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Abstract 
 
A large number of real-world problems require optimising several objective functions at the 
same time, which are generally in conflict. Many of these problems have been addressed 
through multi-objective evolutionary algorithms. In this paper, we propose a new hybrid 
evolutionary algorithm whose main feature is the incorporation of the Decision Maker’s 
(DM’s) preferences through multi-criteria ordinal classification methods in early stages of 
the optimisation process, being progressively updated. This increases the selective pressure 
towards the privileged zone of the Pareto front more in agreement with the DM’s preferences. 
An extensive experimental research was conducted to answer three main questions: i) to what 
extent the proposal improves the convergence towards the region of interest for the DM; ii) 
to what extent the proposal becomes more relevant as the number of objectives increases, 
and iii) to what extent the effectiveness of the hybrid algorithm depends on the particular 
multi-criteria method used to assign solutions to ordered classes. The issues used to evaluate 
our proposal and answer the questions were seven scalable test problems from the DTLZ test 
suite and some instances of project portfolio optimisation problems, with three and eight 
objectives. Compared to MOEA/D and MOEA/D-DE, the results showed that the proposed 
strategy obtains a better convergence towards the region of interest for the DM and also 
performs better characterisation of that zone on a wide range of objective functions. 
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1 Introduction 



 
Nowadays, multi-objective optimisation is an important research field since many real-world 
problems involve optimising many objective functions simultaneously [1]. These problems 
are known as Multi-objective Optimisation Problems (MOPs), and their solution gives rise 
to a set of trade-off solutions, commonly known as Pareto-optimal solutions [2], 
characterised by the feature that their objectives are usually in conflict with each other (i.e., 
one objective cannot be improved without deteriorating another one). Multi-objective 
Evolutionary Algorithms (MOEAs) have been widely used for solving MOPs because they 
have the ability to deal with a set of possible solutions at the same time, allowing them to 
obtain an approximation of the Pareto frontier in a single run. This capability is an advantage 
of MOEAs over conventional multi-objective programming methods, which need to perform 
a set of separate single-objective optimisations to generate a set of compromise solutions [3]. 
Additionally, MOEAs are more robust regarding the mathematical characteristics of the 
objective functions and their constraints [4].  
According to Bechikh et al. [5], some of the challenges faced by MOEAs when the number 
of objective functions increases are the following: 
 

1) Ineffectiveness of the genetic operators (crossover, mutation and selection; e.g. [6,7]). 
2) Remarkable difficulties to represent the Pareto front since many points are necessary 

to do it. 
3) High computational cost to determine the extent of crowding (diversity measure 

estimation) of a solution in a population. 
4) Difficulty of visualization of a high-dimensional Pareto front. 
5) Increase in the number of non-dominated solutions, making it hard to obtain a 

representative sample of the Pareto front. 
6) Increase in the number of the Dominance Resistant Solutions (DRSs), which 

according to Ikeda et al. [8], are solutions with a poor value in at least one of the 
objectives, but with near-optimal values in the remaining objectives, thus being very 
hard to be dominated. 

 
Although MOEAs generate a set of efficient solutions, only one of these will be chosen as 
the final option to be implemented. Thus, besides finding Pareto-optimal solutions, it is 
equally important to provide support in the decision-making process. The Decision Maker 
(DM) is the entity in charge of choosing a single option (the best compromise) to be 
implemented [3]. 
As is widely known, preferences can be incorporated in three different stages: “a priori”, 
progressively (interactive) and “a posteriori”. 
An a posteriori incorporation of preferences rests on two main assumptions: A) the 
approximation to the Pareto Frontier identified by the metaheuristic contains a representative 
subset of the Region of Interest (ROI) [9], i.e., the zone of the Pareto frontier more in 
agreement with the DM’s preferences ; this means that no better solutions lied out of the 
known Pareto Frontier); B) the DM is able to make consistent judgments when compares 
solutions on the known Pareto Frontier, and hence (s)he can identify the best compromise.  
 
Concerning Assumption B), the identification of the best compromise from a set of solutions 
could be an easy task in problems with two or three objective functions but, when these 
increase, this task becomes very hard due to the human mind cognitive restrictions. 



According to Miller [10], the human mind is limited to processing a small amount of 
information simultaneously. This condition is a severe obstacle for identifying the best 
compromise from a set of solutions, mainly in the problems having many objectives, since it 
is beyond the cognitive abilities of an average DM. The DM often selects the first solution 
that seems to match his/her aspiration levels, without making suitable judgments of the other 
alternatives. Additionally, the appropriateness of Assumption A) depends on the nature of 
the problem, its number of variables and objective functions and the specific metaheuristic 
used. But given a particular problem which has not been addressed before, this assumption 
is very strong. 
The “a priori” and interactive incorporation of preferences can reduce the search space, filter 
non-dominated solutions  and help the search to identify solutions closer to the Region of 
Interest. This is a real advantage in comparison with the posterior preferences incorporation. 
 
There are many approaches in the literature that have incorporated this preference 
information into the optimisation process in order to direct it only towards the ROI and avoid 
unnecessary exploration of the entire search space. According to Bechikh [11], the 
information structures most often used to incorporate the preferences are the following: 
 

 weights (e.g. [12,13]),  
 ranking of solutions (e.g. [14,15]),  
 ranking of objective functions (e.g. [16,17]),  
 reference point (e.g. [18]),  
 trade-offs between objective functions (e.g. [19]),  
 desirability thresholds (e.g. [20]) and,  
 outranking relations (e.g. [21,22]).  
 

In our opinion, a more complete and systematic taxonomy of the methods for preference 
incorporation should cover the following issues: 
 

- the model of aggregating multi-criteria preferences underlying behind the way in 
which preferences are incorporated (e.g. value functions, outranking relations, trade-
offs between objective functions); 

- the stage in which the preference information is articulated (e.g. a priori, 
progressively); 

- the cognitive process required from the DM (e.g. ranking of solutions, pairwise 
comparisons, ordinal classification). 
 

Some requirements for the DM are implicit in the above issues. For example: i) an a priori 
incorporation of preferences assumes that the DM has, before the optimisation process, a 
rather well-formed knowledge about his/her problem and preferences, and (s)he can set the 
decision model parameters ii) the use of value functions, ranking of solutions or pairwise 
comparisons assume that the DM can make decisions on sets of solutions (comparability), 
and with transitive preferences; iii) most interactive methods require also comparability and 
transitivity of preferences; iv) a cognitive process like ranking of solutions or pairwise 
comparisons may be very demanding for the DM, mainly due to his/her cognitive limitations 
in problems with many objectives [10]; this is even harder in interactive frameworks. 



Interactive methods are more popular than methods with a priori articulation of preferences, 
because within an interactive framework the DM learns about his/her problem, discovers new 
solutions and goes inside the complex trade-offs among his/her objectives; such a learning 
process helps the DM to choose more appropriate settings of the decision model parameters. 
As stated by Miettinen [23], the DM can specify and correct his/her preferences and gain a  
better knowledge of his/her problem and its potentialities. Also, the DM should be more 
confident with the final results, since (s)he has been involved in the search process. However, 
most interactive methods require comparability and transitive preferences from the DM (cf. 
[24]). Unfortunately, as a consequence of the human cognitive limitations, there is abundant 
evidence about non-transitive judgments and incomparability situations in real decision 
making processes (see [25]). 
In our opinion, the following features are desirable for a method of preference incorporation: 
 

a) an easy interaction between the DM and the solution generator algorithm; this implies 
minimizing the cognitive effort from the DM when (s)he makes judgments about 
solutions. 

b) no requirement of comparability and transitivity of preferences; 
c) the model of aggregation of multi-criteria preferences should be compatible with 

relevant characteristics of real DMs; 
d) there should be techniques to infer the decision model parameters from decision 

examples provided by the DM during his/her learning process. 
 

Concerning preference incorporation, the cognitive process with the lowest cognitive 
demand on the DM is perhaps the classification into two ordered classes (also called 
categories in the related literature). Assigning solutions to classes ‘good’ and ‘no good’ does 
not require transitive preferences; comparability among ‘good’ and ‘no good’ solutions 
suffices. In an interactive process, assigning solutions to these classes is clearly less 
cognitively demanding than pairwise comparisons, ranking of solutions, or judgments about 
closeness to certain desired goals. 
The use of outranking relations is a way to handle characteristics of many decision makers 
facing real world problems. Methods based on outranking relations are recommended to 
address problems that present any of the following characteristics [26]: i) at least one of the 
evaluation criteria is non-quantifiable, i.e., it is measured on an ordinal or qualitative scale; 
ii) it has criteria of heterogeneous nature; iii) compensation between criteria is not generally 
accepted (veto situations are possible) and iv) at least in one criterion the following is true: 
small differences in the evaluations are not significant in terms of preference, while the 
accumulation of many small differences becomes important. Non-transitive preferences and 
incomparability situations are consequences of points iii) and iv). 
Outranking methods have been criticized for the difficulty to elicit the whole set of model 
parameters. However, there are several works that apply preference-disaggregation 
approaches to make an indirect elicitation of outranking model parameters from assignment 
examples [27–29]. 
According to the above discussion, we strongly believe that outranking-based ordinal 
classification methods are good options to fulfill the four desirable features for any of the 
methods of preference incorporation stated above. 
 



