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Abstract—In this paper we introduce line search strategies b) Crossover local search algorithms (XLSyhis crossover
originating from continuous optimization for the realization of the  operator produces children in a neighborhood of the parents
guidance mechanism in particle swarm optimization for scedr Satoh [17] proposed an algorithm called MGG (minimal

optimization problems. Since these techniques are well-gad fi ith f It i th h th
for—but not restricted to—Ilocal search the resulting algoiithm generation gap) wi generation alternation roug €

can be considered to be memetic. Further, we will use the same Crossover operator. The parents are replaced by (a) the best
techniques for the construction of a new variant of a hill climber.  individual of the parents and their offspring, and (b) by a
We will discuss possible realizations and will finally preset some new individual which is chosen by roulette wheel techniques
numerical results indicating the strength of the two algorthms. |, another variant of this algorithm — called G3 (generalize
generation gap) and proposed by Deb [5] — the parents are
I. INTRODUCTION replaced by the roulette-wheel selection with a block s&lac
of the best two solutions. Once a XLS algorithm has found
The first use of the ternviemetic Algorithmin the computing promising areas of the search space, it searches over only a
literature appeared in 1989 in a technical report by Moscagenall fraction of the neighborhood around each point.
[15]. A memetic algorithm is a heuristic population-based
optimization strategy which basically combines local skarc) Crossover Hill Climbing: Hill climbing is a local search
heuristics with crossover operators. By this reason, somgjorithm that starts from a single solution. At each step,

researchers view them &fybrid Genetic Algorithms a candidate solution is generated using a move operator.
Some real-co.ded memetic algorithms reported in literatu®ossover hill climbing was first described by Jones [11]
are the following: and O'Reilly [16]. So far, many different variants have been

developed. The most representative among them is probably
a) Hybrid Genetic Algorithms (HGASs)These are hybrid the algorithm proposed by Lozano [13] that maintains a pair
real-coded genetic algorithms which use local improvemeat parents and performs repeatedly crossover on this pair
procedures (LIPs) (e.g., gradient methods or random hilhtil some number of offspring is reached. The best offgprin
climbing) on continuous domains to refine the solutionss then selected and replaces the worst parent in case the
HGAs apply a LIP to every member of each populatioriprmer has a better fitness.
the resulting solutions replace the population members and
are used to generate the next population under selection &mie search strategies have been thoroughly studied since
recombination. A different type of hybridization of LIPsseveral decades and are well-known as a powerful tool for
and genetic algorithms concerns the construction of newptimization ([2], [6]). Also in the field of Evolutionary
classes of evolutionary algorithms designed to perfornallocComputation these techniques have been integrated sice it
improvements such as Hart [10], who uses an evolutiongpioneering days (here we refer to the work of H. Bremermann
pattern search algorithm. who already utilized line search strategies in the late 56g (

[7] for an overview) and are being considered and adapted



occasionaly time and again (e.g., [9]). line searchers The basic idea is rather simple and can be
described as follows (see e.g. [6]):

The update of the location of the particles in a PSO algorithgtarting with a pointzy, € RR™ the subsequent iterates are

is typically realized by two mechanisms: a global, stodeastchosen by the two following steps:

search strategy (therazinesswhich will not be investigated fork=0,1,...
here) and a local search proceduggiiflance. In the latter — compute a descent direction
case the location of a current particfeis changed by a

g — computet, € Ry such thatryy, = ki + trv IS
combination of movements fromtowards both the local best an "acceptable’ next iterate
position ofp and the global best position. These directions cap,

. . descent direction can be e.g. chosewias= —V f(xy)

be viewed — in some general and natural sense — as descent. ; g

N . . eading to the steepest descent method or asNiston di-
directions for the system at the location pf In this paper

; N _ 72 (., \—1 . ;
we propose to apply line search strategies to perform tect|onyk V= f(@x)” "V f(xx) which leads to the (damped)

. - : Newton method. The method is called line search since in ev-
guidance efficiently. In most PSO variants the movement is : . . -

