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Abstract. In this paper we propose and investigate a new local search
strategy for multi-objective memetic algorithms. For this, we suggest
a novel iterative search procedure, the HCS, which is designed for the
treatment of multi-objective optimization problems, and show further on
one possible way to integrate the HCS into a given evolutionary strategy
leading to a new memetic (or hybrid) algorithm. The pecularity of the
HCS, the Hill climber with Sidestep, is that it is intended to be capable
both of moving toward and along the (local) Pareto set depending on the
distance of the current iterate toward this set. The local search proce-
dure utilizes the geometry of the directional cones of such optimization
problems and works with or without gradient information. Finally, we
present some numerical results on some well-known benchmark problems
indicating the strength of the local search strategy as a standalone algo-
rithm as well as the new hybrid approach, i.e., the HCS embedded into
a multi-objective evolutionary algorithm.

Key words: multi-objective optimization, heuristic search, memetic algorithm,
hill climber, Pareto set

1 Introduction

In a variety of applications in industry and finance one is faced with the problem
that several objectives have to be optimized concurrently leading to a multi-
objective optimization problem (MOP). As a general example, two common goals
in product design are certainly to maximize the quality of the product and to
minimize its cost. Since these two goals are typically contradicting, it comes as
no surprise that the solution set—the so-called Pareto set—of an MOP does in
general not consist of one single solution but rather of an entire set of solutions
(see Section 2 for a more detailed discussion).

⋆ The fourth author is also affiliated to the UMI-LAFMIA 3175 CNRS
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For the computation of the Pareto set of a given MOP there exist several
classes of algorithms. There exist, for instance, a variety of mathematical pro-
gramming techniques such as scalarization methods (see e.g., [31, 16, 8] and ref-
erences therein) or continuation methods [21] which are in general very effi-
cient in finding single solutions—the most prominent example is probably New-
ton’s method which is used within continuation methods and which has local
quadratic convergence [33]—but which may have trouble in finding the entire
(global) Pareto set in certain cases. In contrast, there are global methods in-
cluding multi-objective evolutionary algorithms (MOEAs) [10, 7] or subdivision
techniques [44, 14] which accomplish the ‘global task’ exceedingly but offer in
turn (much) slower convergence rates compared to the algorithms mentioned
above.

Another class of algorithms are the memetic (or hybrid) algorithms, i.e., al-
gorithms which hybridize MOEAs with local search strategies (see Section 2.2
for an overview of existing methods). This is done in order to obtain an algo-
rithm which offers on one side the globality and robustness of the evolutionary
approach, but on the other side also an improved overall performance by the
inclusion of well directed local search.

The scope of this paper is to present a novel approach which fits into the
last category of algorithms. To be more precise, according to the classification
made in [46], we suggest an exploitation-embedded hybrid method. The core of
the method is a local search prodecure, the Hill Climber with Sidestep (HCS).
This point-wise iteration process aims to find a sequence of ‘better’ solutions
(hill climber). In case the actual iterate is already ‘near’ to a local solution the
process automatically tries to determine the subsequent iterates along the Pareto
set (sidestep). A preliminary study of this work can be found in [42].

The remainder of this paper is organized as follows: In Section 2, we state
some theoretical background and give an overview on existing memetic MOEAs
(MEMOEAs). In Section 3, we introduce the idea of the HCS and propose two
realizations, and give further on in Section 5 one possible way to integrate this
algorithm into a global search procedure. In Section 5, we show some numerical
results on both the HCS as a standalone algorithm as well as one resulting
MEMOEA. Finally, some conclusions are drawn in Section 5.

2 Background

Here we briefly describe the background required for this paper: we introduce
to the notion of multi-objective optimization and give an overview on existing
memetic strategies for the numerical treatment of such problems.

2.1 Multi-objective Optimization (MOO)

In a variety of applications in industry and finance a problem arises that several
objective functions have to be optimized concurrently leading to multi-objective
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optimization problems (MOPs). In the following we consider continuous MOPs
which are of the following form:

min
x∈Q

{F (x)}, (MOP)

where Q ⊂ Rn is the domain and the function F is defined as the vector of the
objective functions

F : Q → Rk, F (x) = (f1(x), . . . , fk(x)),

and where each fi : Q → R is continuous. In this work we will mainly consider
the unconstrained case (i.e., Q = Rn) but will give some possible modifications
of the algorithms in case Q is defined by inequality constraints such as box
constraints.
Central for the treatment of MOPs is the concept of the optimality of a point
x ∈ Q which is not analogue to the scalar objective case (k = 1). In the multi-
objective case (k > 1) the concept of dominance is used which dates back over
a century and was proposed first by Pareto [35].

Definition 1. (a) Let v, w ∈ Rk. Then the vector v is less than w (v <p w),
if vi < wi for all i ∈ {1, . . . , k}. The relation ≤p is defined analogously.

(b) A vector y ∈ Rn is dominated by a vector x ∈ Rn (x ≺ y) with respect to
(MOP) if F (x) ≤p F (y) and F (x) 6= F (y), else y is called non-dominated
by x.

(c) A point x ∈ Q is called Pareto optimal or a Pareto point if there is no y ∈ Q
which dominates x.

In case all the objectives fi, i = 1, . . . , k, of the MOP are differentiable the fol-
lowing theorem of Kuhn and Tucker [29] states a necessary condition for Pareto
optimality for unconstrained MOPs. For a more general formulation of the the-
orem we refer e.g. to [31].

Theorem 1. Let x∗ be a Pareto point of (MOP), then there exists a vector

α ∈ Rk with αi ≥ 0, i = 1, . . . , k, and
∑k

i=1 αi = 1 such that

k
∑

i=1

αi∇fi(x
∗) = 0. (1)

The theorem claims that the vector of zeros can be written as a convex
combination of the gradients of the objectives at every Pareto point. Obviously,
(1) is not a sufficient condition for Pareto optimality. On the other hand, points
satisfying (1) are certainly ‘Pareto candidates’.

Definition 2. A point x ∈ Rn is called a Karush–Kuhn–Tucker point3 (KKT–

point) if there exist scalars α1, . . . , αk ≥ 0 such that
∑k

i=1 αi = 1 and that
Equation (1) is satisfied.

3 Named after the works of Karush [26] and Kuhn & Tucker [29].
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The set of all (globally) Pareto optimal solutions is called the Pareto set. It
has been shown that this set typically—i.e., under mild regularity assumptions—
forms a (k − 1)-dimensional object [21]. The image of the Pareto set is called
the Pareto front. Since we are involving local search strategies in our work we
have to take also locally optimal points into consideration. In the following, let
P be the set of local Pareto points. In case the MOP is differentiable, P can be
considered as the set of KKT–points.

Theorem 2 ([39]). Let (MOP) be given and q : Rn → Rn be defined by

q(x) =

k
∑

i=1

α̂i∇fi(x), (2)

where α̂ is a solution of

min
α∈Rk

{

‖

k
∑

i=1

αi∇fi(x)‖2
2; αi ≥ 0, i = 1, . . . , k,

k
∑

i=1

αi = 1

}

. (3)

Then either q(x) = 0 or −q(x) is a descent direction for all objective functions
f1, . . . , fk in x.