To the best of our knowledge, the first paper in using outranking-based multi-criteria ordinal 
classification was Oliveira et al. [30]. In this paper, the popular ELECTRE-TRI method was 
used for ordinal classification in a three-objective problem. The preferences were 
incorporated ‘a priori’, setting directly the outranking model parameters. 
Recently, Cruz et al. [31] proposed an hybrid algorithm using outranking-based multi-criteria 
ordinal classification. It works on three phases. During the first phase, a metaheuristic 
algorithm (appropriate to the problem to be solved) obtains an approximation to the Pareto 
frontier. In the second phase (interactive), the DM assigns the solutions to two ordered classes 
(‘satisfactory’ and ‘non satisfactory’), and the outranking model parameters are elicited by 
him/her. In the third phase, the THESEUS multi-criteria ordinal classification method is used 
to make selective pressure towards ‘satisfactory’ solutions. The first phase was implemented 
with NSGA-II and NOACO, a recently proposed Ant Colony Algorithm [4]. The proposal 
was tested in project portfolio problems with 4, 9 and 16 objectives; its results outperformed 
NSGA-II and the ant colony algorithm [4]. 
Four main limitations of [31] can be identified: 

 
- Although in several instances and on a wide range of objectives, the proposal was 

only tested on non-interacting project portfolio optimisation problems;  
- The lack of knowledge about the true Pareto front of the project portfolio optimisation 

problems prevents an appropriate evaluation of the quality of solutions; there was no 
information about the closeness to the region of interest; 

- No state of the art representative metaheuristics were used during the first phase; 
neither for comparison of results; 

- The proposal in 31 is not really interactive. There is only one step in which the DM 
assigns solutions to ordered categories. This does not allow the learning and 
preference updating process which is typical of interactive methods.The learning 
capacity provided by the method should be enriched through other interaction steps. 

 
As a consequence of the above limitations, the work in Cruz et al. [31] left some open 
questions: 
 

1. Is the high quality of its solutions kept in a wide range of difficult problems, different 
from the project portfolio optimisation problem? 

2. Does the method outperform benchmark metaheuristics? 
3. To what extent is the closeness to the region of interest degraded by increasing the 

number of objectives? 
4. To what extent is the method effectiveness affected by the selection of a particular 

multi-criteria ordinal classification approach? 
 
The above questions are addressed by the present paper. Instead of NSGA-II and NOACO, 
MOEA/D (MultiObjective Evolutionary Algorithm based on Decomposition) and MOEA/D-
DE (MOEA/D based on Differential Evolution) are used as metaheuristics in the first phase 
of the hybrid algorithm; they can be considered as metaheuristics representative of the  state 
of the art, useful for an a posteriori incorporation of preferences. In addition to some instances 
of project portfolio optimisation problems, our proposal was evaluated on scalable test 
problems (the DTLZ test suite), using three and eight objectives; the use of the DTLZ test 
suite allows us to evaluate the closeness to a simulated ROI, and compare the performance 



with three and eight objectives. The DM’s preferences are simulated through an outranking 
model. In addition to the THESEUS method, here we use the popular ELECTRE-TRI, and 
the results from both methods are compared. 
This paper is organized as follows: Section 2 presents a brief summary of some evolutionary 
algorithms related to this work, a model of preferences based on outranking relations and the 
ELECTRE-TRI and THESEUS methods. The proposed algorithm is described in Section 3. 
The experimentation and results are shown in Section 4. Our concluding remarks are 
presented in Section 5. 
 
2 Background 
 
2.1 Some multi-objective approaches related to this work 
 
In this section, two recent algorithms, used in the comparison with the approach presented 
here, will be briefly described. 
 
2.1.1 MOEA/D 
 
It is a MOEA based on a decomposition approach [32]; any decomposition method can be 
used. MOEA/D decomposes a MOP through aggregation functions into a number of 
optimisation subproblems, and optimises them at the same time. MOEA/D needs the 
following input data: 
 

 a stopping condition; 
 N, the number of subproblems and the population size; 
 N, weight vectors uniformly distributed; 
 T, the number of weight vectors in the neighborhood of each vector. 

 
MOEA/D gives as output an external population (EP), used to store non-dominated solutions 
found during the optimisation process. The steps considered by the algorithm are concisely 
described below. 
The first step is the initialisation where the following actions are carried out: the EP starts 
empty; the Euclidean distance between any two weight vectors is calculated and after that, 
the T closest weight vectors to each vector are related to it; an initial population is created 
and a reference point z is initialized. The second step is the update where, for each solution 
in the population, the following is done: two solutions of the population are randomly 
selected and used to generate a new solution by applying genetic operators; the new solution 
can be repaired or improved. The reference point z is updated taking into consideration the 
new solution; a population member can be replaced by the new solution when it obtains a 
better aggregation function value; finally, the EP is updated by removing from it all the 
solutions dominated by the new solution and, adding to the EP the new solution if it is non-
dominated in the EP. The third step is to check the stopping condition; if it is satisfied, the 
algorithm finishes and reports the EP as its output; otherwise, the algorithm returns to the 
second step. 
 
2.1.2 MOEA/D-DE 



 
It is a new version of MOEA/D to deal with continuous MOPs [33]. It uses a differential 
evolution operator and a polynomial-based mutation operator for creating new solutions. The 
algorithm, additionally to MOEA/D input, requires the following: 
 

 δ, the probability that parents are picked up from the neighborhood; 
 nr, the maximum number of solutions replaced by each new solution. 

 
As output, the algorithm gives an approximation to the Pareto front. MOEA/D-DE considers 
three steps as MOEA/D. The first step has the same actions as MOEA/D, except that it does 
not initialize an external population. The second step is the update where, for each solution 
in the population, the following is done: a range of mating or update is selected taking into 
account the δ value; two solutions are randomly selected on it, and are used to create a new 
child by applying the differential evolution operator and the polynomial-based mutation 
operator. If an element of the new solution is out of the decision space, its value is reset to 
be inside the boundary. Also, the reference point z is updated considering the new solution; 
the population solutions are updated using the value of nr and the aggregation function value. 
The third and last step consists in checking the stopping criterion. 
 
2.2 The preference model  
 
The model of preferences proposed by Fernandez et al. [3] uses the fuzzy outranking relation 
suggested by Roy [34] for modeling crisp preference relations. The crisp outranking relation 
represents the statement ‘x is at least as good as y’ and is denoted by xSy (x outranks y). The 
definition of the preference relations rests on the degree of credibility of xSy denoted by 
σ(x,y). This value of truth σ can be calculated using outranking methods, such as ELECTRE-
III [34,35] and PROMETHEE [36]. The determination of one preference relation between a 
pair of solutions is based on a threshold of acceptable credibility λ (determines a level of 
requirement of the outranking relation), a symmetry parameter ε, and an asymmetry 
parameter β. For each pair of alternatives (x,y), the model establishes one of the preference 
relations shown in Table 1. 
The strict preference is defined when the DM has clear and well-defined reasons to prefer x 
over y. The indifference occurs when the DM notes a high degree of equivalence between x 
and y. The weak preference takes place when the DM hesitates between xPy or xIy. The 
incomparability arises when the DM perceives a high level of conflicting information when  
x is compared with y. The k-preference happens when the DM hesitates between xPy and 
xRy. 
 
 
 
Table 1.  The binary preference relations between each pair of solutions (x, y) 

Outranking relation Conditions*  
Strict preference  
(xPy) 

x dominates y ∨ (σ (x, y) ≥ λ ∧ σ (y, x) < 0.5) ∨
(σ (x, y) ≥ λ ∧ [0.5 ≤ σ (y, x) < λ] ∧ [σ (x, y) − σ (y, x)] ≥ β) 

 
 (1) 

Indifference  
(xIy) 

σ (x, y) ≥ λ ∧ σ (y, x) ≥ λ ∧ |σ (x, y) − σ (y, x)| ≤ ε  
 (2)



 
Weak preference  
(xQy) 
 

σ (x, y) ≥ λ ∧ σ (x, y) > σ (y, x) ∧ ¬ xPy ∧ ¬ xIy  
 (3) 

Incomparability  
(xRy) 
 

σ (x, y) < 0.5 ∧ σ (y, x) < 0.5  
 (4) 

k-preference  
(xKy) 

0.5 ≤ σ (x, y) < λ ∧ σ (y, x) < 0.5 ∧
σ (x, y) − σ (y, x) > β/2

 
 (5) 

*Considering (0 ≤ ε ≤ β ≤ λ ≤ 1 and λ > 0.5). 

 
Let us consider a set of feasible solutions O; the preference model establishes the sets and 
measures shown in Table 2. 
 
Table 2.  Sets and measures defined by the preferential system 

Set / Measure Definition  
S(O, x) = {y ∈ O | yPx} Solutions that strictly outrank x (6) 

 
NS(O) = {x ∈ O | S(O, x) = Ø} Called the non-strictly-outranked frontier (7) 

 
W(O, x) = {y ∈ NS(O) | yQx ∨ yKx} Non-strictly-outranked solutions that are weakly 

preferred to x 
(8) 
 
 

NW(O) = {x ∈ NS(O) |W(O, x) = Ø} Named as the non-weakly-outranked frontier (9) 
 

𝐹௡ሺ𝑥ሻ ൌ ෍ ሾ𝜎ሺ𝑥, 𝑦ሻ െ 𝜎ሺ𝑦, 𝑥ሻሿ
௬∊ேௌሺைሻ\ሼ௫ሽ

 

 
 

The net flow score is an additional criterion to detect 
preferred solutions by the DM on the non-strictly-
outranked frontier, where Fn(x) > Fn(y) shows a certain 
preference for x over y 

(10) 
 
 
 
 

F(O, x) = {y ∈ NS(O) | Fn(y) > Fn(x)} Non-strictly-outranked solutions that have a greater net 
flow than x 

(11) 
 
 

NF(O) = {x ∈ NS(O) | F(O, x) = Ø} Denominated as the net-flow non-outranked frontier (12) 

 
In this paper, the degree of truth σ(x,y) is calculated as the ELECTRE-III method [34] (with 
some simplifications) and is used in the same way along the whole document. The 
computation of σ is detailed below: 
 
Let us consider that (x,y) is a pair of solutions defined by a set of N objective functions, G = 
{g1, g2, . . . , gj, . . . , gN}. Then,  
 
σ(x,y) = c(x,y) ꞏ N(d(x,y)),                  (13) 
 
where c(x,y) expresses the degree of truth of the assertion “there is a strong coalition of 
criteria in favor to xSy”. N(d(x,y)) expresses the degree of truth of the assertion “there is no 
strong opposition to xSy”.  
This concordance degree c(x,y) is computed using a set of weights wj (w1 + w2 + … + wN = 
1) and an indifference threshold qj for each j-th objective as follows: 
 



𝑐ሺ𝑥, 𝑦ሻ ൌ ෍ 𝑐௝ሺ𝑥, 𝑦ሻ
௝:௚ೕ∈஼ೣ೤

                                                                                                             ሺ14ሻ 

where 

𝑐௝ሺ𝑥, 𝑦ሻ ൌ ቄ
𝑤௝

0  
    

𝑖𝑓𝑓  𝑥𝑃௝𝑦 ∨   𝑥𝐼௝𝑦
otherwise

                                                                                             ሺ15ሻ 

 
such that       𝑥𝑃௝𝑦 ൌ 𝑔௝ሺ𝑥ሻ ൐ 𝑔௝ሺ𝑦ሻ  ∧  ൓𝑥𝐼௝𝑦,                                                                        ሺ16ሻ 
                      𝑥𝐼௝𝑦 ൌ ห𝑔௝ሺ𝑥ሻ െ 𝑔௝ሺ𝑦ሻห ൑ 𝑞௝ 
 
P and I are the predicates of strict preference and indifference, respectively, when the j-th 
objective is evaluated.  
The criterion set Cxy = {gj ∊ G | xjPjyj ∨ xjIjyj} is the so-called concordance coalition with xSy. 
The set G–Cxy is the discordance coalition with xSy. 
 