. : ery step the UOP is replaced by a one-dimensional restnictio
done toward particular points, but does not go beyond the

n}_ . he 'minimization’ of
In these cases the particles surely have a bias to stay i'dnia'de0 f, 1. to the ‘minimization” o

convex hull H(P) of the current populatio® with positions fu. ' R—=R (11.1)
xi,izl,...,N: fyk(t):f(xk+tyk) ’
N N In fact, it is widely accepted that it is not the most efficient
H(P)=14> XA >0,1=1,...,N,and) a; =15, way to find the exact minimum of;,, in every stepk in
i=1 =1

order to obtain the best overall performance. In practige, t
or have to 'wait’ for a suitable solution coming from theminimization of f,, is mostly replaced by the much weaker
craziness — which can last very long, in particular in higherondition
dimensional domains. By using line search strategies we aim

at the following two benefits due to the adaptive guidance Fl@rer) = flar +tevi) < flan), (1.2)
strategy: (a) an improvement of the coarse dynamics of tgich, in turn, does not guarantee convergence of the
system and (b) a speedup of the local convergence. sequence of they,'s.

Since in numerous test runs we have obtained particulagycommon way to obtain a good guess for the minimizer of
good results for small populations, we have also tested thefunction f, without spending too much time by function
extreme case (i.e/P| = 2) leading to a new hill climber calls is to approximatef, by a polynomialp which is
variant which we will also propose below. typically of low degree. The minimum gf — which can be
computed exactly without further function calls — is tygiga
An outline of this paper is as follows: in Section Il we giv@th an acceptable next iterate in the sense that conditior) (H.2
required background for the algorithms which are preseirtedfulfilled, or can at least serve as a (hopefully better) Bigrt
Section IlI. In Section IV we present some numerical resultgoint for the next guess. See [6] for a thorough discussion.
Finally, our conclusions and some possible paths for future
research are presented in Section V. e) Random Hill Climber : Here we present the Random Hill
Climber (RHC) which has certain resemblance with tther
1)-Evolution Strategy ([3]) and which serves as the basis for
Here we present the required background for the algorithriie algorithm which is presented in the next section.
which are presented in the next section. That is, we forreulagiven a starting point, € R™ andxg := 1z the basic version
the problem, address the basic idea of line search, and regdlthe algorithm reads as follows:
shortly a basic variant of both the hill climber and the PSO 5, 1. — 1,2....

Il. BACKGROUND

algorithm. (@) setz} :=2% | and choose:? at random
| . . o Throughout thi (b) choosez} € {zj,22} such that f(z}) =
d) Problem Description and Line Search Throughout this min(f(zl), f(22))

article we consider the followinginconstrained optimization

problem(UOP): given a continuous function The RHC is definitely the simplest form of an evolutionary

algorithm since in every step merely two points are takea int

f:R"—R account. However, it can often perform competitively with
_ _ _ more complex EAs ([14]) and is thus definitely worth to be
the task is to find a point* € R"™ such that investigated further on.

1@) = Jy) vy eR™ f) Particle Swarm Optimization: In PSO, a population of
There exists a huge variety of very efficient point-wisedtate particles is considered ([12]). These particles evaluate t
methods for the localization of (local) minimima of a giversearch space by moving with a particular speed towards the
UOP. A widely used class of these methods are the so-calleekt particle found so far (guide) by particular heuristics



including their experience from the past generations. g) Hill Climber with Line Search:
To be more precise, a general PSO method can be described asfor k = 1, 2. . ..

follows. A set of V particles is considered as a populatiBp (@) setri:=a2% | and choose? € B(z},r)

in generatiork € Ny. Each particle has a positiorr; ;, € R™ at random

and a velocityv; , € R™ in generationk. These two values (b) setzt € {xi,z?} such that

are updated in generatign-+ 1 by the following two steps: f(%) = min(f(z}), f(z?)) and the other point

as7;. Defineyy, := 7% — 3.