The theorem states that for every point x ∈ Q which is not a KKT–point a
descent direction (i.e., a direction where all objectives’ values can be improved)
can be found by solving the quadratic optimization problem (3). In case q(x) = 0
the point x is a KKT–point. Thus, a test for optimality has to be performed
automatically when computing the descent direction for a given point x ∈ Q.

2.2 Memetic Strategies in MOO

Hybridization of MOEAs with local search algorithms has been investigated
for more than twelve years, starting short time after the first MOEAs were
proposed [28, 7]. One of the first MEMOEAs for models on discrete domains
was presented in [24] as a ‘Multi-Objective Genetic Local Search’ (MOGLS)
approach. The authors proposed to use the local search method after classical
variation operators are applied. A randomly drawn scalarizing function is used
to assign fitness for parent selection.

Jaszkiewicz [25] proposed an algorithm called the Pareto Memetic Algorithm
(PMA). This algorithm uses an unbounded ‘current set’ of solutions (CS) and
from this selects a small ‘temporary population’ (TP) that comprises the best
solutions with respect to a scalarizing function. Then TP is used to generate
offspring by crossover. Jaszkiewicz suggests that scalarizing functions are par-
ticularly better at encouraging diversity than dominance ranking methods used
in most MOEAs.

Another important MEMOEA, called M-PAES, was proposed in [27]. Un-
like Ishibuchi’s and Jaszkiewicz’s approaches, M-PAES does not use scalarizing
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functions, but employs instead a Pareto ranking based selection coupled with
a grid-type partition of the objective space. Two archives are used: one that
maintains the global non-dominated solutions and the other that is used as the
comparison set for the local search phase.

In [32], the authors proposed a local search process with a generalized replace-
ment rule. Ordinary two-replacement rules based on the dominance relation are
usually employed in a local search for multiobjective optimization. One is to
replace a current solution with a solution which dominates it. The other is to
replace the solution with a solution which is not dominated by it. The movable
area with the first rule is very small when the number of objectives is large. On
the other hand, it is too huge to move efficiently with the latter. The authors
generalize these extreme rules by counting the number of improved objectives
for a given candidate.

In [47, 48], methods are presented which are hybrids of evolutionary search
algorithms and multi-agent strategies where the task of the agents is to perform
the local search. The continuous case—i.e., continuous objectives defined on a
continuous domain—was first explored in [18], where a neighborhood search was
applied to NSGA-II [12]. In their initial work, the authors applied the local search
only after NSGA-II had ended. To do this, the authors applied a local search us-
ing a weighted sum of objectives. The weights were computed for each solution
based on its location in the Pareto front such that the direction of improve-
ment is roughly in the direction perpendicular to the Pareto front. Later works
compare this approach with the same local search method being applied after
every generation. Evidently, they found that the added computational workload
impacted efficiency.

In [22] a gradient-based local algorithm (Sequential Quadratic Programming
(SQP)), was used in combination with NSGA-II and SPEA [54] to solve the
ZDT benchmark suite [52]. The authors stated that if there are no local Pareto
fronts, the hybrid MOEA has faster convergence toward the true Pareto front
than the original one, either in terms of the objective function evaluations or in
terms of the CPU time consumed (since a gradient-based algorithm is utilized,
the sole usage of the number of function calls as a basis for a comparison can be
misleading). Furthermore, they found that the hybridization technique does not
decrease the solution diversity.

In [1] a new local search technique was introduced and hybridized with
MOGA [17]. The new hybrid algorithm was tested against a set of optimiza-
tion problems of varying complexity. Three important questions were addressed:
Where shall a local search process be hybridized with a genetic algorithm? Which
individuals should be fine-tuned? And when shall the local refinement be ap-
plied? To the best of the authors’ knowledge, these remain as open questions in
the field of hybrid evolutionary algorithms.

In [37], the authors proposed a hybrid technique that combines the robustness
of MOGA-II [36] with the accuracy and speed of NBI-NLPQLP, an accurate and
fast converging algorithm based on a classical gradient method. The methodology
consists of starting with a preliminary robust MOGA-II run, then isolating each
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single portion of the Pareto curve as an independent problem, each of which is
treated with an independent accurate NBI-NLPQLP run.

In [51] the proposed local search process employs quadratic approximations
for all objective functions. The samples gathered by the algorithm along the
evolutionary process are used to fit these quadratic approximations around the
point selected for local search. After that, a locally improved solution is estimated
from the quadratic associated problem. The hybridization of the procedure is
demonstrated with SPEA 2 [53].

A succesful hybrid approach was proposed in [23]. The authors proposed the
algorithm MO-CMA-ES, a multi-objective CMA-ES [19], which combines the
strategy parameter adaptation of evolutionary strategies with a multi-objective
selection based on non-dominated sorting. The MO-CMA-ES is independent of
the chosen coordinate system and its behavior does not change if the search space
is translated, rotated, and/or rescaled. The authors claim that MO-CMA-ES
significantly outperforms NSGA-II on all but one of the considered test problems:
the NSGA-II is faster only on the ZDT4 problem where the optima form a regular
axis-parallel grid, because NSGA-II heavily exploits this kind of separability.

In [50], a novel evolutionary algorithm (EA) for constrained optimization
problems is presented: the so-called hybrid constrained optimization EA (HCOEA).
The algorithm combines multi-objective optimization with global and local search
processes. In performing the global search, a niching genetic algorithm based on
tournament selection is used. Meanwhile, the best infeasible individual replace-
ment scheme is used as a local search operator for the purpose of guiding the
population toward the feasible region of the search space. During the evolu-
tionary process, the global search model effectively promotes high population
diversity, and the local search model remarkably accelerates the convergence
speed. HCOEA was tested on 13 benchmark functions, and the experimental
results suggest that it is more robust and efficient than other state-of-the-art
algorithms in terms of the selected performance metrics.

Finally, in [20, 43], hybrids can be found were heuristic methods are coupled
with multi-objective continuation methods.

3 HCS: The Hill Climber with Sidestep

In the following, we propose a novel iterative local search procedure, the HCS,
which is designed for a use within a memetic strategy.

Before we can come to the design of such a strategy, we have to ask ourselves
what are the requirements for an iterative search procedure Φ : Rn → Rn with

xl+1 = Φ(xl), (4)

where x0 ∈ Rn is a given initial solution and {xi}i∈N0
is the resulting sequence

of iterates. Note that we are dealing with a point-wise iteration—i.e., input and
output of Φ are a single points of the domain—, and not with a population based
strategy. We are of the opinion that such a ‘whish list’ on Φ for the treatment
of MOPs includes the following tasks:
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(a) Φ should generate an improvement of the current iterate xl if this one is not
already ‘close’ to the P , i.e., a point xl+1 with xl+1 ≺ xl.

(b) In case the current iterate xl is already ‘close’ to P , a search along P would
be desired.

(c) The switch between the situations described in (a) and (b) should be done
automatically according to the position of the current iterate xl.

(d) The process should work with or without gradient information (whether or
not provided by the model).

(e) The process should be capable of handling constraints of the MOP.

