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Abstract— In this paper we introduce line search strategies
originating from continuous optimization for the realizat ion of the
guidance mechanism in particle swarm optimization for scalar
optimization problems. Since these techniques are well-suited
for—but not restricted to—local search the resulting algorithm
can be considered to be memetic. Further, we will use the same
techniques for the construction of a new variant of a hill climber.
We will discuss possible realizations and will finally present some
numerical results indicating the strength of the two algorithms.

I. I NTRODUCTION

The first use of the termMemetic Algorithmin the computing
literature appeared in 1989 in a technical report by Moscato
[15]. A memetic algorithm is a heuristic population-based
optimization strategy which basically combines local search
heuristics with crossover operators. By this reason, some
researchers view them asHybrid Genetic Algorithms.
Some real-coded memetic algorithms reported in literature
are the following:

a) Hybrid Genetic Algorithms (HGAs):These are hybrid
real-coded genetic algorithms which use local improvement
procedures (LIPs) (e.g., gradient methods or random hill
climbing) on continuous domains to refine the solutions.
HGAs apply a LIP to every member of each population,
the resulting solutions replace the population members and
are used to generate the next population under selection and
recombination. A different type of hybridization of LIPs
and genetic algorithms concerns the construction of new
classes of evolutionary algorithms designed to perform local
improvements such as Hart [10], who uses an evolutionary
pattern search algorithm.

b) Crossover local search algorithms (XLS):This crossover
operator produces children in a neighborhood of the parents.
Satoh [17] proposed an algorithm called MGG (minimal
generation gap) with generation alternation through the
crossover operator. The parents are replaced by (a) the best
individual of the parents and their offspring, and (b) by a
new individual which is chosen by roulette wheel techniques.
In another variant of this algorithm – called G3 (generalized
generation gap) and proposed by Deb [5] – the parents are
replaced by the roulette-wheel selection with a block selection
of the best two solutions. Once a XLS algorithm has found
promising areas of the search space, it searches over only a
small fraction of the neighborhood around each point.

c) Crossover Hill Climbing:Hill climbing is a local search
algorithm that starts from a single solution. At each step,
a candidate solution is generated using a move operator.
Crossover hill climbing was first described by Jones [11]
and O’Reilly [16]. So far, many different variants have been
developed. The most representative among them is probably
the algorithm proposed by Lozano [13] that maintains a pair
of parents and performs repeatedly crossover on this pair
until some number of offspring is reached. The best offspring
is then selected and replaces the worst parent in case the
former has a better fitness.

Line search strategies have been thoroughly studied since
several decades and are well-known as a powerful tool for
optimization ([2], [6]). Also in the field of Evolutionary
Computation these techniques have been integrated since its
pioneering days (here we refer to the work of H. Bremermann
who already utilized line search strategies in the late 50s (see
[7] for an overview) and are being considered and adapted



occasionaly time and again (e.g., [9]).

The update of the location of the particles in a PSO algorithm
is typically realized by two mechanisms: a global, stochastic
search strategy (thecrazinesswhich will not be investigated
here) and a local search procedure (guidance). In the latter
case the location of a current particlep is changed by a
combination of movements fromp towards both the local best
position ofp and the global best position. These directions can
be viewed – in some general and natural sense – as descent
directions for the system at the location ofp. In this paper
we propose to apply line search strategies to perform the
guidance efficiently. In most PSO variants the movement is
done toward particular points, but does not go beyond them.
In these cases the particles surely have a bias to stay insidethe
convex hullH(P ) of the current populationP with positions
xi, i = 1, . . . , N :

H(P ) =

{

N
∑

i=1

λixi

∣

∣λi ≥ 0, 1 = 1, . . . , N, and
N
∑

i=1

αi = 1

}

,

or have to ’wait’ for a suitable solution coming from the
craziness – which can last very long, in particular in higher
dimensional domains. By using line search strategies we aim
at the following two benefits due to the adaptive guidance
strategy: (a) an improvement of the coarse dynamics of the
system and (b) a speedup of the local convergence.
Since in numerous test runs we have obtained particularly
good results for small populations, we have also tested the
extreme case (i.e.,|P | = 2) leading to a new hill climber
variant which we will also propose below.