Vi k1 = Wik + R (Dik — 2ik) + c2Ra(p] ) — zik), g N
' ' ' ' ok ' (c) computet;, € Ry and setr} = I + tyvs.

Tigt1 = ik T Vikt1, (113) (d) chooser? € {i%,i}} such that
. ' f(ap) = min(f (), f(2}))
wherei =1,..., N, and The algorithm represents a possible alternative to the PSO

o w is theinertia weightof the particle, algorithm (described below) in particular for local search
e ¢; andc, are positive constants, problems (see e.g. the last example in this paper) or in case
e Ry, Ry €10,1] are chosen at random, the function evaluation is expensive. Possible stratdgiethe
» p; is the best position found by particlein the firstk  choice of thet,’s in step (c) will be discussed in Section 3.3.

steps, and N
« pJ, is the best position found by all particles in the firsP' PSO with Line Search

k 7steps. Using the notations stated above, the position and the i#gloc

In order not to restrict the search to the lines which aremiv®’ €ach particle in generatiok + 1 are updated by the
by the locations of the particles of the initial generation P!I0Wing steps:

stochastic variable callecrazines$ is introduced in addition compute & k1,tik2 € Ry

to the movement of the particleiight) described above. One  Vik+1 = WVik + tik1(Pik — Tik) + ti,k:,z(p?,k — Tik)
common method is to exchange the current location of the Tik+1 = Tik + Vik+1

particle with the best position — which is stored separaiely The general formulation of this algorithm is indeed veryseo
pJ, — with a randomly chosen location in each iteration stefo the formulation of the basic variant. A particular reatipn

’ of the algorithm which includes the following discussiomca

. THE ALGORITHMS be found in Algorithm 1.
In this section we propose a hill climber as well as a PSO

variant which involve line search strategies. The commdn Realization of the Algorithms

situation in these (and other) algorithms is that in evegpstAs stated above, the situation for the line search is that we
there are pointsrg,z; € R™ considered wheref(z;) < are given two pointssg, z; € R™ where f(x1) < f(xo) and
f(xo). Thus,v := x; — x¢ can be viewed as a descenthe associated 'descent direction:= z; — x¢ (see Fig. 1).
directior? for f at the pointz, and hence in principle line We propose to realize the line search in the following way:
search strategies can be applied. In the following we withoosee € [1.1,1.7] and computef,(e). If f,(e) < f,(1)
present the two algorithms and will then go into detail fothen acceptr,.,, = xo + ev as the next iterate. If the above
a particular realization of the line search. condition does not hold we have collected enough informmatio
o o to approximatef, by a quadratic polynomial = at? + bt +c

A. Hill Climber with Line Search with coefficientsa, b, c € R. By solving the system of linear
The underlying idea of the classical RHC is to compare twgquations given by the interpolation conditions

points in every step and to archive the best solution folund

during the run of the algorithm. In order to apply line search

) . :p(0) = 0-a+0:b+ 1-¢c= f,(0
in a reasonable way, we have to av0|d_ too large valueﬁﬁ_ﬁr N p(l) =1-a+1b+1-c= f,(1)
and have thus to choose further candidates 'niarFor this, . - 2. . L=

) X s : i I : pe) =e*-a + e-b+ 1-c fu(e)
we define the following neighborhood: given a poine R™ ) o _
and a vector € R" with positive entries we define we obtain for the coefficients gf.

B(e,r):=={xzeR" : ¢; —r; <x; < ¢ +rVi=1,..,n}, a= fu(e) — 1,(0) ; e(fu() — f”(o))7
es —e
which can be viewed as am-dimensional box with center —fu(e) + £,(0) + €2(£,(1) — £,(0))
and radiusr. b= 2 _e ’
¢ = f,(0).