The marginal discordance index dj(x,y) measures how much each criterion disagrees with the 
statement xSy. This index is calculated using a veto (vj) and a pre-veto (uj) thresholds assigned 
to the j-th objective (see Eq. (17), 
 

𝑑௝ሺ𝑥, 𝑦ሻ ൌ ൝
0                           

ሺ𝛻௝ െ 𝑢௝ሻ/ሺ𝑣௝ െ 𝑢௝ሻ
1                          

    

𝑖𝑓𝑓 𝛻௝ ൑ 𝑢௝       
𝑖𝑓𝑓 𝑢௝ ൏ 𝛻௝ ൏ 𝑣௝

𝑖𝑓𝑓 𝛻௝ ൒ 𝑣௝        
                                                      ሺ17ሻ 

 
Finally, the degree of truth of  the predicate about the weakness of the discordance coalition 
is calculated by using the “min” operator combined with the strict negation  “1–*” operator 
as follows: 
 
𝑁ሺ𝑑ሺ𝑥, 𝑦ሻሻ ൌ 𝑚𝑖𝑛

௝:௚ೕ∈஽ೣ೤
ሼ1 െ 𝑑௝ሺ𝑥, 𝑦ሻሽ                                                                                 ሺ18ሻ 

 
where  
Dxy = G – Cxy; 
𝛻௝ ൌ 𝑔௝ሺ𝑦ሻ െ 𝑔௝ሺ𝑥ሻ. 
 
2.3 A brief outline of two multi-criteria ordinal classification methods  
 
2.3.1 The THESEUS method 
 
The THESEUS method [37] is an approach based on outranking relations to solve multi-
criteria sorting problems. The term sorting refers to the assignment of a set of alternatives to 
preference-ordered classes, which are predefined in an ordinal way [38]. THESEUS assigns 
multi-criteria objects to an element of the set of ordered classes by using the information 
from various preference and indifference relations. These relations are determined from an 
outranking relation defined on the universe of objects. The assignment is not a result of the 
object’s intrinsic characteristics, but rather a consequence of comparisons with other objects 
whose assignments are known. The THESEUS method is based on the following premises: 
 



 There is a limited number of ordered classes Ct = {C1, …, CM}, (M ≥ 2); where CM 

indicates to be the best class. 
 U represents the universe of objects x characterised by a set of N real-valued criteria, 

indicated as G = {g1, g2, . . . , gj, . . . , gN}, where N ≥ 3. 
 There is a set of reference objects T (also named reference set or training set), which 

is formed of objects bkh ∈ U assigned to classes Ck, (k = 1,..., M). 
 There is an outranking relation σ(x,y) defined on U×U (see Section 2.2), which models 

the degree of credibility of the declaration ‘x is at least as good as y’ from the DM’s 
point of view.  

 
The assignment of object x to a potential class is denoted as C(x). In line with THESEUS 
premises, C(x) should fulfill: 
 
xU, bkhT 
xPbkh  C(x) ≿ Ck         (19.a) 

bkhPx  Ck ≿ C(x) 
 
xQbkh  C(x) ≿ Ck         (19.b) 

bkhQx  Ck ≿ C(x)     

xIbkh  (C(x) ≿ Ck )  (Ck ≿ C(x))  C(x) = Ck     (19.c) 
 
The symbol ≿ expresses the statement ‘is at least as good as’ on the set of classes, which is 
associated with the decision-making framework. The relations P, Q, and I were previously 
formalized in Eqs. (1–3). THESEUS makes use of the inconsistencies with Eqs. (19.a–c) to 
examine the possible assignments of x. The sets of inconsistencies are defined below: 
 

 The set of P-inconsistencies for x and C(x) is defined as DP = {(x,bkh), (bkh,x), bkh ∈ T 
such that (19.a) is FALSE};  

 The set of Q-inconsistencies for x and C(x) is defined as DQ = {(x,bkh), (bkh,x), bkh ∈ 
T such that (19.b) is FALSE}; 

 The set of I-inconsistencies for x and C(x) is defined as DI = {(x,bkh), (bkh,x), bkh ∈ T 
such that (19.c) is FALSE}. 

 
Let us suppose that C(x) = Ck and bjh ∈ T. Some I-inconsistencies can be classified as follows: 
 

 Second-order I-inconsistencies (D2I): they occur when x and bjh belong to adjacent 
classes and however xIbjh; then, this kind of inconsistency may be explained by 
‘discontinuity’ of the description; x may be close to the upper (lower) boundary of Ck 
and bjh may be close to the lower (upper) boundary of Cj. 

 First-order I-inconsistencies (D1I): they occur when x and bjh do not belong to adjacent 
classes and however xIbjh. D1I = DI – D2I. 
 

Let N1= nP + nQ + n1I, and N2 = n2I where nP, nQ, n1I, and n2I represent the cardinalities of 
inconsistency sets specified before. THESEUS recommends an assignment that minimizes 



the above inconsistencies with lexicographic priority for N1, which is the most relevant 
criterion. The THESEUS assignment rule is shown in Algorithm 1. 
 

Algorithm 1. THESEUS assignment rule. 
Input: U, T 
Output: objects assigned to classes 
Initialize: k ←1, assign the minimum credibility level λ > 0.5, Cj ← Ø, Caux ← Ø
1 For each x ∈ U do
2     Do 
3         For each bkh ∈ T do 
4             Caux ← Calculate N1 (Ck) 
5         k ← k +1 
6     Until k ≤ M 
7     Cj = argmin {Caux} 
8    𝐶௞∗ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛

ሼ஼ೕሽ
ሼ𝑁ଶሺ𝐶௜ሻሽ                                

9     Assign x to Ck*

 
The outcome of applying the assignment rule may be i) a single class which is called a 
‘precise assignment’ or ii) a series of classes (multi-class) which is called an ‘imprecise 
assignment’. Multi-class emphasizes the highest (CH) and the lowest (CL) class; every class 
in this interval may be adequate for the assignment of the object. In this paper, we adopt a 
‘pessimistic’ attitude; the object will be assigned to CL. 
 
2.3.2 The ELECTRE-TRI method 
 
ELECTRE-TRI is one of the methods of the ELECTRE (ELimination Et Choix Traduisant 
la REalité) family, which are based on the construction and exploitation of an outranking 
relation applied to different problems (choice, ranking, and sorting) in multi-criteria decision 
analysis. ELECTRE-TRI is a multi-criteria ordinal classification method that assigns a set of 
actions (solutions) A = {a1, a2, …, al} to predefined ordered classes. The assignment process 
is based on the DM’s preferences which are modeled by a set of parameters, and is described 
below. The parameters are preference (pj), indifference (qj), and veto (vj) thresholds; a set of 
weights (wj), where j=1,…,N and N indicates the number of criteria; a set of reference profiles 
(bi), where i=1,…,n and n represents the total number of reference profiles; and a cutting-
level λ ∈ [0.5, 1]. Each reference profile is described by N criterion values.  
There are n+1 classes, where C1 is the worst class and Cn+1 is the best one. Each class Ci is 
bounded by two reference profiles (bi-1 is the lower and bi is the upper one) where the upper 
profile of a class corresponds to the lower profile of the next class. The profiles b0 and bn+1 
correspond to the ideal and anti-ideal profiles, respectively. All these elements are illustrated 
in Fig. 1. 
 



 
Fig. 1. Denotation of the classes and reference profiles [39] 
 
The assignment process of an action a to a class results from the comparison made between 
the action a and the reference profiles established by the DM. This process is performed in 
two main consecutive steps: 
 

 the construction of an outranking relation S, as described in Section 2.2, that defines 
how solutions compare to the reference profiles, and 

 the exploitation of this relation in order to assign each solution to a precise class. 
 
Exploitation procedure 
 
This process consists in determining the way in which an action a is compared to the 
reference profiles in order to define the class to which a should be assigned. The following 
two procedures can be used: 
 
Pessimistic procedure 

a) Compare a  to bi, for i = n, n-1,…, 0, 
b) Action a will be assigned to class Ci+1 (a → Ci+1) for which bi is the first profile such 

that aSbi  (aSbi  σ(a,bi) ൒ λ). 
 
Optimistic procedure 

a) Compare  a  to bi, for i = 1, 2, …, n, 
b) Action a will be assigned to class Ci (a → Ci) for which bi is the first profile such that 

bi≻a  (bi≻a  biSa and not (aSbi)). 
 
It is worth mentioning that the pessimistic procedure is used in this work. More information 
regarding the ELECTRE-TRI method can be found in [40]. 
 
