertheless, we prefer to use a smooth desirability fitted curve Da(t) as a 

way of easing data visualization and inferring values of the function where no data are 

available. Since we have no hard data to create such a curve, we model it with polynomial 

functions (including roots or quotients of polynomials), transcendental functions (including 

trigonometric, logarithmic, and exponential functions), or combinations of both. This way, 

we create a large variety of desirability curves for experimental purposes. Anyhow, our 

algorithm ignores the mathematical expressions representing the desirability curves. 

3.5. Mobility Scenarios 

A handoff/mobility scenario is a data structure (N, D, W, L, U, ) where N is the number of 

desirability curves considered simultaneously in the scenario, N  2. D is the set of 

mathematical expressions Da(t) for a = 1, 2, …, N representing desirability curves. W is the 
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rectangular window bounding the display and analysis of desirability curves; the opposite 

coordinates (x1, y1) and (x2, y2) determine this window. L is the lower threshold. U is the 

upper threshold.  is the step time (or dot time) to plot desirability curves. 

3.6. Time-Based Vs. Space-Based Scenarios 

In space-based scenarios, a terminal moves across a service area split by cells and performs 

handoffs within specific overlap zones (see Fig. 4 left). Correspondingly, in time-based 

scenarios, the desirability of cells changes with time and the crossing points between 

desirability curves represent times to make handoffs (see Fig. 4 right). 

 
Fig. 4.  Space-based and time-based scenarios. The space-based scenario depicts five handoffs performed while a terminal crosses 

through cells A and B. Similarly, the time-based scenario shows two curves modeling the desirability of A and B as the terminal moves. 

The crossing points in desirability curves represent different times to perform handoffs. The best available PoA is colored in bold black. 

 

Space-based scenarios display geographic mobility but not desirability changes. 

Conversely, time-based scenarios show desirability changes but not geographic mobility. 

Since desirability curves may change even if the terminal is static, we prefer to use time-

based scenarios in order to represent handoffs with both, static and mobile terminals. 

Note the conflict between nEHO and DTiB. If nEHO is reduced in order to improve 

seamless mobility, then DTiB will also be reduced yielding degradation in ABC mobility. 

3.7. Proactive Vs. Reactive Handoff Strategies 

Two types of handoff strategies are proactive and reactive [21]. Fig. 5 depicts proactive and 

reactive handoffs and distinguishes the spent time in each handoff state. 
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Fig. 5.  Proactive and reactive handoff strategies. The proactive strategy triggers a handoff as soon as the best PoA candidate (PoA-2) 

improves the current PoA (PoA-1), i.e., at the crossing point. The reactive strategy does not trigger a handoff until a PoA candidate (PoA-

2) has proven to be consistently and sufficiently better than the current PoA (PoA-1). 
 

The time in connection state is in bold black (CONN). The interval in preparation is in 

bold blue (PREP). The handoff execution latency (EXEC) and disconnection intervals 

(DISCO) are in bold red. The handoff evaluation latency (EVAL) is in bold pink. 

An advantage of proactivity is that it can provide a better DTiB by initiating handoffs 

with more anticipation. However, its drawback is that it can produce more unsuccessful 

handoffs since the candidate PoA never proves to be better than the current PoA; it just 

proves to have a tendency to improve the current PoA. For this reason, we believe a 

reactive strategy is more suitable for random desirability curves, improving nSHO at the 

cost of improving DTiB. Similarly, we think a proactive strategy is more appropriate for 

deterministic curves, improving DTiB at the cost of improving nSHO. Since we assumed 

PoA desirability is highly unpredictable, we follow a reactive strategy. 

Note the conflict between DTiB and nSHO. If DTiB is increased in order to improve 

ABC mobility, then nSHO will be reduced, yielding degradation in adaptive mobility. 

3.8. Handoff Performance Parameters 

We provide more details about rTiB, rEHO, and rSHO. First, note that we can split the 

scenario length (TST) into disjoint time intervals since the handoff state machine (Fig. 3) is 
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deterministic. Observe that (13) holds for any handoff scenario, where (DISCO) = 

DTiD, (CONN) is dwelling time in connection, (PREP) is dwelling time in 

preparation, (EXEC) = CHoL, and (EVAL) is dwelling time in evaluation. 