Given an initial pointzg € R"™, a vector of radiir € R, and

2% := xo the Hill Climber with Line Searctreads as follows: Sincep(1) < p(0) andp(e) > p(1) and sincep is a quadratic
polynomial the function contains exactly one minimum at

1Also referred agurbulencein the specialized literature. 2
2In the sense that there existd & R+ such thatf(zo + tv) < f(zo). = __b —9¢ (fo () = o (O) = fu(e) + £, (0) € (0,e).
Note that this property does not have to be fulfilled inifialle. for continuous 2a e(f, (1) — £,(0)) — fu(e) + f.(0)

differentiable functions the conditioR f(zo)7Tv < 0 is not guaranteed. (1.4)



The interpolants typically serve as a good approximation ®¥hile it is straightforward to apply the line search on the
fv locally, i.e. around = 0 and if ||v|| is small. However, this hill climber, this task needs more consideration for the PSO

does not hold globally, in particular for multimodal furmtis.

algorithm. In the latter algorithm we are given in fatiree

In order to add a stochastic component to the line search atebkcent directions for each particle and for every germmati

not to destroy the local property of the interpolants ddmdi
above, we propose to add a perturbation arotindrhere the
maximal distance t¢* should be proportional tgjv|], i.e.

lietl,,
C )
whereC € R is a positive constant ande [—1, 1] is chosen
at random. Hence, the perturbation vanishes |fof| — 0.
Further, we suggest also to choose the vatue= (1,2]

Tnew = To +t v+ (111.5)

namely

Vi1 = Pik — ik,

Vi2 = Pik = Lik,

Vi3 = p?,k — Pik-
The most greedy search can certainly be obtained by taking
only one search direction into account. The inclusion ofenor

search directions for the update of the location of the pladi
will on one hand surely lead to more diversity among them

at random in order not to obtain the same setting for thmut will on the other hand lead to more function calls in every

construction ofp in every step.

x

step. For the computation of the results which are presented
in the next section we have solely used the first strategy, i.e
we have set; ;; = 0 and have computed} ; , via the line
search method described above (see also Algorithm 1).

Alg

orithm 1 Memetic-PSO

1:
2:
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=
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22:
Remark 1.Another possibility for the determination of the;i:
quadratic polynomiap is to use the value'(1) = f/(z1) o5
(respectively e.g. an approximation like the forward diffe 6.

encep/(]_) ~ L (A+h)=fo (1)

Fig. 1. Approximation of the one-dimensional restrictign of the under-
lying optimization problem by a quadratic polynomial (segt}.

—f,(1 . . . )
)—Jv(1)y a5 the required third piece of 27:

information which leads to zgf
e 20() — £(0)) — fu(1) 30:
27,0 = £,0) = [,(1)) »

Using this approach we have obtained even a slightly betf&
performance on some differentiable UOPs compared to th :
line search described above. However, we decided to propgge
a gradient free version since this seems to be more natusgl
for the construction of both a hill climber as well as a PSQ7:
algorithm. 38:

gbgst — 20
for ¢ < 0,nParticles do > Initialize Population and update
Jbest o

gbest «— xp «— initialize_randomly()

fitness; «— f(Zi)

if fitness: < f(gvest) then

gbzst — 3?;,

end if

end for

: repeat

e — U(1.1,1.7) © Uniformly random number generated in
(1.1, 1.7)
for i < 0,nParticles do
P (gvest — Z7)
for k < 0,nObjectives do
auxy « (Tik + € pr)
auzy — Check_bounds(auzxy)
end for
if fatx) < f(grest) then

Goest — aUT > Acceptaiz

else > Interpolate
a — (f(aﬂz)ffitness,;);e;(e‘g(gbgst)ffitnessi)
b« f(gvest) — fitness; —a
te — 2

for k ia(), nObjectives do
AQUTE “— Tk
i — Tip FU{(t—0.5-€),(t+0.5-¢€)}
x4k — Check_bounds(x; i)

end for

fitness; — f(&i)

if fitness; = f(gvest) then
x; < turbulence(z;)

> Create new variables
for x;
fitness; — f(x3)
end if
end if
if fitness: < f(gvest) then
gbzst — 3?;,
end if
end for
until Termination Criteria