 
 
3 A multi-criteria ordinal classification method within an evolutionary 
algorithm 
 



The proposed approach aims to incorporate the DM's preferences into an evolutionary 
algorithm to guide the search process towards solutions more in agreement with his/her 
preferences, that is, the region of interest (ROI). In this paper, the solutions in the ROI are 
characterised by being non-dominated and belonging to the most preferred class. The DM's 
preference information is reflected on a set of parameters, a reference profile, and a reference 
set. The proposed procedure uses this preference information in a multi-criteria ordinal 
classification method, which is included in an evolutionary approach to lead the search 
towards the ROI. New solutions generated by the search process are assigned to a class by 
the multi-criteria classification method. In this work, ELECTRE-TRI [40] and THESEUS 
[37] are used independently as multi-criteria ordinal classification methods. The selective 
pressure of the evolutionary approach  is strengthened by using the classification of the 
solutions. Our proposed approach is a hybrid algorithm consisting of three main phases: 1) 
initialisation of reference solutions; 2) the preference elicitation phase, and 3) the selective 
pressure phase. The purpose of the first phase (initialisation) is to obtain a set of solutions. 
In the second phase (elicitation), the solutions of that set are classified by the DM, that is, 
(s)he express his/her judgments. This set is used to identify some good solutions during the 
third phase (selective pressure). Once the third phase finishes, the DM improves his/her 
understanding about what a satisfactory solution is and (s)he can update his/her preferences, 
returning to the second phase. Then, new assignments are made and the preference model is 
updated. The process can be repeated until the DM feels satisfaction with the solutions in the 
most preferred class. The hybrid approach is called Hybrid Evolutionary Algorithm guided 
by Preferences (HEAP) and, depending on whether the ELECTRE-TRI or the THESEUS 
method is used, HEAP-ELECTRE or HEAP-THESEUS, respectively. Fig. 2 illustrates the 
HEAP algorithm and schematizes in detail the relation between its phases. Section 3.1 
describes the first two phases and section 3.2 describes the third one.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Hybrid Evolutionary Algorithm guided by Preferences (HEAP) 
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3.1 Initialisation and Preference elicitation phase 
 
The purpose of the first two phases is to obtain i) a whole set of outranking model parameters 
(criterion weights and different thresholds); ii.1) a reference profile as limiting boundary 
between the ordered classes of solutions when ELECTRE-TRI is used; or ii.2)  a reference 
set with solutions assigned to the pre-defined classes when THESEUS is used. The classes 
considered in this work are two: ‘satisfactory’ and ‘unsatisfactory’. The initialisation and 
preference elicitation phases are illustrated in Fig. 3. When the hybrid procedure starts, the 
first step is to run a multi-objective metaheuristic to generate a subset of the approximated 
Pareto frontier (Processes 1−2 in Fig. 3). It should be mentioned that any metaheuristic can 
be used in the first phase. The output set of this metaheuristic will be assigned by the DM to 
the previously defined classes. Once this has been done, the DM will make a direct or an 
indirect elicitation of preference model parameters; in case of ELECTRE-TRI, these 
parameters are weights, thresholds and the limiting profile; in case of THESEUS, only 
weights and thresholds (Processes 3−4 in Fig. 3). In successive interactions, if needed, the 
DM makes judgments on solutions provided by the third phase and updates model parameters 
(Processes 3−4 in Fig. 3).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.  Flowchart of the first two phases of HEAP 
 
When direct elicitation is used, the DM is in charge of making a direct setting of the 
preference parameters values. According to Fernández et al. [29], the direct elicitation of veto 
thresholds can be a very hard task when ELECTRE type methods are used, since these 
parameters are very unfamiliar to typical decision makers. Particularly, ELECTRE-TRI has 
been criticized because of the difficulties coming from the appropriate definition of the 
limiting profiles. If a direct elicitation is performed within the first phase of the hybrid 
algorithm, the elicited model should be in agreement with the assignment of solutions (made 
by the DM) to the satisfactory and unsatisfactory classes; that is, the preference model should 
be consistent with the assignments made by the DM to avoid contradictions.  
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The alternative is the use of indirect elicitation methods. These are based on regression-
inspired procedures for inferring the model’s parameters from a set of decision examples. In 
this paradigm, the elicited model agrees with the known DM’s preferences expressed through 
the set of decision examples. Doumpos et al. [27] and Fernández et al. [29] proposed 
metaheuristic algorithms to infer the whole set of  the ELECTRE-TRI model parameters from 
assignment examples. Covantes et al. [28] proposed an evolutionary algorithm to infer the 
THESEUS model parameters.  
Let us remark that the experiments shown in this paper were performed without a real DM. 
Then, the DM was simulated by using the outranking model described in Section 2.2. Thus, 
the first phase of the hybrid algorithm is performed without real human judgments;  the 
experiments work as in a direct elicitation method in which an appropriate set of model 
parameters can be identified ‘a priori’. Algorithm 2 illustrates this process. The simulation 
proceeds as follows: let us take the solutions obtained by the  metaheuristic that runs in the 
first phase, to create a reference set by using the outranking model described in Section 2.2; 
this set will be used by THESEUS. The satisfactory class is created with some solutions that 
belong to the non-strictly-outranked frontier (Line 2) and fulfill one of the following 
conditions: i) to belong to the non-weakly and net-flow non-outranked frontier (Line 7), (this 
set is called the ‘Best Compromise’ (BC)); ii) to be indifferent to any solution in BC (Line 
13); iii) to be a non-dominated solution (minimization) with respect to the counting of 
weakness (Eq. 8) and net flow score (Eq. 10), considered as two indirect objectives (Line 
17); iv) to be a solution with a positive net flow score (Line 21). The unsatisfactory class is 
created with some solutions that do not fulfill any of the conditions stated above.  
On the other hand, the solution considered as reference profile (called ‘ref_profile’ in Line 
25), which will be used by ELECTRE-TRI to identify the boundary between classes, is the 
one that meets the condition of belonging to the non-strictly-outranked frontier and being the 
last solution that has a positive net flow score (Line 25), without being a BC, indifferent to 
some BC, or a non-dominated solution with respect to the objectives’ weakness count and 
net flow score. We consider that this condition is enough to define the boundary between 
satisfactory and unsatisfactory classes.  
 

Algorithm 2. Procedure for creating a reference set and a reference profile through a simulated DM. 
Input: A ← subset of the approximate Pareto frontier generated by any metaheuristic
Output: a reference set {satisfactory, unsatisfactory}, a reference profile {ref_profile} 
Initialize: satisfactory ← Ø, unsatisfactory ← Ø, ref_profile← Ø, bestCompromise ← Ø, temp  ← Ø 
1. For each x ∈ A do 
2.  If |S(A, x)| = 0 then  // Eq. (6) 
3.   temp ← x 
4.  else 
5.   unsatisfactory ← x 
6. For each x ∈ temp do
7.  If |W(A, x)| = 0 and |F(A, x)| = 0 then // Eq. (8) and (11) resp. 
8.   bestCompromise ← x 
9.   Delete x from temp 
10. satisfactory ← bestCompromise 
11. For each x ∈ temp do 
12.  For each y ∈ bestCompromise do
13.   If xIy then  // Eq. (2) 
14.   satisfactory ← x
15.    Delete x from temp
16. For each x ∈ temp do 



17.  Compute dominance (min) of x in temp with respect to |W(A, x)| and |F(A, x)| as objectives 
18.  If x is non-dominated in temp then                                                         
19.   satisfactory ← x 
20.   Delete x from temp 
21. For each x ∈ temp do 
22.  If net_flow of x > 0 then  // Eq. (10) 
23.   satisfactory ← x 
24.   Delete x from temp 
25. ref_profile ← satisfactory[last] 
26. unsatisfactory ← temp 

 
3.2 Selective pressure phase 
 
The selective pressure phase aims to lead the search for solutions that are non-dominated and 
satisfactory. To achieve this, we include multi-criteria classification in an evolutionary 
algorithm, which ranks its population in preference-ordered fronts (see Fig. 4). The search 
for non-dominated solutions is carried out as in NSGA-II, by creating non-dominated fronts. 
The difference in our approach is that the solutions of the first front are classified by a multi-
criteria classification method. After classification, performed either by ELECTRE-TRI or 
THESEUS, the first front is divided into two sub-fronts, i.e., one front per each class. 
Therefore, the first front is formed now by non-dominated solutions that belong to the best 
class (satisfactory), making selective pressure towards the ROI. Algorithm 3 presents the 
selective pressure process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Selective pressure towards the ROI. Process using preferences to enhance selective pressure towards 
dominated and satisfactory solutions 
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Algorithm 3. Selective pressure towards the ROI 
Input: output of the Algorithm 2 
Output: the new first front 
Initialize: first_front ← Ø, second_front ← Ø
1. Create population ← parent  offsprings
2. Create the fronts by non-dominance 
3. Sort the first front using a multi-criteria sorting method
4. Divide the first front into two fronts by grouping solutions with the same class
5.      first_front ← non-dominated solutions assigned as satisfactory
6.      second_front ← non-dominated solutions assigned as unsatisfactory
7. Reorder the remaining fronts considering the two new fronts

 
4 Experimental results 
 
In this section, we describe the problems used as case study as well as the experimental 
conditions used for the analysis of the results. Let us underline that, in the absence of a real 
DM, we renounce to implement the learning process provided by several iterations of the 
elicitation preference phase. 
The performance of the proposed approach was tested on project portfolio optimisation 
problems and seven scalable DTLZ test problems. By using the DTLZ test problems we were 
able to evaluate the quality of the solutions concerning the closeness to the region of interest. 
Two metaheuristics representative of the state of the art MOEA/D and MOEA/D-DE, were 
used for the first phase of the hybrid approach and for comparison of results. 
The reference sets used by THESEUS are composed of several elements per class. 
ELECTRE-TRI uses only one element as reference profile on the boundary between  classes. 
The preferential model parameters (λ=0.67, β=0.2 and ε=0.1) have the same values as those 
suggested by Fernandez et al. [3].  
All algorithms used in the experiments were run 30 times for each instance on an Intel CORE 
i7, 2.80 GHz processor with 16 GB of RAM. Our hybrid approach was developed in the Java 
language, using the JDK 1.8 compiler, and NetBeans 8.0.2 as IDE. 
 