TST = (DISCO) + (CONN) + (PREP) + (EXEC) + (EVAL).       (13) 

However, DTiB (dwelling time in the best PoA) has two interpretations depending on 

the handoff strategy: in proactive strategy, DTiB = (CONN) + (PREP) + (EVAL); 

in reactive strategy, DTiB = (CONN). In both cases, DTiB represents the time the 

current PoA is the most desirable attachment point and rTiB = DTiB/TST, rTiB  [0, 1]. 

 Second, nEHOmax is the number of crossing points ToX between the current PoA c and 

the best candidate PoA b. ToX = |{ t  [x1, x2] : Dc(t) = Db(t) }|, considering that b 

becomes c after every crossing point. ToX is computed for each scenario under test. A 

handoff algorithm should not make more handoffs than ToX in order to stay always in the 

best available PoA. Thus, 0  rEHO = nEHO/ToX  1, but if ToX = 0 then rEHO = 0. 

 Third, the constraint in (8) implies that (EVAL)  (EXEC), that is, a successful 

handoff will occur if (t  EVAL) [Dnew(t) > (Dold(t) + ),  > 0] is true and  is an 

adaptive hysteresis margin. The rate of successful handoffs in s is rSHO = nSHO/nEHO 

and 0  nSHO  nEHO. We let rSHO = 1 if nEHO = 0. We say a scenario is successful if 

rSHO  0.5. Given a random sample Sn, we expect high frequencies of successful scenarios. 

Note the conflict between nEHO and nSHO. If nEHO is reduced in order to improve 

seamless mobility, then nSHO will also be reduced degrading adaptability. 

 In summary, the bivariate variable (rTiB, rEHO) measures the balance between 

seamless and ABC mobility, and (rSHO) measures the performance of adaptive mobility. 

The next proposition gives new insights about the relationship between rTiB and rEHO. 
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Proposition (Correlation and Causation). The random variables rTiB and rEHO have 

correlation, but not necessarily causation. 

The proof begins with the remark that the handoff state machine splits the scenario length 

according to (13). This equation is rTiD + rTiC + rTiP + rTiH + rTiE = 1, where rTiD = 

(DISCO)/TST (rate of time in disconnection), rTiC = (CONN)/TST (rate of time in 

connection), rTiP = (PREP)/TST (rate of time in preparation), rTiH = (EXEC)/TST = 

CHoL/TST (rate of time in handoff execution), and rTiE = (EVAL)/TST (rate of time in 

evaluation). Since CHoL = nEHO ̅ from (5) and nEHO = rEHOToX, we have: 

                   (
     ̅

   
)                     

If we take a reactive strategy then rTiB = rTiC and (15) holds, but if we use a proactive 

strategy then rTiB = rTiC + rTiP + rTiE and (16) holds. 

         (
     ̅

   
)                                

         (
     ̅

   
)                    

Both (15) and (16) show a correlation between rTiB and rEHO (along with other 

factors). The correlations seem to be linear, but ToX,  ̅, TST, rTiD, rTiP, and rTiE are also 

random variables, thus rTiB and rEHO have a nonlinear correlation. This is empirically 

confirmed by the correlation coefficient estimated in Section 5.4. 

We now explore the cause-effect relationship between rTiB and rEHO. According to 

(15) and (16), one variable along with other factors, determines the other variable. Hence, a 

change in rEHO does not necessarily produce a change in rTiB, and vice versa. Therefore, 

we cannot establish a cause-effect relationship between rTiB and rEHO, unless we consider 
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proactive strategies (16) and scenarios without disconnections (i.e., rTiD = 0). If this is the 

case, then rTiB and rEHO have bidirectional causality. 

4. Multiobjective Handoff Algorithm 

This algorithm makes a terminal stay most of the time in the best available PoA, while 

holding the least number of handoffs and the largest number of successful handoffs. 

4.1. Algorithm R (Relative Desirability Algorithm) 

Algorithm R is deterministic, reactive, heuristic, adaptive, and autonomous. Deterministic, 

since it always produces the same output for the same input. Reactive, since it follows a 

reactive handoff strategy. Heuristic, since it uses deterministic heuristics to decide where 

and when to hand over. Adaptive, since it changes its behavior according to the case of 

imperative or opportunist handoffs. Autonomous, since it does not demand user 

interventions. Control parameters are established offline, and once the user sets an initial 

performance tune up, no more user interventions are required. 

Our heuristics state that only if a candidate PoA is consistently and sufficiently better 

than the current PoA, a handoff to that candidate will provide sufficient benefits to the user. 