TABLE Il

PERFORMANCE OF THEHILL CLIMBER WITH LINE SEARCH ON FUNCTION
In this section we illustrate the efﬁciency of the two algbmhs f1 (SEE(|V.6)) AND COMPARISON TO OTHER ALGORITHMSTHE

by validating them on several examples. DOWNHILL SIMPLEX METHOD OF NELDER AND MEAD (NM), A
. DERIVATIVE -FREEQUASI-NEWTON METHOD (QN) AND THE RANDOM
A. Results for Memetic-PSO Q (QN)

) ) ) HiLL CLIMBER (RHC). # FCDENOTES THE NUMBER OF FUNCTION CALLS
First we turn our attention to the Memetic-PSO. In order t0 syp |f(z.,.4)| THE FUNCTION VALUE OF THE BEST FOUND SOLUTION

IV. NUMERICAL RESULTS

compare its performance we ha}ve chosen thirtgen diffeesnt t (AVERAGE OF 20 TEST RUNS.
problems taken from [8] with different geometrical chaset
istics: functionsf; to f5 are unimodal functionsfs is a step | Method [ ON T NM [ RHC [ HCLS |
function and thus dicontinuougy is a noisy quartic function | n =25 # FC 659 502 1.0-10° 188
and functionsfs to fi; are multimodal functions (see Table [[(@end)] | 0O 6.5 0.084 1 0.084
. n =10 # FC 2465 448 8.8-10 638
). In order to validate our proposed approach, our resuks a T @ond)] 0 A 0.000 0.039
compared with respect to those generated by RE® (Fast n =20 # FC 3847 1471 7.4-10° 2551
Evolutionary Programming) proposed in [19], which is a [f(@end) | O 45,4 0.098 0.09
: - , n =50 # FC 2222 | 8336 | 1.0-107 | 2.5-10°
algorithm representative of the state-of-the-art in treaaifhe TGl 0 1916 115 07095
average results of 50 independent runs are shown in Table [, =700 #EC n.a. | 2.0-10° | 1.0-107 | 1.4-10°
o o [T (@ena)] || moa. | 2.7-10° 8.13 0.099
B. Results for the Hill Climber with Line Search
Next we want to evaluate the perfomance of the novel hill TABLE IV

C“mber' The Cho'ﬁe Of the ipprolp,natg Sleft Of t_eSt fUI’]CtIBI;S PERFORMANCE OF THEHILL CLIMBER WITH LINE SEARCH ON FUNCTION
nhOt too Ieasfy flln t 's_ C‘_"lsej | m'lIJI tlmc;],ahl unctions are ta ﬁn' f2 (SEE(IV.6)) AND COMPARISON TO OTHER ALGORITHMS THE

F .e' result of the optimization will be highly dependent OBt_ NOTATION IS THE SAME AS INTABLE 111

initial guess, and presumably be worse than results coming

from population-based methods. If on the other hand funstio] Method I QN [ NM [ RHC [HCLS]
are taken which are ’easy’ in the context of optimization » =5 #FC 970 358 1226 115
(e.g., convex functions), the outcome can also in this case — ‘f(;gg” 22‘5’8 5%(-)11?())6 1%‘951%5 Oé(ﬁg)
be predicted quite easily. We have chosen for two unimodal” F@ona)] T.81 03797 0087 1 0.085
functions which are not too easy to handle in order to test the, = 20 #FC 8049 1.0-107 | 6.8-10° | 460
hill climber for its primal task: black box local search. Te b - \f(;«::vgﬂ g;z 1101-31%7 5 21-2;107 01-???15
more precise, we consider the following two UOPs: T 033 733 0108 T 0.096

. TR n = 100 #FC 1.2-10° | 1.0-107 | 1.0-107 | 3361
fi,f2: R =R [F@ona)l 0.14 39.67 135 0.007

fi(z) := Z ;| + H ] (Schwefel's function)
i=1 =1

widely accepted black box optimizer at least on this (small)
set of benchmark functions.

n

fa(x) ==Y (a} + randonj—0.01,0.01]) (Quadratic+ Noise)