4.1 Scalable test problems 
 
This kind of problems has been widely used in the field of multi-objective evolutionary 
algorithms mainly to assess the performance of new algorithms and to compare different 
approaches. The scalability to any number of objectives and decision variables, and 
knowledge of the particular form and position of the resulting Pareto-optimal front, are only 
some of the features of these problems. We address the DTLZ1–DTLZ7 problems with three 
and eight objectives. The metaheuristic used in the elicitation phase of preferences to create 
the reference profile and the reference set, was MOEA/D-DE and was applied on both 
problems with three and eight objectives. We have used MOEA/D-DE because it has shown 
the ability to solve problems with a few and many objectives. For the same reason, our hybrid 
approach is compared with respect to MOEA/D-DE. 
 
 
 
 
 



4.1.1 Parameters settings 
 
Control parameters used specifically by MOEA/D-DE are shown in Table 3. Their values 
were set according to the original paper [33]. Table 4 shows the crossover parameters values 
used particularly by HEAP; they were retrieved from [41].  
 
Table 3. Control parameters used in MOEA/D-DE 

Parameter Values 
CR 1.0 
F 0.5 
pm 1/n 
T 20 
δ 0.9 
nr 2 

 
Table 4. Crossover parameters values used by HEAP 

Parameter Values
SBX crossover probability  pc  1
SBX crossover index ηc  30 

 
Some parameters values used in the optimisation phase are the same for both algorithms and 
were set according to [41,42]; these are provided by Table 5. In three-objective problems, 
the population size and the number of weight vectors were both set to 91. In eight-objective 
problems, the population size and the number of weight vectors were both set to 330. These 
values were the same for HEAP and MOEA/D-DE and were set according to [41,42]. It 
should be mentioned that for the same problem size (number of objectives), we adopted the 
same number of iterations for both algorithms. However, as HEAP has an Initialisation and 
a Selective pressure phases, for a fair evaluation, the total number of iterations is divided 
between them by assigning half of the iterations to each phase. Polynomial mutation values 
used by HEAP and MOEA/D-DE were retrieved from [41] and are shown in Table 6. 
 
Table 5. Parameters used by HEAP and MOEA/D-DE in the optimisation phase 

Problem Three objectives  Eight objectives
No. var. Iterations  No. var. Iterations

DTLZ1 7 400  12 750
DTLZ2 12 250  17 500
DTLZ3 12 1000  17 1000
DTLZ4 12 600  17 1250
DTLZ5 12 500  17 1500
DTLZ6 12 500  17 1500
DTLZ7 22 500  27 1700

 
Table 6. Polynomial mutation values used by HEAP and MOEA/D-DE 

Parameter Values
Polynomial mutation probability pm  1/n
Polynomial mutation index ηm  20 

 
The parameters for calculating the outranking relation used by both multi-criteria ordinal 
classification methods are indicated in Table 7. 
 
Table 7. The outranking model parameters in instances with three and eight objectives 



Thresholds Values to three objectives Values to eight objectives
Weights 0.4 0.3 0.3 0.26 0.16 0.11 0.11 0.09 0.09 0.09 0.09 
Veto 0.3 0.4 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 
Indifference 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
Pre-veto 0.15 0.2 0.2 0.15 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

 
Characterisation of the ROI 
 
The formulation of DTLZ1–DTLZ7 [43] allows knowing whether a generated solution 
corresponds to the true Pareto front (TPF). The TPFs used as reference fronts for each of the 
problems were taken from the literature*. The 10% of solutions from each TPF was used to 
characterise the ROI. This process is presented in Algorithm 4. Let us consider the following: 
for each solution x ∈ TPF we count the number of solutions that strictly outrank x (Line 2); 
the set TPF was arranged in ascending order based on the outranking count, which means 
that the solutions were ordered according to the number of solutions that strictly outrank 
them. The ROI was characterised by the less-strictly-outranked solutions. We established 
that ten percent of the solutions in TPF is enough to characterise the ROI. 
 

Algorithm 4. Characterisation of the ROI 
Input: Solution set TPF 
Output: A representation of the ROI 
1. For each x ∈ TPF do 
2.  Compute |S(TPF, x)|        //Eq. (6) 
3. Arrange the set TPF in ascending order according to |S(TPF, x)| 
4. roi ← select ten percent of the solutions in TPF (the first solutions in TPF) 

 
4.1.2 Results in scalable test problems 
 
The performance of Evolutionary Multi-Objective Optimisation (EMO) algorithms is 
assessed on two aspects:  convergence (how close the obtained non-dominated objective 
vectors are from the true Pareto optimal front), and the distribution of the obtained objective 
vectors. To assess the quality of Pareto fronts produced by algorithms, a certain number of 
quality indicators has been proposed and applied by the existing works, e.g., Generational 
Distance (GD) [44], Inverted Generation Distance [45], Hypervolume [46] and, Epsilon [47]. 
Most of these indicators involve not only the convergence towards the Pareto front but also 
the distribution. However, in preference-based MOEAs, the non-dominated solutions are 
obtained from the ROI, and not from the entire Pareto front as in classical MOEAs. 
Therefore, algorithms that incorporate preferences are less interested in the distribution and 
focus more on closeness to the ROI. Therefore, the quality indicators to measure the 
performance of preference-based MOEAs should be selected or even designed, considering 
mainly the convergence towards the ROI [48,49]. As far as we know, there is still no quality 
indicator recognized by the scientific community to evaluate the solutions of the algorithms 
that incorporate preferences. 
Considering the above, in this work we have selected GD as the quality indicator because it 
measures, without regarding the distribution, the closeness between a portion of an 
approximated Pareto front and the corresponding portion on the true Pareto front. The fact 
that the GD as a convergence indicator does not measure the distribution is seen as a 
limitation by numerous researchers in MOEAs. Nevertheless, this situation is not a real 

*https://github.com/jMetal/jMetal/tree/master/jmetal-core/src/main/resources/pareto_fronts 
 https://github.com/MOEAFramework/MOEAFramework/tree/master/pf



drawback when the interest is to measure the closeness to the ROI. Also, according to [48,50], 
GD is considered as one of the most commonly used quality indicators, as shown by [49,51]. 
For these reasons, the GD to the ROI will be used in this work as our performance indicator. 
A lower distance value represents a better performance. 
The aim of our experiments is to discover which approach achieves a set of solutions closest 
to the characterised ROI. We conducted comparative tests between our hybrid approach 
(using both multi-criteria classification methods) and MOEA/D-DE. The mean, minimum 
and maximum GD values are reported, and the best performance is shown in boldface. 
Additionally, this work used the STAC Web Platform* to carry out non-parametric statistical 
tests. The Friedman Aligned Ranks test was selected as our ranking test and the Holm’s test 
as the post-hoc method. The significance level was set at 0.05. In the Friedman ranking test, 
the null hypothesis H0 was: the means of the results of two or more algorithms are the same. 
In the Holm’s test, the null hypothesis H0 was: the mean of the results of each pair of groups 
is equal. 
Table 8 shows the results of the average GD to the ROI obtained by each algorithm, and in 
accordance with this distance, the results of the Friedman statistical test for multiple 
comparison are also shown. As can be seen in Table 8, HEAP-ELECTRE achieved the 
smallest GD to the ROI in most experiments. Only in DTLZ5, HEAP-THESEUS achieved 
the smallest GD to the ROI. The results obtained from the Friedman test reject the null 
hypothesis. Therefore, there are significant differences in the performance of different 
methods. However, this result does not indicate which is the best algorithm. We have applied 
the Holm’s post-hoc test to Friedman ranks, to determine if there are significant differences 
between pairs of algorithms and confirm rank ordering.  
 
Table 8. Mean, minimum and maximum GD  to the ROI by HEAP-THESEUS, HEAP-ELECTRE and 
MOEA/D-DE on three-objective DTLZ test problems. The best values are shown in boldface 

Problem Algorithm Mean GD Min GD Max GD Friedman Aligned Ranks test 

     Rank p-value and 
result 

DTLZ1 HEAP-THESEUS 0.0733580 0.0723256 0.0743692 45.5 0, H0 is rejected

HEAP-ELECTRE 0.0649435 0.0634274 0.0662011 15.5  

 MOEA/D-DE 0.1715672 0.1684358 0.1896797 75.5  

DTLZ2 HEAP-THESEUS 0.0589555 0.0571426 0.0603732 45.5 0, H0 is rejected

HEAP-ELECTRE 0.0479993 0.0459080 0.0507352 15.5  

 MOEA/D-DE 0.1055179 0.1049708 0.1058200 75.5  

DTLZ3 HEAP-THESEUS 0.0503874 0.0489506 0.0516676 45.5 0, H0 is rejected

HEAP-ELECTRE 0.0366177 0.0347426 0.0389850 15.5  

 MOEA/D-DE 0.1487710 0.1473552 0.1505630 75.5  

DTLZ4 HEAP-THESEUS 0.0706279 0.0670725 0.0751057 45.5 0, H0 is rejected

HEAP-ELECTRE 0.0608331 0.0587930 0.0628753 15.5  

 MOEA/D-DE 0.1311452 0.1265166 0.1374707 75.5  

DTLZ5 HEAP-THESEUS 0.0762713 0.0748984 0.0771429 15.5 0, H0 is rejected

HEAP-ELECTRE 0.0897435 0.0862568 0.0935900 45.5  

 MOEA/D-DE 0.6474479 0.6472327 0.6477862 75.5  

DTLZ6 HEAP-THESEUS 0.0912188 0.0895426 0.0930933 44.2 0, H0 is rejected

*http://tec.citius.usc.es/stac/ 



HEAP-ELECTRE 0.0875286 0.0829908 0.0927482 16.7  

 MOEA/D-DE 0.5262535 0.5262254 0.5262941 75.5  

DTLZ7 HEAP-THESEUS 0.0433866 0.0426132 0.0445156 45.5 0, H0 is rejected

HEAP-ELECTRE 0.0312654 0.0288854 0.0338405 15.5  

 MOEA/D-DE 0.0616323 0.0551616 0.0628087 75.5  

 
Table 9 exhibits the results of the Holm’s test upon comparing pairs of algorithms. The 
statistical tests resulted in the rejection of the null hypothesis in all cases, that is, there were 
significant differences in the performance of algorithms, confirming rank order validity of 
the pair. All these results correspond to problems with three objectives.  
 