Definition (candidate PoA). Considering a reactive strategy, if c is the current PoA and b 

is an available PoA such that R(tk) = Db(tk)  Dc(tk) > 0, then b is a candidate PoA at tk. 

R(tk) is called relative desirability. 

Definition (Sufficiently Better). If c is the current PoA and b is a candidate PoA at tk such 

that R(tk) >  > 0, then b is sufficiently better (SuffB).  is called hysteresis margin. 

Definition (Consistently Better). If c is the current PoA, b is a candidate PoA, and if R(t) 

= Db(t)  Dc(t) > 0 for all t  [tp, tq] where (tq  tp)  SP > 0, then b is consistently better 

(ConsB). SP is a dwell-timer called stability period. 
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Definition (Best PoA candidate). If c is the current PoA, b is a candidate PoA, and if 

R(t) = Db(t)  Dc(t) >  > 0 for all t  [tp, tq] where (tq  tp)  SP > 0, then b is the best 

PoA candidate (i.e., the best PoA candidate is a candidate PoA, which is SuffB and ConsB). 

Heuristic (Where to hand over). The first best PoA candidate to appear is where the 

active PoA should go in order to preserve or improve user communications. 

Heuristic (When to hand over). Trigger a handoff from the current PoA to the best PoA 

candidate as soon as the first best PoA candidate appears. But, if the current PoA c is close 

to a disconnection (i.e., L < Dc(tk) < L +  and  > 0) and at tk the best candidate is not yet 

been found, then make an urgent handoff to the best candidate at tk. 

Fig. 6 depicts the adaptive behavior for opportunistic and imperative handoffs. 

Adaptability to opportunistic or imperative handoffs means that the algorithm must 

automatically vary the values for  and SP, according to the vertical distance between the 

intersection point of desirability signals and the lower threshold L. Minimum  (m) and 

minimum SP (mSP) are configuration parameters fixed by the user or provider. This way, 

preparation latency (PREP) gradually reduces as the crossing point occurs near L, and 

gradually increases as the crossing point surpasses L. 

  

Fig. 6.  Opportunistic and Imperative Handoffs. In the opportunistic case, the algorithm tests the candidate under hard conditions (large 

values for  and SP). In the imperative case, the algorithm tests the candidate under mild conditions (small values for  and SP). 
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Opportunistic or imperative handoffs depend on the handoff scenario, thus, the 

algorithm adapts to different scenarios. To make  and SP adaptable to a handoff scenario, 

we divide the handoff region into a number of adaptability levels of equal size. If we let the 

space between levels be 0.5, then the number of levels in the handoff region is (UL)/0.5, 

considering U > L and U, L integers. If the crossing point between the current PoA and a 

candidate occurs at tk, then the corresponding adaptability level is given by level = 

(Dcurrent(tk)  L)/0.5; therefore,  = (level  m) and SP = (level  mSP). 

4.2. Configuration Parameters 

mSP: minimum SP. It is used to obtain an SP value according to SP = level  mSP. SP 

is an adaptive dwell-timer used to determine if a candidate PoA is consistently better. To 

test consistency for at least one step time, mSP  . 

m: minimum . It is used to obtain a  value according to  = level  m.  is a 

hysteresis margin used to determine if a candidate PoA is sufficiently better. To test 

sufficiency, the algorithm requires that m > 0. 

ExL: average handoff latency ( ̅). Although we may consider instantaneous handoffs 

by making EXEC = 0, in real scenarios, this is not possible. We estimate the average 

handoff latency by measuring the minimum latency of a layer 1 handoff, then the maximum 

latency of a layer 4-7 handoff, and then computing the average. We assume this parameter 

is a real positive number such that ExL  . 

EvL: average evaluation latency. Evaluation latency is the spent time evaluating the 

handoff. We consider the average evaluation latency, but meeting EvL  ExL is required. 

4.3. Pseudo code of Algorithm R 

Inputs: Scenario (D[a, t], x1, x2, L, U, );  Control (mSP, m, ExL, EvL). 
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Outputs: rTiB, rEHO, rSHO, DTiB, TST, nEHO, ToX, nSHO. 

We describe the main process in twenty steps labeled from A to T. 

A.  [Initialize.] Set curr  0 (current PoA, 0 = disconnected). Set best  0 (best available 

PoA, 0 = disconnected). Set t  x1 (scenario initial time). Set DTiB  nEHO  nSHO 

 0. Set TST  (x2x1). Set ToX  getToX (subroutine that pre-analyzes the given 

scenario and determines the number of crossing points in the handoff region). 