=1 (v.) C- An Application: Computing Solution Sets of Nonlinear

Equations
The minimum of both functions is* = (0,...,0) € R™.
We have compared the performance of the Hill Climber wit
Line Search (HCLS) with the Random Hill Climber (RHC),
the downhill simplex method of Nelder and Mead (NM, th
function f m nsear ch of MATLAB®), and a derivative-free N N
Quasi-Newton method (QN, the functioB04JYF of the H:RY - RV
NAG* library) on these two functions. As the starting poin
we have choseny = (2,3,2,3,...) € R"™ and have sef) =

[5,5]" as the domain (for RHC). Every computation Waﬁaiven a pointzy € H~'(0) one possibility to find further

terminated as successful when a patptwith |f;(z)| < 0.1 . . . ; ) .
. : . solutions in the neighborhood aof;y is to usecontinuation
was found and terminated as unsuccessful if such a point was . -
I . methods(see [1] for an overview of existing methods), e.g.
not found within10* function calls. Tables Il and IV show : : :
o the one proposed in [18]. This method transforms the orlgina
the average result of 20 test runs. The results indicate tha : : L
oblem via so-called predictor-corrector strategieso it

the new solver can compete with the other well-known ar{sjd(;quence of UOPs of the form

inally, we consider a problem where the Hill Climber with
ine Search can be very helpful, namely the computation
f the solution setsH~1(0) of a given (non-differentiable)
unction

L’roblems of this kind can e.g. arise in multi-objective opti
mization.

Shtt p: / / vwwv. mat hwor ks. com
“htt p: / / wwy. nag. com

min | H ()] (V.7)



TABLE |
TEST FUNCTIONS

(@ — D2[L + sin? 2rza)]} + 2, u(xi, 5,100, 4).

Name Test Problem n Search Space| optimum
Sphere model filz) =1 22 30 | [~100,100]" 0
Schwefel's Problem 2.22 fa(x) = 327 || + 17y |4l 30 [-10,10]™ 0
Schwefel's Problem 1.2| fs(z) = 7, (z;.;l zj)Q 30 | [~100,100]" 0
Schwefel's Problem 2.21 f4(z) = maz;(|z:],1 <i <n) 30 | [—100,100]™ 0
Rosenbrock’s Function | f5(x) = 377" [100(zi41 — 22)? + (z; — 1)2)] 30 [-30,30]" 0
Step Function fo(z) =3 (Lo +0.5))2 30 | [-100,100]™ 0
Quartic Function (noise)| fr(z) = >, iz} + random[0, 1) 30 | [-1.28,1.28]" 0
Schwefel's Problem 2.2§ fs(z) = >_7 ) —;sin/|z1] 30 | [-500,500]™" | -12569.5
Rastrigin's Function | fo(z) =Y " [#? — 10cos (27x;) + 10] 30 [-32,32]” 0
Ackley's Function | fio(z) = ~20exp (—~0.2y/% S0, @7 ) — exp (£ S0, cos 2may) | 30 | [-32,32]" 0
+20+e
Griewank Function | f11 () = g X1y @3 — 17y cos () +1 30 | [—600,600]" 0
Penalized Function | fi2(z) = Z{10sin? (wy;) + 31"} (ys — 1)2[1 + 10sin?(wy41)] 30 [—50,50]™ 0
+(yn — 1)2} + >0, u(z;, 10,100, 4).
yi =1+ (zi+1)
k(z; —a)™, z; > a,
u(zq,a,k,m) = 0, —a < z; <a,
k(—z; —a)™, z; < —a.
Penalized Function | fiz(z) = 0.1{sin?(3mz1) + X" (z1 — 1)2[1 + sin?(37zi11)] 30 [—50,50]™ 0

TABLE Il

COMPARISON OFMEMETIC-PSOAND FEPON SEVERAL TEST FUNCTIONYSEETABLE |). THE RESULTS OBTAINED BY THE LATTER ALGORITHM ARE
TAKEN FROM [8]. THE MEMETIC-PSOSTOPPED IF THE OPTIMUM WAS REACHED OR A MAXIMUM NUMBER OF FUNTION CALLS PERFORMED BY THE