An outline of this paper is as follows: in Section II we give the
required background for the algorithms which are presentedin
Section III. In Section IV we present some numerical results.
Finally, our conclusions and some possible paths for future
research are presented in Section V.

II. BACKGROUND

Here we present the required background for the algorithms
which are presented in the next section. That is, we formulate
the problem, address the basic idea of line search, and recall
shortly a basic variant of both the hill climber and the PSO
algorithm.

d) Problem Description and Line Search: Throughout this
article we consider the followingunconstrained optimization
problem(UOP): given a continuous function

f : Rn → R
the task is to find a pointx∗ ∈ Rn such that

f(x∗) ≤ f(y) ∀y ∈ Rn.

There exists a huge variety of very efficient point-wise iterative
methods for the localization of (local) minimima of a given
UOP. A widely used class of these methods are the so-called

line searchers. The basic idea is rather simple and can be
described as follows (see e.g. [6]):
starting with a pointx0 ∈ Rn the subsequent iterates are
chosen by the two following steps:

for k = 0, 1, ...

– compute a descent directionνk

– computetk ∈ R+ such thatxk+1 := kk + tkνk is
an ’acceptable’ next iterate

The descent direction can be e.g. chosen asνS
k = −∇f(xk)

leading to the steepest descent method or as theNewton di-
rectionνN

k −∇2f(xk)−1∇f(xk) which leads to the (damped)
Newton method. The method is called line search since in ev-
ery step the UOP is replaced by a one-dimensional restriction
of f , i.e. to the ’minimization’ of

fνk
: R→ R

fνk
(t) = f(xk + tνk)

(II.1)

In fact, it is widely accepted that it is not the most efficient
way to find the exact minimum offνk

in every stepk in
order to obtain the best overall performance. In practise, the
minimization of fνk

is mostly replaced by the much weaker
condition

f(xk+1) = f(xk + tkνk) < f(xk), (II.2)

which, in turn, does not guarantee convergence of the
sequence of thexk ’s.
A common way to obtain a good guess for the minimizer of
a function fν without spending too much time by function
calls is to approximatefν by a polynomial p which is
typically of low degree. The minimum ofp – which can be
computed exactly without further function calls – is typically
an acceptable next iterate in the sense that condition (II.2) is
fulfilled, or can at least serve as a (hopefully better) starting
point for the next guess. See [6] for a thorough discussion.

e) Random Hill Climber : Here we present the Random Hill
Climber (RHC) which has certain resemblance with the(1 +
1)-Evolution Strategy ([3]) and which serves as the basis for
the algorithm which is presented in the next section.
Given a starting pointx0 ∈ Rn andxb

0 := x0 the basic version
of the algorithm reads as follows:

for k = 1, 2. . . .

(a) setx1
k := xb

k−1 and choosex2
k at random

(b) choose xb
k ∈ {x1

k, x2
k} such that f(xb

k) =
min(f(x1

k), f(x2
k))

The RHC is definitely the simplest form of an evolutionary
algorithm since in every step merely two points are taken into
account. However, it can often perform competitively with
more complex EAs ([14]) and is thus definitely worth to be
investigated further on.

f) Particle Swarm Optimization: In PSO, a population of
particles is considered ([12]). These particles evaluate the
search space by moving with a particular speed towards the
best particle found so far (guide) by particular heuristics



including their experience from the past generations.
To be more precise, a general PSO method can be described as
follows. A set ofN particles is considered as a populationPk

in generationk ∈ N0. Each particlei has a positionxi,k ∈ Rn

and a velocityvi,k ∈ Rn in generationk. These two values
are updated in generationk + 1 by the following two steps:

vi,k+1 = ωvi,k + c1R1(pi,k − xi,k) + c2R2(p
g
i,k − xi,k),

xi,k+1 = xi,k + vi,k+1,

(II.3)

wherei = 1, . . . , N , and
• ω is the inertia weightof the particle,
• c1 andc2 are positive constants,
• R1, R2 ∈ [0, 1] are chosen at random,
• pi,k is the best position found by particlei in the firstk

steps, and
• p

g
i,k is the best position found by all particles in the first

k steps.
In order not to restrict the search to the lines which are given
by the locations of the particles of the initial generation a
stochastic variable calledcraziness1 is introduced in addition
to the movement of the particles (flight) described above. One
common method is to exchange the current location of the
particle with the best position – which is stored separatelyin
p

g
i,k – with a randomly chosen location in each iteration step.