B. [End of analysis?] If t > x2, the algorithm terminates; answers are: 

a. rTiB  DTiB/TST (rTiB  0 if TST = 0) 

b. rEHO  nEHO/ToX (rEHO  0 if ToX = 0) 

c. rSHO  nSHO/nEHO (rSHO  1 if nEHO = 0) 

C. [Get best PoA and its region.] Set D[a, t]  max(D[1, t], D[2, t], …, D[N, t]). Set best 

 a (the best available PoA). Set regionB  “white” if L  D[best, t]  U. Set regionB 

 “red” if D[best, t] < L. Set regionB  “green” if D[best, t] > U. 

D. [Is current PoA disconnected or connected to the best one?] If (curr = 0 OR curr = best) 

then if (regionB = “red”) then curr  0 (disconnect if no PoA available) else curr  

best, DTiB  DTiB +  (connect to the best one or remain connected to the best one, 

increment DTiB). Next, set t  t + , and then return to step B. 

E. [Find region of current PoA.] Set regionC  (“white” | “red” | “green”) if (L  D[curr, 

t]  U | D[curr, t] < L | D[curr, t] > U). 

F. [Is current PoA in “green” region?] If (regionC = “green”) then set DTiB  DTiB + , t 

 t + , and go back to B. (Any PoA in the green region is the best one). 

G. [Is current PoA in “red” region?] If (regionC = “red”) then set curr  0, t  t + , and 

go back to step B. (Any PoA in the red region is unavailable or disconnected). 
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H. [Get level, , and SP.] (The current PoA is in the handoff region and it is not connected 

to the best one, thus prepare for handoff.) Set level  (D[curr, t]  L)/0.5,   level 

 m, and SP  level  mSP. Set timers: t1  tk  t. 

I. [Get relative desirability at tk.] Set R(tk)  (D[best, tk]  D[curr, tk]). 

J. [Is R(tk) < 0?] If R(tk) < 0 then set DTiB  DTiB + , t  tk, t  t + , and go back 

to B. (There are no reasons to prepare for a handoff). 

K. [Do we still have time to compare?] If (D[curr, tk]  L) <  then go to step N. (The 

current PoA is quite close to a disconnection, thus trigger a handoff urgently). 

L. [Is R(tk) < ?] If R(tk) <  then set tk  tk + , suffB  false, and return to I. (The 

candidate is not sufficiently better). Otherwise, set suffB  true. 

M. [Is (tk  t1) < SP?] If (tk  t1) < SP then set tk  tk + , consB  false, and return to I. 

(The candidate is not consistently better). Otherwise, set consB  true. 

N. [Initiate handoff execution.] (The candidate is sufficiently and consistently better than 

current). Set nEHO  nEHO + 1, t1  tk. (Increase nEHO and start timer). 

O. [Make handoff from current to best.] Call procedure make-ho (curr, best). (Execute the 

physical and logical handoff and wait until it terminates). 

P. [Is handoff completed?] If (tk  t1) < ExL then set tk  tk +  and return to O. 

Q. [Initiate handoff evaluation.] Set new  best, old  curr, t1  tk. (Start timer). 

R. [Perform handoff evaluation.] If D[new, tk] > (D[old, tk] + ) then SHO (successful 

handoff)  true; else SHO  false and tk  t1 + EvL (evaluation ends). 

S. [Is evaluation complete?] If (tk  t1) < EvL then set tk  tk + , return to R. 

T. [Is handoff successful?] If SHO is true, then set nSHO  nSHO + 1, t  tk, DTiB  

DTiB + , t  t + , and go back to step B; otherwise, set t  tk, t  t + , and go to H. 
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Algorithm R follows the handoff state machine in Fig. 3. We associate disconnection 

when curr = 0, connection when curr = best, preparation when curr  best, execution when 

best is suffB and consB, and evaluation when new and old are compared. Notice that  and 

SP change according to an adaptability level, thus they modify the conditions for 

sufficiency and consistency, which the algorithm uses to trigger a handoff. Step K performs 

an urgent handoff. In this step, the algorithm skips the triggering conditions when there is 

no time to validate a candidate. This option follows the heuristic: Better to make handoffs 

to non-validated candidates, than keep connected to PoAs that are losing connectivity. 