Table 9. Statistical test results of the comparison between pairs of algorithms with Holm’s post hoc analysis, 
on three-objective DTLZ test problems 

Problem Algorithms  Holm test 
   p-value Result 
DTLZ1 MOEA/D-DE vs HEAP-ELECTRE  0 H0 is rejected 
 MOEA/D-DE vs HEAP-THESEUS  0.00002 H0 is rejected 
 HEAP-THESEUS vs HEAP-ELECTRE  0.00002 H0 is rejected 
DTLZ2 MOEA/D-DE vs HEAP-ELECTRE  0 H0 is rejected 
 MOEA/D-DE vs HEAP-THESEUS  0.00002 H0 is rejected 
 HEAP-THESEUS vs HEAP-ELECTRE  0.00002 H0 is rejected 
DTLZ3 MOEA/D-DE vs HEAP-ELECTRE  0 H0 is rejected 
 MOEA/D-DE vs HEAP-THESEUS  0.00002 H0 is rejected 
 HEAP-THESEUS vs HEAP-ELECTRE  0.00002 H0 is rejected 
DTLZ4 MOEA/D-DE vs HEAP-ELECTRE  0 H0 is rejected 
 MOEA/D-DE vs HEAP-THESEUS  0.00002 H0 is rejected 
 HEAP-THESEUS vs HEAP-ELECTRE  0.00002 H0 is rejected 
DTLZ5 MOEA/D-DE vs HEAP-ELECTRE  0.00002 H0 is rejected 
 MOEA/D-DE vs HEAP-THESEUS  0 H0 is rejected 
 HEAP-THESEUS vs HEAP-ELECTRE  0.00002 H0 is rejected 
DTLZ6 MOEA/D-DE vs HEAP-ELECTRE  0 H0 is rejected 
 MOEA/D-DE vs HEAP-THESEUS  0.00001 H0 is rejected 
 HEAP-THESEUS vs HEAP-ELECTRE  0.00005 H0 is rejected 
DTLZ7 MOEA/D-DE vs HEAP-ELECTRE  0 H0 is rejected 
 MOEA/D-DE vs HEAP-THESEUS  0.00002 H0 is rejected 
 HEAP-THESEUS vs HEAP-ELECTRE  0.00002 H0 is rejected 

 
In order to display an example of the experimental results, we have plotted in Figs. 5 and 6 
the solutions of one run of the problems DTLZ3 and DTLZ7 with three objectives.     
 



 
 

Fig. 5. Results of one run of  the DTLZ3 problem 
 
 
 

 
Fig. 6. Results of one run of the DTLZ7 problem 

 
In problems with eight objectives, HEAP-ELECTRE obtained the smallest average GD 
towards the ROI in DTLZ1, DTLZ2, DTLZ5, DTLZ6, whereas HEAP-THESEUS obtained 
it in DTLZ3, DTLZ4, DTLZ7. These results were statistically validated by the Friedman 



Aligned Ranks test and the null hypothesis was rejected in all cases (see Table 10). Therefore, 
there are significant differences in the performance of different methods.  
Table 11 shows Holm’s post hoc analysis of the comparison between pairs of algorithms. 
Statistical tests in most cases resulted in the rejection of the null hypothesis, that is, there 
were significant differences in the performance of the algorithms. Only in DTLZ3 and 
DTLZ7, H0 was accepted upon comparing HEAP-THESEUS vs HEAP-ELECTRE and 
MOEA/D-DE vs HEAP-ELECTRE, respectively, which means that the performance of these 
algorithms is similar. 
 
Table 10. Mean, minimum and maximum GD to the ROI by HEAP-THESEUS, HEAP-ELECTRE and 
MOEA/D-DE on eight-objective DTLZ test problems. The best values are shown in boldface 

Problem Algorithm Mean GD Min GD Max GD Friedman Aligned Ranks test 

     Rank p-value and result 

DTLZ1 HEAP-THESEUS 0.0458314 0.0379639 0.0546373 43.5 0, H0 is rejected 

HEAP-ELECTRE 0.0270424 0.0256780 0.0290760 17.4  

 MOEA/D-DE 0.0795901 0.0606147 0.1592223 75.5  

DTLZ2 HEAP-THESEUS 0.0672396 0.0573536 0.0692370 75.1 0, H0 is rejected 

HEAP-ELECTRE 0.0497071 0.0473928 0.0509862 15.8  

 MOEA/D-DE 0.0565191 0.0493613 0.0633782 45.6  

DTLZ3 HEAP-THESEUS 0.0588044 0.0553938 0.0626393 33.5 0.00006, H0 is rejected 

HEAP-ELECTRE 0.0594392 0.0544581 0.0640900 37.7  

 MOEA/D-DE 1.0195812 0.0528981 5.8883738 65.2  

DTLZ4 HEAP-THESEUS 0.0485468 0.0442056 0.0563014 18.6 0, H0 is rejected 

HEAP-ELECTRE 0.0542395 0.0534894 0.0550693 67.1  

 MOEA/D-DE 0.0529739 0.0502216 0.0555352 50.6  

DTLZ5 HEAP-THESEUS 0.1056569 0.1034018 0.1086645 41.4 0, H0 is rejected 

HEAP-ELECTRE 0.0918547 0.0773312 0.1064385 19.5  

 MOEA/D-DE 1.4558328 1.4258210 1.5390851 75.5  

DTLZ6 HEAP-THESEUS 0.1187496 0.1147829 0.1221445 45.5 0, H0 is rejected 

HEAP-ELECTRE 0.0721288 0.0655664 0.0823243 15.5  

 MOEA/D-DE 3.3151160 3.2773026 3.4163744 75.5  

DTLZ7 HEAP-THESEUS 0.0490189 0.0400838 0.0595119 28.6 0.0009, H0 is rejected 

HEAP-ELECTRE 0.0510092 0.0493711 0.0524904 49.6  

 MOEA/D-DE 0.0519194 0.0485054 0.0582035 58.2  

 
 
 
 
 
 
 
 
 



Table 11. Statistical test results of the comparison between pairs of algorithms with Holm’s post hoc analysis, 
on eight-objective DTLZ test problems 

Problem Algorithms  Holm test 
   p-value Result 
DTLZ1 MOEA/D-DE vs HEAP-ELECTRE  0 H0 is rejected 
 MOEA/D-DE vs HEAP-THESEUS  0 H0 is rejected 
 HEAP-THESEUS vs HEAP-ELECTRE  0.00011 H0 is rejected 
DTLZ2 MOEA/D-DE vs HEAP-ELECTRE  0.00002 H0 is rejected 
 MOEA/D-DE vs HEAP-THESEUS  0.00002 H0 is rejected 
 HEAP-THESEUS vs HEAP-ELECTRE  0 H0 is rejected 
DTLZ3 MOEA/D-DE vs HEAP-ELECTRE  0.00009 H0 is rejected 
 MOEA/D-DE vs HEAP-THESEUS  0.00001 H0 is rejected 

 HEAP-THESEUS vs HEAP-ELECTRE  0.54003 H0 is accepted 
DTLZ4 MOEA/D-DE vs HEAP-ELECTRE  0.01444 H0 is rejected 
 MOEA/D-DE vs HEAP-THESEUS  0 H0 is rejected 
 HEAP-THESEUS vs HEAP-ELECTRE  0 H0 is rejected 
DTLZ5 MOEA/D-DE vs HEAP-ELECTRE  0 H0 is rejected 
 MOEA/D-DE vs HEAP-THESEUS  0 H0 is rejected 
 HEAP-THESEUS vs HEAP-ELECTRE  0.00115 H0 is rejected 
DTLZ6 MOEA/D-DE vs HEAP-ELECTRE  0 H0 is rejected 
 MOEA/D-DE vs HEAP-THESEUS  0.00002 H0 is rejected 
 HEAP-THESEUS vs HEAP-ELECTRE  0.00002 H0 is rejected 
DTLZ7 MOEA/D-DE vs HEAP-ELECTRE  0.20408 H0 is accepted 
 MOEA/D-DE vs HEAP-THESEUS  0.00003 H0 is rejected 
 HEAP-THESEUS vs HEAP-ELECTRE  0.00358 H0 is rejected 

 
In order to know the robustness of the hybrid approach concerning the increment in the 
number of objectives, the Wilcoxon statistical tests were performed with a significance level 
of 0.05. The null hypothesis H0 was: The medians of the differences between the two group 
samples are equal. The generational distances obtained in each DTLZ problem were grouped 
according to the number of objectives (3 and 8), giving rise to two groups which were 
compared. This was done for each classifier. The results of the statistical test are shown in 
Table 12. For HEAP-ELECTRE, the analysis indicates that its overall performance in the 
DTLZ test problems does not vary significantly when the number of objectives increases. 
For HEAP-THESEUS, the test shows that there are significant differences in their overall 
performance when the number of objectives increases. 
 
Table 12. The overall performance of the hybrid approach when applying the Wilcoxon statistical test 

Algoritmo SD* three obj SD* eight obj Statistic p-value  Result 

HEAP-ELECTRE 0.0214275 0.01900082 10467 0.4886438  H0 is accepted 

HEAP-THESEUS 0.0152839 0.02769361 8189 0.0010517  H0 is rejected 
*Standard Deviation 
 
The statistical analysis for each problem is shown in Tables 13 and 14. In Table 13, the 
statistical test indicates that HEAP-ELECTRE results improve by increasing the number of 
objectives in the DTLZ1, DTLZ4 and DTLZ6 problems. The results are degraded in the 
DTLZ2, DTLZ3 and DTLZ7 problems. In the DTLZ5 problem, there are no significant 
differences. 