In (a) the ‘classical’ task of a hill climber as known for single-objective op-
timization problems [15, 34, 38, 30] is described. Item (b) contains a pecular-
ity of multi-objective optimization, namely that there is—using the climbing
metaphor—no single mountain top but rather an entire ridge of mountain tops
which forms P (respectively a set of ridges in case P is diconnected). The gener-
ation of such a point xl+1 can be regarded as a ‘sidestep’ relative to the current
iterate xl in the upward movement of the hill climber. Important for the effi-
ciency of Φ within a memetic strategy is item (c), i.e., the capability to decide
if case (a) or (b) is more appropriate.
In the following we describe two variants of such a function Φ which aims to fulfil
the above wish list: one version of the HCS which is gradient-free, and another
version which involves gradient information.

3.1 HCS without Using Gradient Information

First, we describe the HCS algorithm for the case in which no gradient infor-
mation is available, since that seems to be more relevant for common real-world
engineering problems which is the main area of application for MOEAs. We
concentrate here on the unconstrained case and possible modifications of the al-
gorithm for the treatment of MOPs with inequality constraints are given below.

The method we describe here is based on the geometry of multi-objective
optimization which has been studied in [6]. This work gives a good insight into
the structure of such problems by analyzing the geometry of the directional
cones of canditate solutions at different stages of the optimization process: when
a point x0 is ‘far away’ from any local Pareto optimal solution, the gradients’
objectives are typically aligned and the descent cone is almost equal to the
half-spaces associated with each objective. Therefore, for a randomly chosen
search direction ν, there is a nearly 50 % chance that this direction is a descent
direction at x0 (i.e., there exits an h0 ∈ R+ such that F (x0 +h0ν) <p F (x0)). If
on the other side a point x0 is ‘close’ to the Pareto set, the individual gradients
are almost contradictory (compare also to the famous theorem of Kuhn and
Tucker [29] which holds for points on P), and thus the size of the descent cone is
extremely narrow, resulting in a small probability for a randomly chosen vector
to be a descent direction. The two scenarios are depicted in Figure 1 for the bi-
objective case. Hereby, {−,−} and {+, +} denote the descent and ascent cone,
respectively. The symbol {−, +} indicates that in this direction an improvement
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according to f1 can be achieved while the values of f2 will increase (this is
analogous for {+,−}).

(a) (b)

Fig. 1. The descent cone (shaded) for an MOP with 2 parameters and 2 objectives
during initial (a) and final (b) stages of convergence. The descent cone shrinks to zero
during the final stages of convergence. The figure is taken from [4].

The gradient-free HCS is constructed on the basis of these observations.
Given a point x0 ∈ Q, the next iterate x1 is selected as follows: a further point
x̃1 is chosen randomly from a neighborhood of x0, say x̃1 ∈ B(x0, r) with

B(x0, r) := {x ∈ Rn : x0,i − ri ≤ xi ≤ x0,i + ri ∀i = 1, .., n}, (5)

where r ∈ Rn
+ is a given (problem dependent) radius. If x̃1 ≺ x0, then ν := x̃1−x0

is a descent direction4 at x0, and along it a ‘better’ candidate can be searched,
for example via line search methods (see below for one possible realization).
If x0 ≺ x̃1 the same procedure can be applied to the opposite direction (i.e.,
ν := x0 − x̃1) and starting with x̃1. If x0 is ‘far away’ from any local solution,
the chance is by the above discussion quite high that domination occurs, either
x̃1 ≺ x0 or x0 ≺ x̃1. If x0 and x̃1 are mutually non-dominating, the process
will be repeated with further candidates x̃2, x̃3, . . . ∈ B(x0, r). If only mutually
nondominated solutions (x̃i, x0) are found within Nnd steps, this indicates, using
the above observation, that the point x0 is already near to the (local) Pareto
set, and hence it is desirable to search along this set. This is because even if a
descent direction would be available further improvements would very likely be
negligible, and, hence, it is advisable to seek for further regions of the Pareto
set. To perform such a sidestep it would be desirable to use the accumulated
information obtained by the unsuccessful trials. Fundamental for the algorithm

4 In the sense that there exists a t̄ ∈ R+ such that fi(x0 + t̄ν) < fi(x0), i = 1, . . . , k,
but not in the ‘classical’ sense, i.e., in case fi is differentiable ∇fi(x0)

T ν < 0 is not
guaranteed.
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we present here is the fact that the ‘unsuccessful’ search directions νi,1 := x̃i−x0

and νi,2 := x0−x̃i = −νi,1 are located in the diversity cones. Further, there exists
the following relation of νi,1 and νi,2: if νi,1 is, for example, in the cone {+,−},
then νi,2 is the opposite cone {−, +} (this is for bi-objective MOPs, the general
k-objective case is analogue).

Based on these observations we propose the following search directions. First
we address the bi-objective case. If, for example, a search along {−, +} after Nnd

unsuccessful trials is sought, we propose to use the following one which uses the
previous information:

νacc =
1

Nnd

Nnd
∑

i=1

si

x̃i − x0

‖x̃i − x0‖
, (6)

where

si =

{

1 if f1(x̃i) < f1(x0)
-1 else

(7)

By construction, νacc is in {−, +}, and by the averaging of the search direc-
tions we aim to obtain a direction which is ‘perpendicular’ to the (small) descent
cone. Note that in this case νacc is indeed a ‘sidestep’ to the upward movement
of the hill climbing process as desired, but this search direction does not nec-
cessarily have to point along the Pareto set (see next subsection for a better
guided search). A similar strategy for the search can be done for a general num-
ber k of objectives, however, leading to a larger variety for the search direction.
For instance, for k = 3, there are six diversity cones which can be grouped by
reflection as follows:

{+,−,−} and {−, +, +} ,

{+,−, +} and {−, +,−} ,

{+, +,−} and {−, +, +} .

(8)

That is, for k = 3 there are three different groups of cones in which search
directions can be divided. For a general k there are a total of 2k−1 − 1 different
groups making it less likely to find a perpendicular direction due to averaging
within Nnd trials and within one of these cones. Alternatively to (6) on can e.g.
use the accumulated information by taking the average search direction over all
search directions as follows:

νacc =
1

Nnd

Nnd
∑

i=1

x̃i − x0

‖x̃i − x0‖
, (9)

This direction has previously been proposed as a local guide for a multi-objective
particle swarm algorithm in [5]. Note that this is a heuristic that does not guar-
antee that νacc indeed points to a diversity cone. In fact, it can happen that
this vector points to the descent or ascent cone, though the probability for this
is low for points x0 ‘near’ to a local solution due to the narrowness of these
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cones. However, in both cases Algorithm 1 acts like a classical hill climber—i.e.,
it searches for better points—which is still in the scope of the procedure (though
the improvements may not be significant due to the vicinity of the current iterate
to P).

A pseudocode of the HCS for the bi-objective case which uses the strategies
described above and the sidestep heuristic (6) is given in Algorithm 1. In the
following we go into detail for possible realizations of the line search and the
handling of the constraints.