5. Simulation Results and Discussion 

In this Section, we evaluate the algorithm’s performance using a simulation tool that easily 

creates a variety of time-based handoff scenarios. 

5.1. Handoff Simulation 

Algorithm R directly works with a blend of time-domain desirability signals, one signal per 

available PoA. Hence, we need a simulation tool to create a variety of time-based scenarios, 

run algorithm R under such scenarios, and measure performance parameters rTiB, rEHO, 

and rSHO for each scenario. For these reasons, we built a simple simulation tool, which we 

are able to share with the research community to verify our results or simulate particular 

scenarios. This simulator graphically displays the behavior of the handoff algorithm. The 

simulator outcomes can be filed at the end of each session. 

Fig. 7 depicts an example scenario where four crossing points are present, but only the 

first one meets the triggering conditions. This shows how our algorithm prevents handoffs 

towards temporarily better or not sufficiently better networks. This example scenario 

achieves a solution (0.6237, 0.25) (1.0), which we consider is a very good solution. 
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Fig. 7.  Handoff Simulator Instrument. (Top left) The screen shows the scenario in preview mode. (Top right) This screen shows the 

scenario in simulation mode. (Bottom center) This screen shows the console output. 

 

The simulator works in preview or simulation mode. Preview mode allows visualizing 

the time-based handoff scenario and setting the algorithm’s control parameters up. This 

mode counts the number of crossing points in the scenario. Simulation mode displays the 

current PoA passing through every handoff state. The simulator draws the connection state 

in black, preparation in blue, evaluation in pink, execution and disconnection in red. 

5.2. Statistical Experiment 

Here is the way we chose Sn. We invited several users to try a session test with the handoff 

instrument. We asked each of them to create at least 30 random scenarios experimenting 

with different desirability functions. We maintained the same experimental conditions 

between tests, by not allowing one result to influence the way the user creates the next 

scenario; for this purpose, we banned the user to see the console output. We requested more 

than 30 samples per user because we observed that after 30 points, the frequency 

distribution begins to show an identifiable statistical regularity. 
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5.3. Statistical Results 

Let us show the distribution of 249 sample points (xk, yk), (zk) collected in the experiment. 

Appendix B.2 of [12] presents the original data files of this statistical experiment. Fig. 8 

(left) shows the distribution (rTiB, rEHO) and Fig. 8 (right) the distribution (rSHO). 

 
 

Fig. 8.  (Left) Scatter plot of sample points (xk, yk). (Right) Scatter plot of the corresponding sample points (zk). The average sample point 

is located at (0.6185, 0.4703), (0.9655). The following frequencies apply to existing events: n[z=0] = 2, n[z=0.4] = 1, n[z=0.5] = 3, 

n[z=0.6] = 3, n[z=0.67] = 4, n[z=0.75] = 6, n[z=0.83] = 1, n[z=0.86] = 2, n[z=1] = 227. 

 

Additionally, Table I presents a summary of hit rates for particular events: acceptable 

solutions, successful scenarios, very good solutions, and harmful solutions. These results 

provide empirical evidence that support the algorithm performance. 

TABLE I 

SUMMARY OF RESULTS & GOALS ACHIEVEMENT 

Experiments 

 

          Events [E] 

249 random sample points 

f[E] = n[E]/n 

Performance 

Goals 

Acceptable solutions 

(x  0.5  y  0.5)  z  0.5 
225/249 = 90.36% > 90% 

Successful scenarios 

z  0.5 
246/249 = 98.79% > 95% 

Very good solutions 

(x  0.5  y  0.5  z  0.5) 
110/249 = 44.18% > 40% 

Harmful solutions 

(x < 0.5  y > 0.5  z < 0.5) 
0/249 = 0% < 1% 

 

The tendency to produce balanced solutions is seen in Fig. 8 (Left), where the densities 

of solution points that appear above and below the line of equilibrium are nearly 

symmetrical. Likewise, the tendency to produce near optimal solutions is seen through high 

rates of acceptable solutions (90.36%) and successful scenarios (98.79%). 
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5.4. Discussion 

Fig. 8 (Left) shows some points having the same value in rEHO but different value in rTiB. 

This means that rEHO is affected not only by rTiB, but also by other factors. This confirms 

the lack, in general, of a causal relationship between rTiB and rEHO. Moreover, the 

nonlinear correlation of rTiB and rEHO in (15) is confirmed since the Pearson’s correlation 

coefficient applied to data sets (rTiB, rEHO) is 0.1247, which is far from linearity (1). 