Table 13. HEAP-ELECTRE statistical results for each DTLZ test problem 
Problem SD* three obj SD* eight obj Mean GD 

three obj
Mean GD 
eight obj

Statistic p-value Result 

DTLZ1 0.000746671 0.001034030 0.0649435 0.0270424 0 1.7344E-06 H0 is rejected 

DTLZ2 0.001040563 0.000956612 0.0479993 0.0497071 29 2.8434E-05 H0 is rejected 

DTLZ3 0.000972166 0.003820774 0.0366177 0.0594392 0 1.7344E-06 H0 is rejected 

DTLZ4 0.001067292 0.000425914 0.0608331 0.0542395 0 1.7344E-06 H0 is rejected 

DTLZ5 0.001764457 0.006998189 0.0897435 0.0918547 154 0.10639417 H0 is accepted 

DTLZ6 0.002537881 0.003677811 0.0875286 0.0721288 0 1.7344E-06 H0 is rejected 

DTLZ7 0.001410511 0.000799243 0.0312654 0.0510092 0 1.7344E-06 H0 is rejected 

 
Table 14 provides the results for HEAP-THESEUS. The statistical test indicates that the 
results in problems with eight objectives improve in DTLZ1 and DTLZ4, and degrade in the 
remaining problems. 
 
Table 14. HEAP-THESEUS statistical results for each DTLZ test problem 

Problem SD* three obj SD eight obj Mean GD 
three obj

Mean GD 
eight obj

Statistic p-value Result 

DTLZ1 0.000591581 0.004916545 0.0733580 0.0458314 0 1.7344E-06 H0 is rejected 

DTLZ2 0.000582953 0.004136502 0.0589555 0.0672396 9 4.2856E-06 H0 is rejected 

DTLZ3 0.000702218 0.002215381 0.0503874 0.0588044 0 1.7344E-06 H0 is rejected 

DTLZ4 0.001968730 0.003100972 0.0706279 0.0485468 0 1.7344E-06 H0 is rejected 

DTLZ5 0.000558477 0.001483283 0.0762713 0.1056569 0 1.7344E-06 H0 is rejected 

DTLZ6 0.000980083 0.001531944 0.0912188 0.1187496 0 1.7344E-06 H0 is rejected 

DTLZ7 0.000454796 0.004694310 0.0433866 0.0490189 16 8.4660E-06 H0 is rejected 

 
4.2 A multi-criteria project portfolio optimisation problem 
  
One of the main tasks of management in any organization is to evaluate and choose a set of 
projects competing for financial support to form a project portfolio. The DM is the entity in 
charge of selecting the portfolio that will be implemented by the corporation. The selected 
portfolio should satisfy budget constraints. The project portfolio problem is modeled as 
follows: 
 

𝑀𝑎𝑥ሺ
௫∈ோಷ

𝑧ሺ𝑥ሻሻ 

where: 
 x = ሺx1, x2,..., xpሻ is a portfolio of p projects, each xi is a binary variable, xi = 1 if the 

ith project is financed and xi = 0 otherwise; 
 z(x) = ሺz1(x), z2(x), ... , zN(x)ሻ is the union of the contribution of each of the projects 

that compose a portfolio x of N objectives, each 𝑧௝ሺ𝑥ሻ ൌ ∑ 𝑥௜𝑓௝ሺ𝑖ሻ௣
௜ୀଵ ; 

 f(i) = ሺf1(i), f2(i),..., fN(i)ሻ is an N-dimensional vector that denotes a project, each fj(i) 
is the contribution of project i to the jth objective; 

 each project f(i) is characterised by a cost (ci), classifiable in m activity areas ai 
(i=1,…,m) such as health, education, etc., and n geographic regions gi (i=1,…,n); 

 RF is a feasible region; 



s.t. 
 a budget constraint defined as ൫∑ 𝑥௜𝑐௜

௣
௜ୀଵ ൯ ൑ 𝐵where B is a total budget; 

 an area constraint 𝐿𝐴௞ ൑ ∑ 𝑥௜𝑞௜ሺ𝑘ሻ𝑐௜ ൑ 𝑈𝐴௞
௣
௜ୀଵ where LAk and UAk are lower and 

upper limits, respectively, qi(k) = 1 if ai = k and qi(k) = 0 otherwise; 
 a geographic region constraint 𝐿𝑅௞ ൑ ∑ 𝑥௜𝑡௜ሺ𝑘ሻ𝑐௜ ൑ 𝑈𝑅௞

௣
௜ୀଵ  where LRk and URk are 

lower and upper limits, respectively, ti(k) = 1 if gi = k and ti(k) = 0 otherwise. 
 
In this experiment, the comparison was performed between MOEA/D and HEAP and it was 
carried out by pairs of methods. The different approaches were compared in order to know 
which was able to get a better representation of the known ROI, that is, non-dominated (ND) 
and satisfactory solutions. 
 
4.2.1 Parameters settings 
 
We experimented with the project portfolio problem on three and eight objectives, using three 
instances for each problem. The parameters are the same for HEAP and MOEA/D, where the 
index of the T closest vectors was set to 10, according to [32]. The parameters of the 
evolutionary process and the configuration of each problem are shown in Tables 15 and 16, 
respectively. As mentioned previously, the hybrid algorithm used half of the total number of 
iterations in the first phase and the other half in the second phase. The parameters used to 
calculate the outranking relation used by both classification methods are indicated in Table 
17. 
 
Table 15. Parameters used in the evolutionary process 

Parameter Values
Crossover probability 1
Mutation probability 0.01

 
Table 16.  Configuration of instances 

Parameter Instance configuration
No. objectives 3 8
No. projects 100 100
Weight vectors 105 120
Population size 105 120
Total iterations 500 500

 
Table 17. The outranking model parameters in instances with three and eight objectives 

Thresholds Values to three objectives Values to eight objectives
Weights 40 11 49 10 13 10 12 7 13 10 7
Veto 102000 30000 1100 120000 90000 150000 100000 168000 120000 200000 156000
Indifference 3750 750 37.5 3750 3000 4500 3000 6000 3750 6000 5250
Pre-veto 54750 15750 587.5 63750 48000 79500 53000 90000 63750 106000 83250

 
4.2.2 Results in the project portfolio optimisation problem 
 
The solutions obtained by the algorithms are combined in a single set to determine which of 
them gets a greater number of solutions corresponding to the approximated ROI, that will be 
called ROI for simplicity in what follows. It is worth mentioning that the solutions of 
MOEA/D were classified by the multi-criteria sorting methods (see section 2.3), used by the 



hybrid approach, with the aim of identifying which solutions belong to the ROI. That is, the 
solutions were sorted by ELECTRE-TRI and THESEUS in comparison with HEAP-
ELECTRE and HEAP-THESEUS, respectively. 
 
In instances with three objectives, the first comparison was performed between HEAP-
ELECTRE and HEAP-THESEUS. The results showed that HEAP-THESEUS obtained a 
better representation of the ROI in instances 2 and 3 as it kept a higher percentage of non-
dominated and satisfactory solutions than HEAP-ELECTRE. HEAP-THESEUS dominated 
between 0%–45% of the solutions generated by HEAP-ELECTRE. Meanwhile, the solutions 
obtained by HEAP-ELECTRE dominated between 2%–3% of the HEAP-THESEUS 
solutions. This information can be seen in Table 18. 
 
Table 18. Results between HEAP-THESEUS and HEAP-ELECTRE in problems with three objectives 

Instance Algorithm Average of 30 runs
Solution set size Solutions in the known 

ROI (T  E)*
% Solutions in the known 
ROI 

1 HEAP- THESEUS  108 106 98%
 HEAP- ELECTRE 18 18 100% 
2 HEAP- THESEUS  39 38 97% 
 HEAP- ELECTRE 7 5 71%
3 HEAP- THESEUS  106 104 98% 
 HEAP- ELECTRE 11 6 55%

*T and E are the solution sets generated by HEAP-THESEUS and HEAP-ELECTRE, respectively. 
 
Table 19 shows the comparison between MOEA/D and HEAP-THESEUS in three 
objectives. It allows us to observe that HEAP-THESEUS preserves more non-dominated 
solutions than MOEA/D (fifth column). Between 0%–6% of MOEA/D’s solutions achieved 
to characterise the ROI, whereas 99%–100% of the solutions generated by HEAP-THESEUS 
do represent the ROI (seventh column). 
 
 
Table 19. Comparative results between HEAP-THESEUS and MOEA/D in problems with three objectives  

Instance Algorithm Average of 30 runs
Solution 
set size

ND 
solutions

% ND 
solutions

Solutions in the 
known ROI

% Solutions in 
the known ROI

1 HEAP-THESEUS 108 108 100% 108 100% 
 MOEA/D 156 84 54% 9 6% 
2 HEAP-THESEUS 39 39 100% 39 100% 
 MOEA/D 134 85 63% 0 0% 
3 HEAP-THESEUS 106 105 99% 105 99% 
 MOEA/D 136 69 51% 6 4% 

 
The comparison between MOEA/D and HEAP-ELECTRE in three objectives is presented in 
Table 20. It shows that HEAP-ELECTRE is able to maintain a larger number of solutions as 
non-dominated (fifth column). This happens although the average number of obtained 
solutions by HEAP-ELECTRE is smaller than that generated by MOEA/D. MOEA/D 
generated a poor representation of the ROI, whereas HEAP-ELECTRE was able to perform 
a good representation of this set (seventh column). 
 
 
 



 
Table 20. Comparative results between HEAP-ELECTRE and MOEA/D in problems with three objectives  

Instance Algorithm Average of 30 runs
Solution 
set size

ND 
solutions

% ND 
solutions

Solutions in the 
known ROI

% Solutions in 
the known ROI

1 HEAP-ELECTRE 18 18 100% 18 100% 
 MOEA/D 156 124 79% 3 2% 
2 HEAP-ELECTRE 7 7 100% 7 100% 
 MOEA/D 134 108 81% 0 0% 
3 HEAP-ELECTRE 11 11 100% 11 100% 
 MOEA/D 136 131 96% 4 3% 

 
Afterwards, we used the Wilcoxon’s signed ranked test on solutions belonging to the ROI to 
validate the results. Table 21 shows the Wilcoxon test results in instances with three 
objectives. The comparison of pairs of algorithms shows that the null hypothesis is rejected 
in all cases, that is, there are significant differences in the performance of procedures in 
instances with three objectives. 
 