Algorithm 1 HCS1 (without using gradient information)

Require: starting point x0 ∈ Q, radius r ∈ Rn
+, number Nnd of trials, MOP with

k = 2
Ensure: sequence {xl}l∈N of candidate solutions
1: a := (0, . . . , 0) ∈ Rn

2: nondom := 0
3: for l = 1, 2, . . . do

4: set x1
l := xb

l−1 and choose x2
l ∈ B(x1

l , r) at random
5: choose i0 ∈ {1, 2} at random
6: if x1

l ≺ x2
l then

7: νl := x2
l − x1

l

8: compute tl ∈ R+ and set x̃n
l := x2

l + tlνl.
9: choose xb

l ∈ {x̃b
l , x

1
l } such that f(xb

l ) = min(f(x̃n
l ), f(x1

l ))
10: nondom := 0, a := (0, . . . , 0)
11: else if x2

l ≺ x1
l then

12: proceed analogous to case ”x1
l ≺ x2

l ” with
13: νl := x1

l − x2
l and x̃n

l := x1
l + tlνl.

14: else

15: if fi0(x2
l ) < fi0(x1

l ) then

16: sl := 1
17: else

18: sl := −1
19: end if

20: a := a + sl

Nnd

x2

l −x1

l

‖x2

l
−x1

l
‖

21: nondom := nondom + 1
22: if nondom = Nnd then

23: compute t̃l ∈ R+ and set x̃n
l := x1

l + t̃la.
24: nondom := 0, a := (0, . . . , 0)
25: end if

26: end if

27: end for

Sidestep direction The direction for the sidestep is determined by the value of
i0 (see line 5 and lines 15-20 of Algorithm 1). For simplicity, in Algorithm 1
the value of i0 is chosen at random. In order to introduce an orientation to the
search, the following modifications can be done in the bi-objective case: in the
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beginning, i0 is fixed to 1 for the following iteration steps. When the sidestep
(line 23 of Algorithm 1) has been performed Ns times during the run of an
algorithm, this indicates that the current iteration is already near to the (local)
Pareto set, and this vector is stored in xp. If in the following no improvements
can be achieved according to f1 within a given number Ni of sidesteps, the HCS
‘jumps’ back to xp, and a similar process is started but aiming for improvements
according to f2. That is, i0 is set to −1 for the following steps. A possible
stopping criterion, hence, could be to stop the process when no improvements
can be achieved according to f2 within another Ni sidesteps along {+,−} (this
has in fact been chosen as the stopping criterion in Section 5.1).

Computation of tl The situation is that we are given two points, say x0, x1 ∈ Rn,
such that x1 ≺ x0. That is, there exists a subsequence {i1, . . . , il} ⊂ {1, . . . , k}
with

fij
(x1) < fij

(x0), j = 1, . . . , l,

and thus, ν := x1 − x0 is a descent direction for all fij
’s at the point x0. For

this case there exist various strategies to perform the line search (see e.g., [15]).
We propose to proceed in analogy to [45], where a step size control for scalar
optimization problems has been developed, as follows:

for x0, x1 and fij
, j = 1, . . . , l (for simplicity denoted by f) as above define

fν : R→ R, fν(t) = f(x0 + tν) (10)

Choose e ∈ (1, 2] (the same value for all l cases) and compute fν(e). If fν(e) <
fν(1) then accept t∗ij

as step size for objective f = fij
. If the above condition

does not hold we have collected enough information to approximate fν by a
quadratic polynomial p(t) = at2 + bt + c with coefficients a, b, c ∈ R. Using the
interpolation conditions

p(0) = fν(0), p(1) = fν(1), p(e) = fν(e), (11)

we obtain all the coefficients of p. Since p(1) < p(0) and p(e) ≥ p(1) and since p
is a quadratic polynomial the function contains exactly one minimum at

t∗ij
=

−b

2a
= 2

e2(fν(1) − fν(0)) − fν(e) + fν(0)

e(fν(1) − fν(0)) − fν(e) + fν(0)
∈ (0, e). (12)

The idea to approximate fν locally by a quadratic polynomial was first proposed
by Armijo [3].

Finally, the question that arises is how this information obtained by scalariza-
tion can be put together to select a step size strategy for the given multi-objective
problem. The ‘safest’ step size control is certainly to take the smallest value of
the t∗ij

’s. In order not to get stuck due to small step sizes and to introduce a
stochastic component into the search strategy we propose to choose a step size
within the range which is given by the t∗ij

’s, i.e.

xnew = x0 + t∗kν, (13)

where t∗k ∈ [ min
i=1,...,l

t∗ij
, max
i=1,...,l

t∗ij
] is taken at random.
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Computation of t̃l We are given a point x0 ∈ Rn and the search direction
a =

∑Nnd

i=1 si(x̃i − x0)/‖x̃i − x0‖ (or alternatively direction (6)) with x̃i ∈
B(x0, r), i = 1, . . . , Nnd, and such that (x0, x̃i), i = 1, . . . , Nnd, are mutually
nondominating. For this situation, we propose to proceed analogously to [41],
where a step size strategy for multi-objective continuation methods is suggested:
given a target value ǫy ∈ R+—e.g., the minimal value which makes two solutions
distinguishable from a practical point of view—, the task is to compute a new
candidate xnew = x0 + t̃a such that

‖F (x0) − F (xnew)‖∞ ≈ ǫy (14)

In case F is Lipschitz continuous there exists an L ≥ 0 such that

‖F (x) − F (y)‖ ≤ L‖x − y‖, ∀x, y ∈ Q. (15)

This constant can be estimated around x0 by

Lx0
:= ‖DF (x0)‖∞ = max

i=1,...,k
‖∇fi(x0)‖1,

where DF (x0) denotes the Hessian of F at x0 and ∇fi(x0) the gradient of
the i-th objective at x0. In case the derivatives of F are not given (which is
considered in this section) the accumulated information can be used to compute
the estimation

L̃x0
:= max

i=1,...,Nnd

‖F (x0) − F (x̃i)‖∞
‖x0 − x̃i‖∞

,

since the x̃i’s are near to x0. Combining (14), (15) and using the estimation Lx0

leads to the step size control

xnew = x0 +
ǫy

Lx0

a

‖a‖∞
. (16)

Handling constraints In the course of the computation it can occur that iterates
are generated which are not inside the feasible domain Q. That is, we are faced
with the situation that x0 ∈ Q and x1 := x0 + h0ν 6∈ Q, where ν is the search
direction. In that case we propose to proceed analogously to the well-known
bisection method for root finding in order to track back from the current iterate
x1 to the feasible set:
let in0 := x0 ∈ Q and out0 := x1 6∈ Q and m0 := in0+0.5(out0−in0) = x0+ h0

2 ν.
If m0 ∈ Q set in1 := m0, else out1 := m0. Proceeding in an analogous way, one
obtains a sequence {ini}i∈N of feasible points which converges linearly to the
boundary ∂Q of the feasible set. One can, for example, stop this process with
an i0 ∈ N such that ‖outi0 − ini0‖∞ ≤ tol, obtaining a point ini0 with maximal
distance tol to ∂Q. See Algorithm 2 for one possible realization. Note that by
this procedure no function evaluation has to be spent (in contrast, for instance,
to penalization methods).
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Algorithm 2 Backtracking to Feasible Region