FEPALGORITHM WAS REACHED. THE NUMBERS IN BOLDFACE MARK THE BEST RESULT

Memetic - PSO FEP
Mean Reach optima| Mean Std Mean Std
Function | Optimum Evaluations 50 runs Best Dev Eval Best Dev
f1 0 7,917 50 9.1e-5 | 1.27e-5 150,000 57e-4 | 1.3e4
fa 0 15,462 50 9.51e-5| 6.2e-6 200,000 8.1e-3 | 7.7e-4
f3 0 63,599 50 9.91e-3 | 1.12e-4 500,000 1.6e-2 | 1.4e-2
fa 0 72,869 50 9.84e-3 | 2.36e-4 500,000 0.3 0.5
fs 0 1,076,309 40 1.18 3.054 2,000,000 5.06 5.87
fe 0 53,072 50 0 0 150,000 0 0
fr 0 1,952 50 8.9e-5 | 1.18e-5 300,000 7.6e-3 | 2.6e-3
fs -12569.5 855,000 0 -10,056 | 430.7 900,000 | -12,554 | 52.6
fo 0 500,000 0 16.23 4.54 500,000 4.6e-2 | 1.2e-2
f1o 0 27,205 50 9.6e-5 | 5.19e-5 150,000 1.8e-2 | 2.1e-3
fi1 0 114,403 24 2.72e-2 | 2.12e-2 200,000 l.6e-2 | 2.2e-2
fi2 0 17,751 50 9.21e-7 | 1.0e-7 150,000 9.2e-6 | 3.6e-6
fi3 0 9,814 50 8.89e-5 | 1.28e-5 150,000 1.6e-4 | 7.3e-5

In caseH is not differentiable, e.g. the Hill Climber with the entire solution set was obtained by starting with onglsin
Line Search (as well as in principle every other derivafree  point (zo,to) = (—1,—1,0.5,0) € H~'(0). During the run
minimization algorithm) can be used in the corrector stepf the algorithm, an amount dfl484 solutions was produced,
Note that in this context a local solver is required for a gooide. summarizing, the total nhumber @8904 UOPs of the

performance of the continuation method.

form (IV.7) were solved successfully. The computationsehav
been done on an Intel Xeon 3.2 GHz processor and have

As an (academic) example we consider the problem of findit@gken approximately 30 seconds. This results indicates tha

all the pointsz € R3 where ||z]|l.c = 1 and 23 <

the Hill Climber with Line Search is well-suited to be used in

0.5 sin(27 min(|z1], |z2|)) holds. Thus, we are interested incombination with a continuation method.

the setH —1(0), where
H:R*— R?

[ floc — 1
H(z,t) = , i
23 — 0.5 cos(2m min(|z1 |, |z2])) + ¢

(IV.8)

V. CONCLUSIONS ANDFUTURE WORK

We have presented new variants of a PSO algorithm and a hill
climber by involving line search strategies. These teched
allow both for the improvement of the coarse dynamics of
the system (of particles) as well as for a speedup of its
local convergence. We have demonstrated the strength of the

Figure 2 shows the result of the continuation method. Heralgorithms by several numerical results.



Fig. 2.

Computation of an implicitly defined set of an undewy non-

differentiable function by a continuation method where Ithig Climber with
Line Search was taken for both the predictor step and for treector step
(for details of the algorithm we refer to [18]).

(11]

[12]

[13]

[14]

(18]

[16]

[17]

In the future, we intend to extend the techniques presentéél
in this paper. One particularly intersting extension wobl
the development of adaptive constraint handling techrique

since so far the treatment of those problems — even
optimization problems with box constraints — with the

methods proposed above is not satisfacory. Further, g
think of using and adapting the method proposed in this
paper for the construction of multi-objective particle sma
optimization algorithms. In particular the example in $ect
IV-C motivates for further research in this direction. Irnisth
context, a combination with the procedure described in [4]
seems to be very promising.
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