III. T HE ALGORITHMS

In this section we propose a hill climber as well as a PSO
variant which involve line search strategies. The common
situation in these (and other) algorithms is that in every step
there are pointsx0, x1 ∈ Rn considered wheref(x1) <

f(x0). Thus, ν := x1 − x0 can be viewed as a descent
direction2 for f at the pointx0 and hence in principle line
search strategies can be applied. In the following we will
present the two algorithms and will then go into detail for
a particular realization of the line search.

A. Hill Climber with Line Search

The underlying idea of the classical RHC is to compare two
points in every step and to archive the best solution foundbk

during the run of the algorithm. In order to apply line search
in a reasonable way, we have to avoid too large values for||ν||
and have thus to choose further candidates ’near’bk. For this,
we define the following neighborhood: given a pointc ∈ Rn

and a vectorr ∈ Rn
+ with positive entries we define

B(c, r) := {x ∈ Rn : ci − ri ≤ xi ≤ ci + ri∀i = 1, .., n},

which can be viewed as ann-dimensional box with centerc
and radiusr.

Given an initial pointx0 ∈ Rn, a vector of radiir ∈ Rn
+, and

xb
0 := x0 the Hill Climber with Line Searchreads as follows:

1Also referred asturbulencein the specialized literature.
2In the sense that there exists at̄ ∈ R+ such thatf(x0 + t̄ν) < f(x0).

Note that this property does not have to be fulfilled initially, i.e. for continuous
differentiable functions the condition∇f(x0)T ν < 0 is not guaranteed.

g) Hill Climber with Line Search:
for k = 1, 2. . . .

(a) setx1
k := xb

k−1 and choosex2
k ∈ B(x1

k, r)
at random

(b) setx̃b
k ∈ {x1

k, x2
k} such that

f(x̃b
k) = min(f(x1

k), f(x2
k)) and the other point

as x̃s
k. Defineνk := x̃b

k − x̃s
k.

(c) computetk ∈ R+ and setx̃n
k := x̃s

k + tkνk.
(d) choosexb

k ∈ {x̃b
k, x̃n

k} such that
f(xb

k) = min(f(x̃b
k), f(x̃n

k ))

The algorithm represents a possible alternative to the PSO
algorithm (described below) in particular for local search
problems (see e.g. the last example in this paper) or in case
the function evaluation is expensive. Possible strategiesfor the
choice of thetk ’s in step (c) will be discussed in Section 3.3.

B. PSO with Line Search

Using the notations stated above, the position and the velocity
of each particle in generationk + 1 are updated by the
following steps:

compute ti,k,1, ti,k,2 ∈ R+

vi,k+1 = ωvi,k + ti,k,1(pi,k − xi,k) + ti,k,2(p
g
i,k − xi,k)

xi,k+1 = xi,k + vi,k+1

The general formulation of this algorithm is indeed very close
to the formulation of the basic variant. A particular realization
of the algorithm which includes the following discussion can
be found in Algorithm 1.

C. Realization of the Algorithms

As stated above, the situation for the line search is that we
are given two pointsx0, x1 ∈ Rn wheref(x1) < f(x0) and
the associated ’descent direction’ν := x1 − x0 (see Fig. 1).
We propose to realize the line search in the following way:
choosee ∈ [1.1, 1.7] and computefν(e). If fν(e) < fν(1)
then acceptxnew = x0 + eν as the next iterate. If the above
condition does not hold we have collected enough information
to approximatefν by a quadratic polynomialp = at2 + bt+ c

with coefficientsa, b, c ∈ R. By solving the system of linear
equations given by the interpolation conditions

I : p(0) = 0 · a + 0 · b + 1 · c = fν(0)
II : p(1) = 1 · a + 1 · b + 1 · c = fν(1)
III : p(e) = e2 · a + e · b + 1 · c = fν(e)

we obtain for the coefficients ofp:

a =
fν(e) − fν(0) − e(fν(1) − fν(0))

e2 − e
,

b =
−fν(e) + fν(0) + e2(fν(1) − fν(0))

e2 − e
,

c = fν(0).