Require: x0 ∈ Q, x1 = x0 + h0ν 6∈ Q, tol ∈ R+

Ensure: x̃ ∈ x0x1 ∩ Q with infb∈∂Q ‖b − x̃‖ < tol
1: in0 := x0

2: out0 := x1

3: i := 0
4: while ‖outi − ini‖ ≥ tol do

5: mi := ini + 1

2
(outi − ini)

6: if mi ∈ Q then

7: ini+1 := mi

8: outi+1 := outi

9: else

10: ini+1 := ini

11: outi+1 := mi

12: end if

13: i := i + 1
14: end while

15: return x̃ := ini

Design parameters We agree that a realization of Algorithm 1 may include a
variety of design parameters which may be difficult to tune and adapt to a
particular problem. However, if the suggestions made in this paper are taken
merely the values for four design parameters have to be chosen (see Table 1):
the parameter r defines the neigborhood search of the procedure. Since this
neighorbood search is used to find a search direction which is afterwards coupled
with a step size control, the value of r is not that important, but should be ‘small’
to guarantee a local search. Nnd is the value which determines the number of
directions which have to be averaged in order to choose the sidestep direction.
In general, a larger value of Nnd leads to a ‘better’ sidestep (in the sense that
the search is performed orthogonal to the upward movement), but will in turn
increase the cost of the search. We have experienced that a low value Nnd, say
5 to 10, already gives satisfactory results, the ‘accuracy’ of the search does not
seem to influence the performance of the HCS (unless the second derivatives of
the objectives are available, see below). The value of ǫy is problem dependent
but can be given quite easily in a real world application (see discussion above
Equation (14)). Finally, the tolerance tol has to be adjusted for constrained
MOPs. The choice of this value is also problem dependent and has to be chosen
in every algorithm dealing with constraints.

3.2 HCS Using Gradient Information

In this section we discuss possible modifications which can be made to increase
the performance of the HCS in case the MOP is sufficiently smooth. It will turn
out that the resulting algorithm is more efficient (see Section 5), but in turn,
more information of the model is required.
Here we describe one possible realization of the HCS using the descent direction
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Table 1. Design parameters that are required for the realization of the gradient-free
HCS algorithm.

Parameter Description

r Radius for neighborhood search (Alg. 1)

Nnd Number of trials for the hill climber before
the sidestep is performed (Alg. 1)

ǫy Desired distance (in image space) for the
sidestep (7)

tol Tolerance value used for the backtracking
in Alg. 2

presented in Theorem 2 for the hill climber and some elements from multi-
objective continuation for the sidestep:

Given a point x ∈ Rn the quadratic optimization problem (3) can be solved
leading to the vector α̂. In case

‖

k
∑

i=1

α̂i∇fi(x)‖2
2 ≥ ǫP , (17)

i.e., if the square of the norm of the weighted gradients is larger than a given
threshold ǫP ∈ R+, the candidate solution x can be considered to be ‘away’
from P , and thus, it makes sense to seek for a dominating solution. For this,
the descent direction (2) can be taken together with a suitable step size control.
For the latter the step size control described above can be taken, or—probably
better—a step size control which uses gradient information as e.g. described in
[15] or the one presented in [14]. If the value of the term in (17) is less than ǫP ,
this indicates that x is already in the vicinity of P . In that case one can lean
elements from (multi-objective) continuation [21, 2] to perform a search along P .
To do this, we assume for simplicity that we are given a KKT–point x̂ and the
according weight α̂ obtained by (3). Then the point (x̂, α̂) ∈ Rn+k is obviously
contained in the zero set of the auxiliary function F̃ : Rn+k → Rn+1 of the given
MOP which is defined as follows:

F̃ (x, α) =











k
∑

i=1

αi∇fi(x)

k
∑

i=1

αi − 1











. (18)

In [21] it has been shown that the zero set F̃−1(0) can be linearized around x̂
by using a QU-factorization of F̃ ′(x̂, α̂)T , i.e., the transposed of the Jacobian
matrix of F̃ at (x̂, α̂). To be more precise, given a factorization

F̃ ′(x̂, α̂)T = QU ∈ R(n+k)×(n+k), (19)

where Q = (QN , QK) ∈ R(n+k)×(n+k) is orthogonal with QN ∈ R(n+k)×(n+1)

and QK ∈ R(n+k)×(k−1), the column vectors of QK form—under some mild
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regularity assumptions on F̃−1(0) at (x̂, α̂), see [21]—an orthonormal basis of
the tangent space of F̃−1(0). Hence, it can be expected that each column vec-
tor qi ∈ QK , i = 1, . . . , k − 1, points (locally) along P and is thus well suited
for a sidestep direction. The step size control can in this case taken exactly as
proposed in Equation (16) since the setting for that case was the same. In fact,
since the search direction qi is indeed pointing along P , the results will be more
accurate than for an averaged direction such as (6) or (9).
Algorithm 3 presents a procedure which is based on the above discussion. Note
that this is one possible realization and that there exist certainly other possi-
ble ways leading, however, to similar results. For instance, alternatively to the
descent direction used in Algorithm 3 the ones proposed in [16] and [4] can be
taken. Further, the vicinity test (17) can be changed, though alternative condi-
tions will most likely also be based on Theorem 1. Finally, the movement along
P can be realized by predictor-corrector methods [21, 2] which consist, roughly
speaking, of a repeated application of a predictor step obtained by a lineariza-
tion of F̃−1(0) as in (19) and a corrector step which is done via a Gauss-Newton
method.
Note that the HCS is proposed for the unconstrained case. While an extension
to the contrained case for the hill climber is possible (see, e.g., [16] for possible
modifications) this does not hold for the movement along the Pareto set (i.e.,
the sidestep). Though it is possible to extend system (18) by equality constraints
(e.g., by introducing slack variables to transform the inequality constraints into
equality constraints) this could lead to effiency problems in the numerical treat-
ment [21]. Hence, we restrict ourselves here to the unconstrained case.

As it will be shown in Section 5 the performance of the gradient based HCS
in terms of convergence is better than its gradient-free version, but this improve-
ment does not come for free: for the descent direction all objectives’ gradients
have to be available (or approximated), and to perform the linearization of P
even all second derivatives are required.

Algorithm 3 HCS2 (Using Gradient Information)

Require: starting point x0 ∈ Q
Ensure: sequence {xl}l∈N of candidate solutions
1: for l = 0, 1, 2, . . . do

2: compute the solution α̂ of (3) for xl.
3: if ‖

Pk

i=1
α̂i∇fi(xl)‖

2
2 ≥ ǫP then

4: νl := −q(xl)
5: compute tl ∈ R+ and set xl+1 := xl + tlνl

6: else

7: compute F̃ ′(x̂, α̂)T = (QN , QK)U as in (19)
8: choose a column vector q̃ ∈ QK at random
9: compute t̃l ∈ R+ and set xl+1 := xl + t̃lq̃.