Table 21. Results of the Wilcoxon test applied to solutions of the ROI in instances with three objectives 

Instance Algorithm Wilcoxon test (significance level of 0.05)
p-value Result

1 HEAP-THESEUS 1.723E-06 H0 is rejected 
 HEAP-ELECTRE  
2 HEAP-THESEUS 1.722E-06 H0 is rejected 
 HEAP-ELECTRE  
3 HEAP-THESEUS 1.696E-06 H0 is rejected 
 HEAP-ELECTRE  
1 HEAP-THESEUS 1.701E-06 H0 is rejected 
 MOEA/D  
2 HEAP-THESEUS 1.719E-06 H0 is rejected 
 MOEA/D  
3 HEAP-THESEUS 1.688E-06 H0 is rejected 
 MOEA/D  
1 HEAP-ELECTRE 7.631E-06 H0 is rejected 
 MOEA/D  
2 HEAP-ELECTRE 9.05E-07 H0 is rejected 
 MOEA/D  
3 HEAP-ELECTRE 0.0002435 H0 is rejected 
 MOEA/D  

 
 
Figs. 7−9 show the graphs corresponding to one run of the project portfolio problems with 
three objectives. 
 



 
 

Fig. 7. Results of the instance no. 1 of the project portfolio problem with three objectives 
 
 
 

 
 

Fig. 8. Results of the instance no. 2 of project portfolio problem with three objectives 
 
 
 
 
 
 
 



 
 

Fig. 9. Results of the instance no. 3 of the project portfolio problem with three objectives. 
 
The comparative results between HEAP-ELECTRE and HEAP-THESEUS solving the 
problem with eight objectives are shown in Table 22. We observe that both algorithms obtain 
a similar percentage of solutions that belong to the ROI. 
 
Table 22. Results between HEAP-THESEUS and HEAP-ELECTRE in problems with eight objectives 

Instance Algorithm Average of 30 runs
Solution set size Solutions in the known 

ROI (T  E)*
% Solutions in the 
known ROI 

1 HEAP- THESEUS  126 125 99% 
 HEAP- ELECTRE 123 123 100% 
2 HEAP- THESEUS  124 124 100% 
 HEAP- ELECTRE 23 22 96% 
3 HEAP- THESEUS  126 126 100% 
 HEAP- ELECTRE 126 126 100% 

*T and E are the solution sets generated by HEAP-THESEUS and HEAP-ELECTRE, respectively. 
 
Table 23 shows that HEAP-THESEUS always maintains its solutions as non-dominated, 
whereas MOEA/D conserves between 90%–98% of its solutions as non-dominated (fifth 
column). Furthermore, all solutions obtained by HEAP-THESEUS characterise the ROI, 
whereas MOEA/D only obtained between 0%–1% of solutions belonging to this region 
(seventh column). 
 
Table 23. Comparative results between HEAP-THESEUS and MOEA/D in problems with eight objectives 

Instance Algorithm Average of 30 runs
Solution 
set size

ND 
solutions

% ND 
solutions

Solutions in the 
known ROI

% Solutions in 
the known ROI

1 HEAP-THESEUS 126 126 100% 126 100% 
 MOEA/D 3162 3102 98% 7 0% 



2 HEAP-THESEUS 124 124 100% 124 100% 
 MOEA/D 2575 2408 94% 20 1% 
3 HEAP-THESEUS 126 126 100% 126 100% 
 MOEA/D 3775 3403 90% 5 0% 

 
The results given in Table 24 show a better performance of HEAP-ELECTRE than 
MOEA/D, since it maintained a slightly higher percentage of solutions as non-dominated in 
the problems with eight objectives (fifth column). MOEA/D did not get solutions belonging 
to the ROI. In contrast, HEAP-ELECTRE was able to perform a good characterisation by 
getting 100% of solutions belonging to the ROI (seventh column). 
 
Table 24. Comparative results between HEAP-ELECTRE and MOEA/D in problems with eight objectives 

Instance Algorithm Average of 30 runs
Solution set 
size 

ND 
solutions

% ND 
solutions

Solutions in the 
known ROI 

% Solutions in the 
known ROI

1 HEAP-ELECTRE 123 123 100% 123 100% 
 MOEA/D 3162 3113 98% 4 0% 
2 HEAP-ELECTRE 23 23 100% 23 100% 
 MOEA/D 2575 2558 99% 4 0% 
3 HEAP-ELECTRE 126 126 100% 126 100% 
 MOEA/D 3775 3453 91% 3 0% 

 
Table 25 exhibits the statistical results of the Wilcoxon test for instances with eight 
objectives. We can see that in all but one case, the null hypothesis is rejected. The case where 
the null hypothesis is accepted was in the comparison between HEAP-ELECTRE and HEAP-
THESEUS on the instance three, which confirms the results shown in Table 22. It means that 
both algorithms have a similar performance. 
 
Table 25. Results of Wilcoxon test applied to solutions in the ROI in instances with eight objectives 

Instance Algorithm Wilcoxon test (significance level of 0.05)
p-value Result

1 HEAP-THESEUS 0.00073375 H0 is rejected 
 HEAP-ELECTRE  
2 HEAP-THESEUS 1.7224E-06 H0 is rejected 
 HEAP-ELECTRE  
3 HEAP-THESEUS 0.6229019 H0 is accepted 
 HEAP-ELECTRE  
1 HEAP-THESEUS 1.6721E-06 H0 is rejected 
 MOEA/D  
2 HEAP-THESEUS 1.7181E-06 H0 is rejected 
 MOEA/D  
3 HEAP-THESEUS 1.703E-06 H0 is rejected 
 MOEA/D  
1 HEAP-ELECTRE 1.6731E-06 H0 is rejected 
 MOEA/D  
2 HEAP-ELECTRE 2.98E-05 H0 is rejected 
 MOEA/D  
3 HEAP-ELECTRE 1.6742E-06 H0 is rejected 
 MOEA/D  

 
 
 
 



5 Concluding remarks 
 
This paper presents a hybrid evolutionary algorithm to explore the effectiveness of using 
multi-criteria ordinal classification methods to incorporate the DM’s preferences into the 
optimisation process to lead the search towards the ROI, that is, the region of the Pareto 
frontier where solutions that are more in agreement with the DM’s preferences are located. 
The preferences are reflected by the parameters of an outranking relation, by a reference 
profile and by a reference set of assignment examples. In practice, this information should 
be elicited (directly or indirectly) by the DM, but with the purpose of evaluating our proposal, 
in the absence of a real DM, (s)he was simulated by an outranking model. 
 
The proposal fulfills several desirable characteristics of a method of preferences 
incorporation: 
 

a) an easy interaction between the DM and the solution generator algorithm, minimizing 
the cognitive effort from the DM when (s)he classifies solutions as “satisfactory” and 
“unsatisfactory”; 

b) no requirement of comparability and transitivity of preferences; 
c) the outranking model of multi-criteria preferences is compatible with relevant 

characteristics of real DMs, such as non-transitive and non-compensatory preferences 
(veto effects);  

d) we have several tools to infer the decision model parameters from the assignment 
examples provided by the DM during the interactive process. 

 
ELECTRE and THESEUS were used as multi-criteria ordinal classification approaches 
combined with an evolutionary algorithm, giving rise to the HEAP-ELECTRE and HEAP-
THESEUS hybrid procedures, respectively. These classification methods are in charge of 
assigning the new solutions generated during the evolutionary process to one of the ordered 
classes. To a certain extent, the ordinal classification method replaces the DM during the 
optimisation process. 
 
Our approach provides as output a set of non-dominated solutions which were assigned to 
the best class. We carried out experiments with scalable benchmark problems (DTLZ1-
DTLZ7) and with a project portfolio optimisation problem. We used instances with three and 
eight objectives in both types of problems. The results obtained by HEAP-ELECTRE and 
HEAP-THESEUS approaches were compared with each other as well as against MOEA/D 
and MOEA/D-DE. All the results were validated by analyzing their statistical significance 
using non-parametric tests. 
 
Our experiments allow to rise the following conclusions: 
 

1. Our proposal achieves a good convergence to the ROI in the DTLZ1–DTLZ7 
problems with three and eight objectives; this can be argued from the lower values of 
the mean and maximum generational distance to the ROI. 



2. In  the DTLZ test problems, using ELECTRE TRI as a classification method,  the 
convergence to the ROI is not degraded when the number of objectives increases from 
three to eight;  

3. In the test instances of project portfolio optimization, the proposed method was able 
to maintain a larger number of non-dominated solutions than MOEA/D.  

4. In the same instances mentioned above, MOEA/D identified only a few solutions of 
the known ROI (non-dominated and satisfactory solutions). 

5. The larger generational distances obtained by MOEA/D in DTLZ test problems 
indicate that more solutions are far from the ROI in comparison to the solutions 
identified by our approach. 

 
Point 3 suggests that in some problems the search with preferences already incorporated can 
identify solutions closer to the Pareto Frontier than metaheuristics representative of the state 
of the art. Points 4 and 5 strongly suggest that incorporating preferences allows a better 
characterization of the ROI. This is relevant when the DM’s preferences are incorporated “a 
posteriori”. For example, in three instances shown in Table 20 MOEA/D only found 9, 0 and 
6 solutions in the known ROI; in comparison, 108, 39 and 105 were identified by our method. 
In an a posteriori incorporation of preferences, the DM can hardly identify the best 
compromise solution since the ROI has not been well-characterized. Something similar can 
be seen in Tables 21, 24 and 25. 
 
The hybrid approach obtained a better performance than a metaheuristic representative of the 
state of the art in all the test problems adopted for comparison, regardless of the specific 
multi-criteria ordinal classification method. The use of ELECTRE-TRI in the hybrid 
approach achieved a better performance than THESEUS in most of the DTLZ problems. In 
several DTLZ test problems, HEAP-ELECTRE improves its convergence when the number 
of objectives increases from three to eight. THESEUS slightly outperforms ELECTRE-TRI 
in some instances of project portfolio problems. 
Finally, let us remark that our results were obtained with a single run of the preference 
elicitation phase, since in the absence of a real DM, we renounced to the interactive process 
of updating the concept of what a satisfactory solution is, as well as to update the setting of 
preference model parameters. We hope that, through several preference elicitation phases, 
even better results can be obtained. As an avenue for future research, this should be proved 
by addressing real problems with real DMs. 
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