Sincep(1) < p(0) andp(e) ≥ p(1) and sincep is a quadratic
polynomial the function contains exactly one minimum at

t∗ =
−b

2a
= 2

e2(fν(1) − fν(0)) − fν(e) + fν(0)

e(fν(1) − fν(0)) − fν(e) + fν(0)
∈ (0, e).

(III.4)



The interpolants typically serve as a good approximation of
fν locally, i.e. aroundt = 0 and if ||ν|| is small. However, this
does not hold globally, in particular for multimodal functions.
In order to add a stochastic component to the line search and
not to destroy the local property of the interpolants described
above, we propose to add a perturbation aroundt∗ where the
maximal distance tot∗ should be proportional to||ν||, i.e.

xnew = x0 + t∗ν +
||ν||

C
rν, (III.5)

whereC ∈ R is a positive constant andr ∈ [−1, 1] is chosen
at random. Hence, the perturbation vanishes for||ν|| → 0.
Further, we suggest also to choose the valuee ∈ (1, 2]
at random in order not to obtain the same setting for the
construction ofp in every step.
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Fig. 1. Approximation of the one-dimensional restrictionfµ of the under-
lying optimization problem by a quadratic polynomial (see text).

Remark 1.Another possibility for the determination of the
quadratic polynomialp is to use the valuep′(1) = f ′

ν(x1)
(respectively e.g. an approximation like the forward differ-
encep′(1) ≈ fν(1+h)−fν(1)

h
) as the required third piece of

information which leads to

t∗ =
2(fν(1) − fν(0)) − f ′

ν(1)

2(fν(1) − fν(0) − f ′

ν(1))
.

Using this approach we have obtained even a slightly better
performance on some differentiable UOPs compared to the
line search described above. However, we decided to propose
a gradient free version since this seems to be more natural
for the construction of both a hill climber as well as a PSO
algorithm.

While it is straightforward to apply the line search on the
hill climber, this task needs more consideration for the PSO
algorithm. In the latter algorithm we are given in factthree
descent directions for each particle and for every generation,
namely

νi,1 = pi,k − xi,k,

νi,2 = p
g
i,k − xi,k,

νi,3 = p
g
i,k − pi,k.

The most greedy search can certainly be obtained by taking
only one search direction into account. The inclusion of more
search directions for the update of the location of the particles
will on one hand surely lead to more diversity among them
but will on the other hand lead to more function calls in every
step. For the computation of the results which are presented
in the next section we have solely used the first strategy, i.e.
we have setti,k,1 = 0 and have computedti,k,2 via the line
search method described above (see also Algorithm 1).

Algorithm 1 Memetic-PSO

1: ~gbest← ~x0

2: for i← 0, nParticles do ⊲ Initialize Population and update
gbest

3: ~gbest← ~x0 ← initialize randomly()
4: fitnessi ← f(~xi)
5: if fitnessi < f( ~gbest) then
6: ~gbest ← ~xi

7: end if
8: end for
9: repeat

10: e← U(1.1, 1.7) ⊲ Uniformly random number generated in
(1.1, 1.7)

11: for i← 0, nParticles do
12: ~p← ( ~gbest − ~xi)
13: for k← 0, nObjectives do
14: auxk ← (xi,k + e · pk)
15: auxk ← Check bounds(auxk)
16: end for
17: if f( ~aux) < f( ~gbest) then
18: ~gbest ← ~aux ⊲ Accept ~aux
19: else ⊲ Interpolate
20: a← (f( ~aux)−fitnessi)−e·(f( ~gbest)−fitnessi)

(e2−e)

21: b← f( ~gbest)− fitnessi − a
22: t← − b

2·a
23: for k← 0, nObjectives do
24: auxk ← xi,k

25: xi,k ← xi,k + U{(t− 0.5 · e), (t + 0.5 · e)}
26: xi,k ← Check bounds(xi,k)
27: end for
28: fitnessi ← f(~xi)
29: if fitnessi = f( ~gbest) then
30: xi ← turbulence(xi) ⊲ Create new variables

for xi

31: fitnessi ← f(~xi)
32: end if
33: end if
34: if fitnessi < f( ~gbest) then
35: ~gbest ← ~xi

36: end if
37: end for
38: until Termination Criteria



IV. N UMERICAL RESULTS

In this section we illustrate the efficiency of the two algorithms
by validating them on several examples.