10: end if

11: end for
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Design parameters Analogue to the gradient-free version of the HCS, the values
of some design parameters have to be chosen for the realization of Algorithm
3. ǫy and tol are as discussed above, and Nnd and r are not needed due to
the accuracy of the gradient based search. A new parameter, compared to the
gradient-free version of the HCS, is the threshold ǫP for the vicinity test of a
given candidate solution to P . This value is certainly problem dependent, but it
can be made ‘small’ due to the convergence properties of the hill climber (e.g.,
[16]).

Table 2. Design parameters that are required for the realization of the HCS algorithm
which involves gradient information.

Parameter Description

ǫy Desired distance (in image space) for the
sidestep (7)

tol Tolerance value used for the backtracking
in Alg. 2

ǫP Threshold for the vicinity test (17)

4 A Memetic Multi-objective Strategy Using HCS

Having stated the local search procedure HCS, the question which arises is how
it can be integrated efficiently into a given MOEA which we address here.

In Algorithms 1 and 3 the HCS is presented as a standalone algorithm gener-
ating an infinite sequence of candidate solutions, which is certainly not applicable
when coupling it with a MOEA. To support the local search of the latter algo-
rithm, it is rather advisable to stop the iteration after a few, probably even after
one, iteration (see line 3 of Alg. 1 and line 1 of Alg. 3). The modified HCS can
thus be simplified written as

PHCS = HCS (x0), (20)

where x0 is a given point (e.g., coming from the current population of the MOEA)
and PHCS the output set. Here we describe one possible realization for the case
just one iteration is done (a generalization to the performance of more iteration
steps of the HCS is analogue). For x0 either PHCS is set to PHCS = {x1}, where

x1 := x0 + t0ν0 (21)

in case a dominated point could be found (lines 7 and 8 respectively line 13 of
Algorithm 1, or line 5 of Algorithm 3), or PHCS = {x1, x2}, where

x1 := x0 + t̃0ν0 and x2 := x0 − t̃0ν0, (22)
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i.e., a search along the sidestep directions ν0 and −ν0, are both added to PHCS

in case a sidestep is performed (line 20 of Algorithm 1 or line 9 of Algorithm
3). This is done because the computation of the sidestep direction is relatively
expensive for both variants of the HCS and since the orientation of the search
is chosen at random. Thus, a search in both directions seems to be advisable.
Given a probability phcs for the application of the procedure (20) on an individual
of a population, the operator can be defined set-wise as

PHCS = HCS (P, pHCS), (23)

where P denotes a given population. By doing so, the HCS can be interpreted
as a particular mutation operator. Algorithm 4 states a generic EA following the
notation of [9], where pc and pm denote the probability for crossover and mu-
tation, repectively. Obviously, the operator (23) fits into this framework which
indicates that it can be integrated basically into any MOEA with little effort.

Algorithm 4 P := Generic EA (pc, pm)

1: initialize P
2: f := Evaluate (P )
3: P := Select (P, f)
4: l := 1
5: while not stopping criterion do

6: P := Crossover (P, f, pc)
7: P := Mutation (P, pm)
8: f := Evaluate (P )
9: P := Select (P, f)

10: t := t + 1
11: end while

As one example, the HCS can be integrated into the state-of-the-art MOEA
SPEA2 [53], which we have used for our computations presented in the next
section. To be more precise, we have used SPEA2 as the basis for our memetic
algorithm, together with the SBX crossover operator [11] and a variable-wise
mutation operator. A pseudocode can be found in Algorithm 5, for purpose of
distinction we call this algorithm SPEA2–HCS in the sequel.

5 Results and Discussions

Here we present and discuss some numerical results for the HCS as well as
for SPEA2-HCS in order to demonstrate the strength of both the standalone
algorithm and the memetic strategy. The MOPs we have used here are listed
in Table 3. All computations have been done using the programming language
Matlab

5.
5 https://www.mathworks.com
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Table 3. The MOPs under investigation in this work. Hereby, k̃ = n − k + 1.

CONV1

f1(x) = (x1 − 1)4 +
Pn

i=2
(xi − 1)2

f2(x) =
Pn

i=1
(xi + 1)2

CONV2

f1(x) =
Pn

i=1
(xi − 1)2

f2(x) =
Pn

i=1
(xi + 1)2

f3(x) =
Pn

i=1
(xi + (−1)n+1)6

ZDT4

f1(x) = x1

f2(x) = g(x)(1−
p

f1/g(x))
g(x) = 1 + 10(n − 1) +

Pn

i=2
(x2

i − 10cos(4πxi))
0 ≤ x1 ≤ 1, −5 ≤ xi ≤ 5, i = 2, . . . , n

DTLZ1

f1(x) = 1

2
x1x2 . . . xk−1(1 + g(x))

f2(x) = 1

2
x1x2 . . . (1 − xk−1)(1 + g(x))

...
fk−1(x) = 1

2
x1(1 − x2)(1 + g(x))

fk(x) = 1

2
(1 − x1)(1 + g(x))

g(x) = 100

»

k̃ +
n

P

i=k

(xi − 1

2
)2 − cos(20π(xi − 1

2
))

–

0 ≤ xi ≤ 1, i = 1, . . . , n

DTLZ2

f1(x) = cos(x1π

2
) cos(x2π

2
) . . . cos(

xk−1π

2
)(1 + g(x))

f2(x) = cos(x1π

2
) cos(x2π

2
) . . . sin(

xk−1π

2
)(1 + g(x))

...
fk−1(x) = cos(x1π

2
) sin(x2π

2
)(1 + g(x))

fk(x) = sin(x1π

2
)(1 + g(x))

g(x) =
n

P

i=k

(xi − 1

2
)2

0 ≤ xi ≤ 1, i = 1, . . . , n

DTLZ3

f1(x) = cos(x1π

2
) cos(x2π

2
) . . . cos(

xk−1π

2
)(1 + g(x))

f2(x) = cos(x1π

2
) cos(x2π

2
) . . . sin(

xk−1π

2
)(1 + g(x))

fk−1(x) = cos(x1π

2
) sin(x2π

2
)(1 + g(x))

fk(x) = sin(x1π

2
)(1 + g(x))

g(x) = 100

»

k̃ +
n

P

i=k

(xi −
1

2
)2 − cos(απ(xi −

1

2
))

–

α = 20
0 ≤ xi ≤ 1, i = 1, . . . , n

DTLZ3*

same as DTLZ3 but with α = 2
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Algorithm 5 SPEA2–HCS

1: Generate initial population P0 ⊂ Q and set A0 := ∅, P̄0 := ∅.
2: for k = 0, 1, . . . , Nmaxiter do

3: P k+1 := nondominated solutions of Pk ∪ Ak

4: Set Ak+1 := nondominated solutions of P k+1

5: Calculate fitness values of individuals in P k+1

6: Perform tournament selection in P k+1 to fill the mating pool
7: Apply crossover, mutation and the local search operators (HCS) to the mating

pool.
8: Denote the resulting population by Pk+1.
9: end for

5.1 HCS as Standalone Algorithm

Since the two variants of the HCS as described in Algorithm 1 (which we will
denote by HCS1 in this section) and in Algorithm 3 (denoted by HCS2) have no
orientation in the search along the Pareto set, we have modified it for bi-objective
models in the following way in order to demonstrate its potential (see also discus-
sion in Section 3.1): the HCS—i.e., both variants—is started as described above.
If the current iterate xp enough to P such that the sidestep procedure can start
(taking Ns = 5), first improvements according to f1 are sought (leading to a ‘left
up’ movement from F (xp) along the Pareto front). If no improvements according
to f1 can be obtained, an analogue ‘right down’ movement is performed starting
again from xp. This is intended so ‘screen’ the entire connected component of P
which is near to xp.
However, since this orientation is not needed within the use of a MOEA because
in that case only few iterates are being computed from a given starting point,
these modifications are only done within this subsection.