 The simulation results support the optimization goals that we established for algorithm 

R. Moreover, algorithm R provides acceptable solutions in linear time, since the scenario 

length linearly bounds the execution time of the algorithm. Conversely, the algorithm 

shows a tendency to decrease the density of solutions as they approach to the optimum; 

e.g., f[(x  0.75  y  0.25  z  0.75)] = 15/249 = 6.02%. This behavior is expected since 

the problem is NP-hard and heuristic optimization produces suboptimal solutions. 

 By selecting a reactive handoff strategy instead of a proactive strategy, we are giving 

preference to rSHO over rTiB. As a result, high rates of successful scenarios (>98%) and 

low rates of harmful solutions (<1%) were obtained. However, if we changed to a proactive 

strategy, rTiB will improve since rTiB for proactive is greater than rTiB for reactive, but 

rSHO will surely get worse. On the other hand, rEHO is controlled directly by the 

triggering conditions for consistency (mSP), sufficiency (m), and urgency (). These 

conditions are designed to execute handoffs only when necessary. From (16), we expect 

that proactive handoffs yield better control for rEHO and rTiB with bidirectional causation. 

Finally, we propose (14) as the equation of state for handoffs. This equation correlates 

multiple handoff variables, which are independent of the handoff algorithm configuration 

parameters. Hence, this equation can be applied to any type of 5-states handoff scheme. 
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6. Previous Work 

Far from being a comprehensive review on multiobjective handoff optimization, this 

Section focuses on works that motivated and loomed the concept of multipurpose mobility. 

The vast literature on mobility and handoff management reveals an exhaustive work on 

single-purpose mobility services, but also a remarkable gap in multipurpose mobility. Many 

single-purpose solutions, such as [5-10, 22, 23], perform rather well or even optimally, 

since they focus on single objectives and ignore conflicts and tradeoffs with other mobility 

services. It would be unfair and guileful to compare algorithms that optimize different 

objectives. At present, there is no an algorithm that optimizes the same three objectives 

achieved by algorithm R, thus, we cannot conduct a fair comparative study. However, we 

expect this work serves as a template or blueprint to create new MOHOPs and better 

multiobjective handoff algorithms. 

 The multipurpose mobility vision is inspired by the remarkable work of Tripathi [24] 

and Nasser [11]. Tripathi (1997) was the first author to consider handoffs that may achieve 

multiple desirable features. Nasser (2006) extended this list of desirable handoff features. 

Following the methodology in [17], we associate a mobility service with a desirable 

feature, which associates with a purpose, which associates with objectives, which are 

subjects to goals or constraints. In this way, the integration of multiple mobility services 

naturally leads to formulate MOHOPs. Finally, some works propose specific techniques to 

trade off conflicting objectives such as minimize discovery latency and discovery energy 

consumption [10], maximize throughput and fairness in channel assignment [25], maximize 

throughput and minimize ping pong effect [26], balance overall load and maximize battery 

lifetime [27], etc. Yet, these works are still ignoring the integration of multiple mobility 

services into a single solution. 
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7. Conclusion 

Handoffs are mechanisms to support the quality of mobile communications. They are 

inevitable and are not yet optimized to achieve many objectives. Present handoffs have 

focused on providing single-purpose mobility services; nevertheless, the Future Internet 

demands a paradigm shift towards multipurpose mobility. The major challenge of 

multipurpose mobility is the optimization of multiple conflicting objectives subject to 

nonlinear constraints. Although this problem is NP-Hard, we showed that computational 

solutions are able to yield near-optimal and fair-balanced outcomes in polynomial time. 

 In this paper, we integrate seamless mobility, ABC mobility, and adaptive mobility, 

where the optimization variables nEHO, DTiB, and nSHO are mutually in conflict. The 

multiobjective handoff algorithm we propose is based on deterministic heuristics. We 

define acceptable solutions and successful scenarios, and obtain statistical data supporting 

the hypothesis of an algorithm with hit rates over 90%. 

 As future work, we are improving the simulation tool in different ways, e.g., it will 

automatically create thousands of random handoff scenarios with many overlapped 

desirability curves. We are also working on improvements to our current handoff algorithm. 

We are exploring new heuristics to increase the current rates of acceptable solutions. A key 

challenge of future work is to add new objectives of different services to the problem. 
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