A. Results for Memetic-PSO

First we turn our attention to the Memetic-PSO. In order to
compare its performance we have chosen thirteen different test
problems taken from [8] with different geometrical character-
istics: functionsf1 to f5 are unimodal functions,f6 is a step
function and thus dicontinuous,f7 is a noisy quartic function
and functionsf8 to f13 are multimodal functions (see Table
I). In order to validate our proposed approach, our results are
compared with respect to those generated by theFEP (Fast
Evolutionary Programming) proposed in [19], which is an
algorithm representative of the state-of-the-art in the area. The
average results of 50 independent runs are shown in Table II.

B. Results for the Hill Climber with Line Search

Next we want to evaluate the perfomance of the novel hill
climber. The choice of the appropriate set of test functionsis
not too easy in this case: if multimodal functions are taken,
the result of the optimization will be highly dependent on the
initial guess, and presumably be worse than results coming
from population-based methods. If on the other hand functions
are taken which are ’easy’ in the context of optimization
(e.g., convex functions), the outcome can also in this case
be predicted quite easily. We have chosen for two unimodal
functions which are not too easy to handle in order to test the
hill climber for its primal task: black box local search. To be
more precise, we consider the following two UOPs:

f1, f2 : Rn → R
f1(x) :=

n
∑

i=1

|xi| +

n
∏

i=1

|xi| (Schwefel’s function)

f2(x) :=

n
∑

i=1

(x2
i + random[−0.01, 0.01]) (Quadratic+ Noise)

(IV.6)

The minimum of both functions isx∗ = (0, . . . , 0) ∈ Rn.
We have compared the performance of the Hill Climber with
Line Search (HCLS) with the Random Hill Climber (RHC),
the downhill simplex method of Nelder and Mead (NM, the
function fminsearch of MATLAB 3), and a derivative-free
Quasi-Newton method (QN, the functionE04JYF of the
NAG4 library) on these two functions. As the starting point
we have chosenx0 = (2, 3, 2, 3, . . .) ∈ Rn and have setQ =
[−5, 5]n as the domain (for RHC). Every computation was
terminated as successful when a pointxk with |fi(xk)| < 0.1
was found and terminated as unsuccessful if such a point was
not found within107 function calls. Tables III and IV show
the average result of 20 test runs. The results indicate that
the new solver can compete with the other well-known and

3http://www.mathworks.com
4http://www.nag.com

TABLE III

PERFORMANCE OF THEHILL CLIMBER WITH L INE SEARCH ON FUNCTION

f1 (SEE (IV.6)) AND COMPARISON TO OTHER ALGORITHMS: THE

DOWNHILL SIMPLEX METHOD OF NELDER AND MEAD (NM), A

DERIVATIVE -FREEQUASI-NEWTON METHOD (QN) AND THE RANDOM

HILL CLIMBER (RHC). # FCDENOTES THE NUMBER OF FUNCTION CALLS

AND |f(xend)| THE FUNCTION VALUE OF THE BEST FOUND SOLUTION

(AVERAGE OF 20 TEST RUNS).

Method QN NM RHC HCLS

n = 5 # FC 659 502 1.0 · 105 188
|f(xend)| 0 6.5 0.084 0.084

n = 10 # FC 2465 448 8.8 · 105 638
|f(xend)| 0 21.8 0.094 0.089

n = 20 # FC 3847 1471 7.4 · 106 2551
|f(xend)| 0 45, 4 0.098 0.095

n = 50 # FC 2222 8336 1.0 · 107 2.5 · 105

|f(xend)| 0 124.6 1.15 0.095
n = 100 # FC n.a. 2.0 · 105 1.0 · 107 1.4 · 106

|f(xend)| n.a. 2.7 · 108 8.13 0.099

TABLE IV

PERFORMANCE OF THEHILL CLIMBER WITH L INE SEARCH ON FUNCTION

f2 (SEE (IV.6)) AND COMPARISON TO OTHER ALGORITHMS. THE

NOTATION IS THE SAME AS INTABLE III.