In the following we will test HCS1 and HCS2 on a convex model (i.e., a model
which does not contain local minima where the local search can get stuck) and
we will investigate both the unconstrained and the constrained case. Then we
will consider a multi-modal and constrained model (ZDT4).
Consider the MOP CONV1. The Pareto set of this model which is equal to P is
located within [−1, 1]n. First, we turn our attention to the unconstrained case:
Figure 2 shows two results obtained by the modified algorithms HCS1 and HCS2
with dimension n = 10 and domain Q = [−5, 5]10. In both cases the same starting
point x0 has been chosen. Since P is located within Q, no constraint handling
techniques had to be applied in order to generate the sequence. For HCS1 a
total of 1099 function calls had to be spent in order to get this result. For HCS2,
107 function calls, 60 evaluations of the Jacobian and 192 evaluations of the
Hessian were required. It is obvious that due to the different requirements of
the algorithms a quantitative comparison is hardly possible. On the other hand,
Figure 2 shows some qualitative differences as anticipated from the design of
the different algorithms: HCS2 converges faster (in this case four iterates were
needed to reach P while HCS1 needed 23 iterations) and the nondominated
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front is better distributed compared to the results obtained by the gradient-free
version HCS1. However, both results are satisfying since both nondominated
fronts represent a good approximation of the Pareto front with reasonable effort.

Next we consider the constrained case. Figure 3 shows a numerical result
from the HCS1 where we have used dimension n = 2 and for the domain Q =
[0.5, 1.5]× [1, 2]. The Pareto set is given by PQ = [0.5, 1]×{1} and thus included
in the boundary of Q. The figures show that also in this case the HCS1 is capable
of approaching the solution set, and moving along it further on. However, a total
of 997 function calls had to be spent in this setting, that is, more in comparison
to the unconstrained case (note that the dimension of the model is much lower
in the latter case).
Finally, we consider the problem ZDT4, which is a highly nonlinear and multi-
modal model. Figure 4 shows two results in image space for two different initial
solutions x0, z0 ∈ Q = [0, 1] × [−5, 5]9 and for the two variants of the HCS. As
anticipated, the results for both algorithms and starting points differ significantly
since the HCS is a local strategy and ZDT4 contains many local Pareto fronts.
However, both procedures also in this case are able to explore a part of the local
Pareto front which is located ‘near’ to the image of the initial solution.

5.2 SPEA2 Coupled with HCS

Here we make a comparison of the classical SPEA2 algorithm and SPEA2–HCS
as presented in the previous section in order to demonstrate the possible benefit
of the memetic strategy. Since we have two variants of the HCS we therefore have
two MEMOEAs namely SPEA2–HCS1 where Algorithm 1 is used in combination
with SPEA2 and SPEA2–HCS2. Since we are dealing in this section with MOPs
where the Pareto set is located at the boundary of the domain, we have used a
modification of Algorithm 3 which acts just as a hill climber. That is, the search
along the Pareto set is not performed (the value ǫP is set to 0).
In order to evaluate the performance of the algorithms we have used the following
three indicators (see [49] and [40]):

Generational Distance : GD = 1
n

√
∑n

i=1 δ2
i

Efficient Set Space : ESS =
√

1
n−1

∑n

i=1(di − d)2

Maximal Distance : MD = max
i,j=1,...,n

i6=j

dij

Hereby, δi denotes the minimal Euclidean distance from the image F (xi) of
a solution xi, i = 1, . . . , n, to the true Pareto front, and

di := min
j=1,...,n

i6=j

dij and d :=
1

n

n
∑

i=1

di, (24)

where dij is the Euclidean distance between F (xi) and F (xj). In the multi-
objective optimization framework, there are in general three goals [52]: (i) the



21

0 10 20 30 40 50 60

0

20

40

60

80

100

120

f
1

f 2

F(x
0
)

HCS1

(a) Solution HCS1

0 10 20 30 40 50 60

0

20

40

60

80

100

120

f
1

f 2

F(x
0
)

HCS2

(b) Solution HCS2

0 10 20 30 40 50 60
−5

0

5

10

15

20

25

30

35

40

45

f
1

f 2

HCS1
HCS2

(c) Comparison Nondominated Fronts

Fig. 2. Numerical result of HCS for MOP CONV1 with Q = [−5, 5]10 in objective
space (unconstrained case).
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Fig. 4. Numerical result of HCS1 and HCS2 for MOP ZDT4 in objective space for two
initial solutions x0 and z0.

distance of the resulting nondominated set to the Pareto-optimal front should
be minimized, (ii) a uniform distribution of the solutions found is desirable, and
(iii) the extent of the obtained nondominated front should be maximized. We
have chosen the three indicators with the aim to measure the achievement of
each of these goals, respectively.
Crucial for the performance of the memetic strategies is certainly the choice of
the probability pHCS for the application of HCS. In general, there are two fac-
tors which influence the ‘right’ choice of pHCS : the number of local Pareto fronts
of a given MOP (i.e., roughly speaking, the problem complexity) and the total
number of function evaluations available. In case the number of local Pareto
fronts is high, a high probability for the use of HCS may lead to premature
convergence. In addition, since the HCS requires relatively many function calls
a high value of pHCS may lead to the fact that the available budget of function
calls is spent too fast, i.e., before a satisfying approximation is obtained. On the
other hand, a low value of pHCS may make the operator ineffective. Figure 5
shows one example for the evolution of the GD indicator which measures the
convergence corresponding to different values of pHCS for the DTLZ3 problem.
Hereby we have run SPEA2 for 50 generations and have used the final popula-
tion as the initial population for SPEA2–HCS2, which was then run for another
50 generations and with different values of pHCS . Note that in all cases there is a
noticeable decay in the value of GD in the beginning (iteration one to ten), but
‘stabilizes’ later on at different values. The worst results in this example are ob-
tained for pHCS = 1 and pHCS = 0.02 which conforms with the above discussion
since DTLZ3 is a multi-modal MOP. Here we have chosen the trade-off value
pHCS = 0.2 based on this and other computations, however, the development of
an adaptive strategy is a task for future investigation. Table 4 displays all the
parameters which have been used for both SPEA2 and SPEA2–HCS. Since at
the beginning of the algorithm’s execution, typically a global search is more ef-
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fective than a local one, we have started the HCS after 75 % of the total number
of generations (i.e., we have set pHCS = 0 in the first generations).
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Fig. 5. Results of SPEA2–HCS2 on DTLZ3 using different values of pHCS.

Table 4. Parameters for SPEA2 and SPEA2–HCS: Npop and Na denote the popu-
lation size and the maximal cardinality of the archive, and pc, pm, pHCS denote the
probabilities for crossover, mutation and local search (HCS), respectively.

Parameter Value

Npop 100

Na 100

pc 0.8

pm 0.01

pHCS 0.2

Table 5 shows a comparison for some DTLZ test functions (see [13] and
Table 3), where we have chosen n = 7 for the dimension of the parameter
space and k = 3 objectives. The numerical results show that in almost all cases
SPEA2–HCS (both variants) achieves better values than SPEA2 for all three
indicators. For the generational distance, which is an indicator for convergence,
the reduction is often near to 50%. Note that in addition the CPU time was
significantly less with the SPEA2–HCS algorithms in all tests: since the number
of function calls was fixed and since the local search operator required a certain
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amount of it, the number of generations was much less for SPEA2–HCS, and
thus, less time had to be spent for the update process of the archives. Another
interesting observation is that the performance of SPEA2–HCS1 and SPEA2–
HCS2 is nearly equal (since the models are given in analytical form, we have for
simplicity counted one derivative call as one function call). This indicates that
the gradient information which allows for a more exact search (locally) does not
give an advantage over HCS1. The reason might be that in a combination of the
HCS with a MOEA —which is by nature not exact—the exactness of the local
search does not play an influential role.
The comparison of the results for DTLZ3 (with parameter α = 20) and DTLZ3*
(same as DTLZ3 but with α = 2) gives some insight into the nature of memetic
algorithms such as SPEA2–HCS. The parameter α controls the number Nl of
strictly local Pareto fronts and is thus an indicator for the complexity of the

model. Nl is approximately equal to
(

α
2

)n−k+1
. That is, for α = 20 there exist a

total of 100.000 local Pareto fronts while for α = 2 there exists merely one. The
results for SPEA2HCS compared to SPEA2 are – as anticipated – much better
for the ‘easier’ model DTLZ3* since in that case the probability is very high that
the HCS converges to a global solution starting from a randomly chosen point,
and the local search can thus contribute to increase the overall performance. If
the model gets more complicated the improvements achieved by the local search
procedure decreases, and global search operators get more important. Thus, it
comes as no surprise that the improvements achived by the memetic strategy for
DTLZ3 are less significant than for DTLZ3*.
Finally, we consider MOP CONV2. Table 5 shows a result for dimension n = 10
and for a budget of 10,000 function calls. Since CONV2 is a smooth convex model
the local search increases the overall performance significantly. Best values are
obtained for SPEA2–HCS2, i.e., the memetic strategy which involves gradient
information.
It has to be noted that all the results presented here come from 3-objective
models. This is due to the fact that for all bi-objective models that we have
tested no remarkable improvements have been achieved which indicates that
SPEA2 (as well as other state-of-the-art MOEAs) is already very efficient on
the well-known bi-objective benchmark suite – and certainly on other models
as well. However, since the performance of most MOEAs decreases significantly
with increasing number of objectives (starting with k ≥ 3), the usage of memetic
algorithms – such as the one proposed here – seems to be advantageous for the
numerical treatment of MOPs which contain more than two objectives.

6 Conclusions and Future Work

We have proposed a novel point-wise iterative search procedure, the Hill Climber
with Sidestep (HCS), which is designed for the local search of a given multi-
objective optimization problem. The HCS is intended to be capable to moving
both toward and along the set of (local) Pareto points. We have proposed two
variants of the HCS, a gradient-free version (HCS1) and one which involves
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Table 5. Numerical results on the DTLZ test functions and CONV2. For each DTLZ
problem the number of function calls was fixed to 100,000 and to 10,000 for CONV2.
The resulting mean value and standard deviation (in brackets) are presented for 30 test
runs for each algorithm. We have chosen the dimension n = 7 for the DTLZ problems
and n = 10 for CONV2. T denotes the CPU time.

Indicators

Problems GD ESS MD T

DTLZ1
SPEA2
SPEA2–HCS1
SPEA2–HCS2

8.20(3.33)
4.66(1.33)
3.67(1.64)

8.06(4.31)
5.90(5.17)
1.99(2.62)

291.18(96.46)
71.22(38.49)
107.78(59.16)

3.83(1.33) × 103

2.46(0.42) × 103

1.82(0.31) × 103

DTLZ2
SPEA2
SPEA2–HCS1
SPEA2–HCS2

0.0298(0.0094)
0.0044(0.0022)
0.0095(0.0054)

0.0501(0.0146)
0.0306(0.0103)
0.0292(0.0167)

2.4125(0.2907)
1.5691(0.1018)
1.7892(0.2024)

1.40(0.85) × 104

1.21(0.15) × 104

8.70(0.39) × 103

DTLZ3
SPEA2
SPEA2–HCS1
SPEA2–HCS2

11.23(7.93)
6.05(3.69)
10.71(5.58)

8.45(6.76)
14.93(12.85)
6.98(6.01)

300.47(185.25)
197.07(99.78)
338.98(141.27)

3.09(0.43) × 103

1.84(0.25) × 103

1.12(0.26) × 103

DTLZ3∗
SPEA2
SPEA2–HCS1
SPEA2–HCS2

18.37(15.02)
0.19(0.30)
0.47(1.39)

9.28(10.20)
0.93(2.29)
1.25(3.69)

427.86(318.84)
13.98(24.08)
27.04(61.54)

3.55(0.12) × 103

2.65(0.42) × 103

2.08(0.18) × 103

CONV 2
SPEA2
SPEA2–HCS1
SPEA2–HCS2

58.37(55.57)
28.43(21.61)
5.83(4.49)

8.89(8.03)
6.56(7.53)
5.25(4.18)

434.59(327.30)
271.00(241.44)
142.80(77.10)

304.20(4.26)
296.54(10.25)
198.43(3.33)

gradient information (HCS2). Both algorithms are able to handle constraints of
the model to some extend. Further, we have shown one possible way to integrate
the local search procedure into a given MOEA leading to a memetic strategy.
Finally, we have shown the efficieny of both the HCS as a standalone algorithm
and a resulting memetic strategy on some examples. The results indicate that
the HCS can be advantageous in particular in the cases where a classical MOEA
gets ‘stuck’ (e.g., in the many-objective case). However, due to the nature of
local search, the advantage of memetic strategies including the one presented in
this paper decreases with increasing complexity of the underlying model. Thus,
significant improvements of the memetic strategy compared to ‘classical’ MOEAs
can be achieved in certain cases, but this cannot be expected in general.

For future work, there are some interesting topics which can be addressed to
advance the present work. For instance, it would be desirable that HCS2 is also
able to move along the Pareto set efficiently if this set is contained in the bound-
ary of the domain which would allow for a more general use of the algorithm.
Furthermore, the local strategy involves some design parameters which have so
far to be adjusted by the user, but for which, an adaptive strategy would clearly
be helpful. Another point is the integration of the HCS into a given MOEA. The
particular coupling we have presented has the advantage that in general every
MOEA can be taken and enhanced with little effort to become memetic. How-
ever, we expect that a more sophisticated interplay of the HCS and the MOEA
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(e.g., by involving the information of the current population into the HCS) will
increase the efficiency of the memetic strategy.
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