Method QN NM RHC HCLS

n = 5 # FC 970 358 1226 115
|f(xend)| 2.3 0.013 0.058 0.069

n = 10 # FC 2678 5.8 · 106 1.2 · 105 241
|f(xend)| 1.81 0.3797 0.087 0.085

n = 20 # FC 8049 1.0 · 107 6.8 · 105 460
|f(xend)| 0.28 11.39 1.24 0.095

n = 50 # FC 6546 1.0 · 107 9.2 · 107 1371
|f(xend)| 0.34 17.38 0.108 0.096

n = 100 # FC 1.2 · 105 1.0 · 107 1.0 · 107 3361
|f(xend)| 0.14 39.67 1.35 0.097

widely accepted black box optimizer at least on this (small)
set of benchmark functions.

C. An Application: Computing Solution Sets of Nonlinear
Equations

Finally, we consider a problem where the Hill Climber with
Line Search can be very helpful, namely the computation
of the solution setsH−1(0) of a given (non-differentiable)
function

H : RN+K → RN .

Problems of this kind can e.g. arise in multi-objective opti-
mization.
Given a pointx0 ∈ H−1(0) one possibility to find further
solutions in the neighborhood ofx0 is to usecontinuation
methods(see [1] for an overview of existing methods), e.g.
the one proposed in [18]. This method transforms the original
problem via so-called predictor-corrector strategies into a
sequence of UOPs of the form

min
x

‖H(x)‖. (IV.7)



TABLE I

TEST FUNCTIONS

Name Test Problem n Search Space optimum
Sphere model f1(x) =

Pn
i=1 x2

i 30 [−100, 100]n 0
Schwefel’s Problem 2.22 f2(x) =

Pn
i=1 |xi| +

Qn
i=1 |xi| 30 [−10, 10]n 0

Schwefel’s Problem 1.2 f3(x) =
Pn

i=1

“

Pn
j=1 xj

”2
30 [−100, 100]n 0

Schwefel’s Problem 2.21 f4(x) = maxi(|xi|, 1 ≤ i ≤ n) 30 [−100, 100]n 0
Rosenbrock’s Function f5(x) =

Pn−1
i=1

ˆ

100(xi+1 − x2
i )2 + (xi − 1)2)

˜

30 [−30, 30]n 0
Step Function f6(x) =

Pn
i=1 (⌊xi + 0.5⌋)2 30 [−100, 100]n 0

Quartic Function (noise) f7(x) =
Pn

i=1 ix4
i + random[0, 1) 30 [−1.28, 1.28]n 0

Schwefel’s Problem 2.26 f8(x) =
Pn

i=1 −xi sin
p

|x1| 30 [−500, 500]n -12569.5
Rastrigin’s Function f9(x) =

Pn
i=1

ˆ

x2
i − 10 cos (2πxi) + 10

˜

30 [−32, 32]n 0

Ackley’s Function f10(x) = −20 exp
“

−0.2
q

1
n

Pn
i=1 x2

i

”

− exp
`

1
n

Pn
i=1 cos 2πxi

´

30 [−32, 32]n 0

+20 + e

Griewank Function f11(x) = 1
4000

Pn
i=1 x2

i −
Qn

i=1 cos
“

xi√

i

”

+ 1 30 [−600, 600]n 0

Penalized Function f12(x) = π
n
{10 sin2 (πyi) +

Pn−1
i=1 (yi − 1)2[1 + 10 sin2(πyi+1)] 30 [−50, 50]n 0

+(yn − 1)2} +
Pn

i=1 u(xi, 10, 100, 4).
yi = 1 + 1

4
(xi + 1)

u(xi, a, k, m) =

8

<

:

k(xi − a)m, xi > a,
0, −a ≤ xi ≤ a,
k(−xi − a)m, xi < −a.

Penalized Function f13(x) = 0.1{sin2(3πx1) +
Pn−1

i=1 (x1 − 1)2[1 + sin2(3πxi+1)] 30 [−50, 50]n 0
+(xn − 1)2[1 + sin2(2πxn)]} +

Pn
i=1 u(xi, 5, 100, 4).

TABLE II

COMPARISON OFMEMETIC-PSOAND FEPON SEVERAL TEST FUNCTIONS(SEETABLE I). THE RESULTS OBTAINED BY THE LATTER ALGORITHM ARE

TAKEN FROM [8]. THE MEMETIC-PSOSTOPPED IF THE OPTIMUM WAS REACHED OR A MAXIMUM NUMBER OF FUNCTION CALLS PERFORMED BY THE

FEPALGORITHM WAS REACHED. THE NUMBERS IN BOLDFACE MARK THE BEST RESULT.

Memetic - PSO F E P
Mean Reach optima Mean Std Mean Std

Function Optimum Evaluations 50 runs Best Dev Eval Best Dev
f1 0 7,917 50 9.1e-5 1.27e-5 150,000 5.7e-4 1.3e-4
f2 0 15,462 50 9.51e-5 6.2e-6 200,000 8.1e-3 7.7e-4
f3 0 63,599 50 9.91e-3 1.12e-4 500,000 1.6e-2 1.4e-2
f4 0 72,869 50 9.84e-3 2.36e-4 500,000 0.3 0.5
f5 0 1,076,309 40 1.18 3.054 2,000,000 5.06 5.87
f6 0 53,072 50 0 0 150,000 0 0
f7 0 1,952 50 8.9e-5 1.18e-5 300,000 7.6e-3 2.6e-3
f8 -12569.5 855,000 0 -10,056 430.7 900,000 -12,554 52.6
f9 0 500,000 0 16.23 4.54 500,000 4.6e-2 1.2e-2
f10 0 27,205 50 9.6e-5 5.19e-5 150,000 1.8e-2 2.1e-3
f11 0 114,403 24 2.72e-2 2.12e-2 200,000 1.6e-2 2.2e-2
f12 0 17,751 50 9.21e-7 1.0e-7 150,000 9.2e-6 3.6e-6
f13 0 9,814 50 8.89e-5 1.28e-5 150,000 1.6e-4 7.3e-5

In caseH is not differentiable, e.g. the Hill Climber with
Line Search (as well as in principle every other derivative-free
minimization algorithm) can be used in the corrector step.
Note that in this context a local solver is required for a good
performance of the continuation method.

As an (academic) example we consider the problem of finding
all the points x ∈ R3 where ‖x‖∞ = 1 and x3 ≤
0.5 sin(2π min(|x1|, |x2|)) holds. Thus, we are interested in
the setH−1(0), where

H : R4 → R2

H(x, t) =

(

‖x‖∞ − 1

x3 − 0.5 cos(2π min(|x1|, |x2|)) + t2

)

(IV.8)

Figure 2 shows the result of the continuation method. Here,

the entire solution set was obtained by starting with one single
point (x0, t0) = (−1,−1, 0.5, 0) ∈ H−1(0). During the run
of the algorithm, an amount of11484 solutions was produced,
i.e. summarizing, the total number of68904 UOPs of the
form (IV.7) were solved successfully. The computations have
been done on an Intel Xeon 3.2 GHz processor and have
taken approximately 30 seconds. This results indicates that
the Hill Climber with Line Search is well-suited to be used in
combination with a continuation method.

V. CONCLUSIONS ANDFUTURE WORK

We have presented new variants of a PSO algorithm and a hill
climber by involving line search strategies. These techniques
allow both for the improvement of the coarse dynamics of
the system (of particles) as well as for a speedup of its
local convergence. We have demonstrated the strength of the
algorithms by several numerical results.



Fig. 2. Computation of an implicitly defined set of an underlying non-
differentiable function by a continuation method where theHill Climber with
Line Search was taken for both the predictor step and for the corrector step
(for details of the algorithm we refer to [18]).

In the future, we intend to extend the techniques presented
in this paper. One particularly intersting extension wouldbe
the development of adaptive constraint handling techniques
since so far the treatment of those problems – even
optimization problems with box constraints – with the
methods proposed above is not satisfacory. Further, we
think of using and adapting the method proposed in this
paper for the construction of multi-objective particle swarm
optimization algorithms. In particular the example in Section
IV-C motivates for further research in this direction. In this
context, a combination with the procedure described in [4]
seems to be very promising.

h) Acknowledgements:The third author gratefully acknowl-
edges support from CONACyT through project 45683-Y.
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